CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

Podobné dokumenty
Dvojitě vyvážený směšovač pro KV pásma. Doubly balanced mixer for short-wave bands

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Compression of a Dictionary

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

technický list TRANSIL TM 1.5KE6V8A/440A 1.5KE6V8CA/440CA str 1

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

SPECIFICATION FOR ALDER LED

EXACT DS OFFICE. The best lens for office work

By David Cameron VE7LTD

TechoLED H A N D B O O K

STLAČITELNOST. σ σ. během zatížení

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

The Over-Head Cam (OHC) Valve Train Computer Model

Uživatelská příručka. Xperia P TV Dock DK21

DC circuits with a single source

Radiova meteoricka detekc nı stanice RMDS01A

Transportation Problem

4 TABULKY ZÁKLADNÍCH STATISTICKÝCH CHARAKTE- RISTIK TÌLESNÝCH ROZMÌRÙ TABLES OF BASIC STATISTICAL CHARACTERISTICS OF BODY PARAMETERS


PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

GENERAL INFORMATION RUČNÍ POHON MANUAL DRIVE MECHANISM

UŽIVATELSKÁ PŘÍRUČKA

Introduction to MS Dynamics NAV

Anténní řada 2x2 pro přenos digitálního TV signálu v pásmu 4,4 až 5 GHz

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

WORKSHEET 1: LINEAR EQUATION 1

Uživatelská příručka. USB Charger UCH20

Instalace Pokyny pro instalaci v operačním systému Windows XP / Vista / Win7 / Win8

Izolační manipulační tyče typ IMT IMT Type Insulated Handling Rod

Dynamic Signals. Ananda V. Mysore SJSU

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

Together H A N D B O O K

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

TECHNICKÁ NORMALIZACE V OBLASTI PROSTOROVÝCH INFORMACÍ

Litosil - application

VELKÁ CENA HRADCE KRÁLOVÉ A KRÁLOVÉHRADECKÉHO KRAJE V PLAVÁNÍ 2. ročník ČESKÝ POHÁR V PLAVÁNÍ 1. kolo:

Měřič výkonu 1μW - 1kW. Power Meter 1μW - 1kW

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients

Presenter SNP6000. Register your product and get support at CS Příručka pro uživatele

Aktivita CLIL Chemie III.

On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia

Hi-Res Audio/DNC Headset MDR-NC750

PLANAR - měřící servisní technika a monitoring zpětných směrů

CODE BOOK NEISS 8. A code book is an identification tool that allows the customer to perform a test result evaluation using a numeric code.

Automatika na dávkování chemie automatic dosing

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika:

B1 MORE THAN THE CITY

Zubní pasty v pozměněném složení a novém designu

CCD 90 MV Cameras (Firewire) CCD 90 MV Cameras (GigE) CCD 90 MV Cameras (USB 2.0)

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

LOGOMANUÁL / LOGOMANUAL

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com

obal manuálu, asi něco podobného jako u LC 100 asi by to chtělo lepší obrázek!!! FYTOSCOPE FS130 Instruction Guide

TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"

T E S T R E P O R T No. 18/440/P124

Integrovaná dvoupásmová flíčkovo-monopólová anténa


Vánoční sety Christmas sets

Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider

Přivařovací šrouby Zdvihový zážeh - DIN

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle

Měření RF kde? Headend NODE Amplifiers Micronode Účastnická zásuvka Kabelový modem CATV a koax měření a servis v RF TV, RFoG

Dynamic programming. Optimal binary search tree

Právní formy podnikání v ČR

Postup objednávky Microsoft Action Pack Subscription

ELEKTROMOTORY SÉRIE CHT CHT ELECTRIC MOTORS

INDUCTION HEATING CAPACITORS KONDENZÁTORY PRO INDUKČNÍ OHŘEV

Contact person: Stanislav Bujnovský,

Aktuální trendy ve správě rádiového spektra

CHAIN TRANSMISSIONS AND WHEELS

INFLUENCE OF CONSTRUCTION OF TRANSMISSION ON ECONOMIC PARAMETERS OF TRACTOR SET TRANSPORT

ICP více než jen číslo? MUDr. Josef Škola XXV. kongres ČSARIM, Praha, 4. října 2018

Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Obrábění robotem se zpětnovazební tuhostí

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Aktivita CLIL Chemie I.

Injection Valve EV 14

Uživatelská příručka. Mono Bluetooth Headset MBH10

Entrance test from mathematics for PhD (with answers)

VLIV GEOMETRICKÉ DISPERZE

SPECIAL THEORY OF RELATIVITY

The Czech education system, school

Standard VGA (Video Graphics Array)

TUNGSTEN CARBIDE BURS TVRDOKOVOVÉ VRTÁČKY

ZÁŘIVKY Mül er-licht Třípásmové / 3-phosphor Colorlux+ Třípásmové / 3-phosphor Colorlux+ Třípásmové odolné vůči nízkým teplotám /

TR 311 TR 319, TR 331 TR 356

Hairpin filtr pro 1296 MHz na FR4. Hairpin filter for 1296 MHz on FR4

Dvojitá lišta SASILplus 1000A pro připojení jednoho spotřebiče Double strip SASILplus for 1000A for connection of one consumer

Název společnosti: VPK, s.r.o. Vypracováno kým: Ing. Michal Troščak Telefon: Datum:

Seznam změn v manuálu

:= = := :=.. := := := := ρ := := α := π α = α = := = :=

Transkript:

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG 5.1 Modified Minkowski fractal antenna The modified Minkowski fractal antenna is investigated in this chapter, which originates from the plane square shapedpatch antenna. In this case, Minkowski iterations produce a cross-like actal fr patch with even fine details at the edges. This antenna is designed by giving the first iteration at the center of each side of the square patch [200-202]. This discussed below in detail. 5.2 Antenna design The modified Minkowski fractal antenna i shown in Fig 5.1. The IE3D software based on method of moment (MoM) is used simulate to this fractal antenna. Similar to diamond shaped fractal antenna discussed chapter in 4, the FR4 material is used as a substrate for this antenna. The thickness of the substrate is 1.575mm and the dielectric constant is 4.3. The side lengt h of this fractal antenna is 30mm (without iteration) and after 1 st LWHUDWLRQµLQGHQWDWLRQ VL]HLV 2mm 8mm and square size is 14mm. Figure 5.1: Modified Minkowski fractal antenna with zero iteration. 62

5.3 Antenna structure used in simulator Fig. 5.4 and Fig. 5.5 respectively depicts e th actual structure with port location of the antenna in simulator for 1 st and 2 nd iteration. The port locations for 1 st iteration and 2 nd iteration are (-2, 9) and (7, 2.5) respectively. Figure 5.4: Structure of antenna in simulator after st iteration. 1 Figure 5.5: Structure of antenna in simulator after nd iteration. 2 65

5.4 Simulation results of antenna for 1 st iteration 5.4.1 Return loss (S 11 ) Return loss is usually measured at the junc tion of a transmission line and terminating impedance. It is defined as the ratio of the amplitude of reflected wave to the amplitude of incident wave. More specifically, the return loss value describes the reduction in the amplitude of reflected energy, as compared to the forward energy. Fig. 5.6 depicts the return loss of antenna for st iteration. 1 Figure 5.6: Variation of return loss (S 11 ) with frequency for 1 st iteration. From Fig. 5.6, it can be observed that e thresonant frequencies are 4.9GHz, 9.5GHz and 12.8GHz, and the return loss is less than -10dBi at these resonant frequencies. Thus, the designed antenna is best ited sufor these resonant frequencies. 5.4.2 Radiation pattern The radiation pattern of an antenna provide s the information that describes how the antenna directs the energy it radiates. All tennas, an if are 100% efficient, will radiate the same total energy for equal input power regardless of pattern shape. Radiation patterns are generally presented on a relative power db scale. 66

The elevation radiation pattern of an antenna shows the gain of antenna at resonant frequencies in the elevation plane. Fig. 5.7 and Fig. 5.8 depicts the elevation radiation patterns of the designed antenna at resonant frequencies of 4.9GHz and 9.5GHz respectively. Figure 5.7: Elevation radiation pattern at 4.9GHz. Figure 5.8: Elevation radiation pattern at 9.5GHz. Fig. 5.9 depicts the combined elevation diation ra pattern of the designed antenna at both resonant frequencies. 67

Figure 5.9: Combined Elevation radiation pattern at both resonant frequencies 5.4.3 Total field gain vs frequency Fig. 5.10 depicts the total field gain vs. frequency plot. It can be observed from Fig. 5.10 that the gain of the antenna is 5dBi, 6.4dBi and 2.5dBi at resonant frequencies of 4.9GHz, 9.5GHz and 12.8GHz respectively. Figure 5.10: Total field gain vs frequency of the designed antenna. 68

5.4.4 Directivity of the designed antenna Fig. 5.11 depicts the directivity vs. frequency plot. The directivity of the designed antenna obtained at resonant frequencies of 4.9GHz, 9.5GHz and 12.8GHz is 7.5dBi, 9.5dBi and 9.1dBi respectively. Figure 5.11: Directivity vs frequenc y graph of the designed antenna. 5.4.5 VSWR of the designed antenna Fig. 5.12 shows the Voltage Standing Wave Ratio (VSWR) of the designed antenna.vswr is the ratio between the maximum voltage and minimum voltage along transmission line. Figure 5.12: VSWR characteristics of the designed antenna st iteration. for 1 69

frequencies of 4.2GHz, 9.5GHz and 14.1GHz respectively. Fig. 5.17 depicts combined elevation radiation pattern at ree thresonant frequencies of the antenna. Figure 5.14: Elevation radiation pattern at 4.2GHz nd of iteration. 2 Figure 5.15: Elevation radiation pattern at 9.5GHz nd of iteration. 2 71

Figure 5.16: Elevation radiation pattern at 14.1GHz nd of iteration. 2 Figure 5.17: Combined Elevation radiation pattern nd for iteration. 2 As seen from Fig.5.17, all resonant freque ncies maintain a gain of 2dBi.This shows that these frequencies are not higher order modes as there is consistency in the gain. However, the radiation patterns get affected in shape due to variation in the current length for the respective resonance allowing different current density to wavelength ratio. 72

5.5.3 Total field gain vs frequency Fig. 5.18 shows the total field gain vs. equency fr of the modified Minkowski fractal antenna. The gain at three resonant frequencies (4.2GHz, 9.5GHz and 14.1GHz) of the 2 nd iteration is 1.27dBi, 5.44dBi and 7.76dBi respectively. Figure 5.18: Total field gain vs frequency of nd iteration 2 of the designed antenna. 5.5.4 Directivity of the designed antenna Fig. 5.19 depicts that the directivity of th e designed antenna is 6dBi, 11dBi and 12.9dBi at respective three resonant frequencies 4.2GHz, 9.5GHz and 14.1GHz. Figure 5.19: Directivity characteristics of the designed antenna. 73

The gain of the antenna at 14.1GHz is 7.76dBi and the dir ectivity is 12.9dBi. Calculating the efficiency, k = 7.76/12.9 = 0.6015 (5.28) From the above results, the efficiency of the antenna at 14.1GHz is 60.15%. Table 5.1: Summary of st 1iteration results. Resonant Return Gain Directivity Bandwidth % VSWR Efficiency Frequency loss (dbi) (dbi) (MHz) Bandwidth Coefficient (GHz) (db) (k) 4.9-14.4 5 7.5 500 10.2 1.33 0.666 9.5-17.6 6.4 9.5 1000 10.5 1.2 0.673 12.8-10.8 2.5 9.1 300 2.34 1.3 0.275 Resonant Frequency loss (GHz) Return Table 5.2: Summary of nd 2iteration results. Gain (dbi) Directivity (dbi) Bandwidth MHz % Bandwidth VSWR Efficiency Coefficient 4.2-21.75 1.27 6 600 14.2 1.6 0.2117 9.5-16 5.44 11 800 14.2 1.5 0.495 14.1-14 7.76 12.9 1000 7 1.40 0.6015 (k) 5.7 Measured return loss Fig. 5.21 shows the picture of the fabricated antenna of 2 nd iteration using FR4 substrate. Figure 5.21: Fabricated antenna nd of iteration 2 with dimensions 30mm x 30mm. 77

Fig. 5.22 depicts the resonant frequencies of fabricated antenna, i.e., 3.822GHz, 4.506GHz and 4.886GHz and its corresponding return loss. Figure 5.22: Measured return loss of the fabricated antenna using site analyzer. 5.8 Conclusion In this chapter, the modified Minkowski fractal antenna is simulated and fabricated. The designed antenna is found to resonate 4.9GHz, 9.5GHz and 12.8GHz with respective gain of 5dBi, 6.4dBi and 2.5dBi. The respective bandwidths obtained are 500MHz, 1000MHz, and 300MHz. at these resonant frequencies st for iteration. 1 The values of gain achieved are 1.27dBi, 5.44dBi and 7.76dBi at three resonant frequencies (4.2GHz, 9.5GHz and 14.1GHz) of 2 nd iteration respectively. The bandwidths obtained are 600MHz, 800MHz and 1000MHz at the above three resonant frequencies respectively. The fabricated ante nna is tested using ite s analyzer having frequency range of 6GHz. The measured bandwidths obtained are 100MHz, 50MHz and 60MHz at three measured resonant frequencies respectively. The measured results show that the designed antenna supports multiband and is thus, suitable for low powered devices for wireless communication applications. 78