prof. Ing. Petr Bujok, CSc. 1, Ing. Martin Klempa, 2 V 2 Ing. Jaroslav Němec, DrSc. 2, Ing. Petr Němec, Ph.D. 3



Podobné dokumenty
VŠB TECHNICKÁ UNIVERZITA OSTRAVA Hornicko - geologická fakulta Institut geologického inženýrství. 17. listopadu 15/2172, Ostrava - Poruba

PREVENCE NEKONTROLOVATELNÝCH VÝSTUPŮ DŮLNÍCH PLYNŮ V PLOCHÁCH OPUŠTĚNÝCH UHELNÝCH DOLŮ ČESKÉ ČÁSTI HORNOSLEZSKÉ PÁNVE

Výstup důlního plynu v návaznosti na dopravní stavitelství

prof. Ing. Vladimír SLIVKA, CSc., dr. h. c. ředitel ICT děkan Hornicko-geologické fakulty VŠB Technické univerzity Ostrava

STUDIUM VLIVU CO 2 NA VYSTROJENÍ INJEKTÁŽNÍCH SOND A OKOLNÍ HORNINOVÉ PROSTŘEDÍ LABORATORNÍ VÝZKUM

Projekt č. 3/1999 Snížení rizika vzniku samovznícení uhelné hmoty se zaměřením na indikační a prevenční metody

DOPADY NA MIKROKLIMA, KVALITU OVZDUŠÍ, EKOSYSTÉMY VODY A PŮDY V RÁMCI HYDRICKÉ REKULTIVACE HNĚDOUHELNÝCH LOMŮ

Ekonomické a environmentální aspekty těžební otvírky a těžby břidličného plynu na území jižní Moravy

prof. Ing. Petr Bujok, CSc.; Ing. Martin Klempa; V 2 Ing. Michal Porzer

Surovinová politika ČR a její vztah ke Státní energetické koncepci

Těžba, úprava a skladování zemního plynu. Ing. Tomáš Hlinčík, Ph.D.

Stručné shrnutí údajů uvedených v žádosti

KORCHEM 2015/2016 Téma: Barevné zlato

Základní charakteristika výzkumné činnosti Ústavu fyzikální chemie

HYDROGEOLOGICKÝ PRŮZKUM

Katedra geotechniky a podzemního stavitelství

SEVEROČESKÉ DOLY DATA A FAKTA

EUROGAS a.s. Program VaV ČBÚ Zvýšení úrovně bezpečnosti práce v dolech a eliminace nebezpečí od unikajícího metanu z uzavřených důlních prostor.

VYSOKOTLAKÁ SORPČNÍ APARATURA PRO STANOVENÍ SORPCE OXIDU UHLIČITÉHO NA UHLÍKATÝCH MATERIÁLECH

ENVIRONMENTAL EFFECT OF USING OF MINE GAS IN COGENERATION UNITS IN THE PISTON GAS ENGINES

Možnosti využití slojového metanu v České republice

ZÁVĚREČNÁ ZPRÁVA o inženýrskogeologickém průzkumu

Prof.ing. Boleslav Taraba, CSc., Ing. Zdenek Pavelek, PhD.*, Prof.Ing. Pavel Prokop, CSc.**

Vysoká škola báňská Technická univerzita Ostrava

Břidlicový plyn a jeho dopad na ceny

Studium a využití mokřadních systémů pro čištění ídůlních vod. Ing. Irena Šupíková

Vliv barometrického tlaku na úroveň hladiny vody v pozorovacích vrtech

Shrnutí dosažených výsledků řešení P. č

VODOVOD VYŠŠÍ BROD : PŘÍKLAD OBNOVY A ROZŠÍŘENÍ VODNÍCH ZDROJŮ

Zavádění nových postupů a technických zařízení vhodných pro vzorkování vrtů ve specifických podmínkách s. p. DIAMO, o. z. TÚU

Informace pro Vládu ČR o sesuvu na dálnici D8 km 56,300 56,500 a návrh řešení havarijní situace

SIZE DISTRIBUTION REARRANGEMENT VIA TRANSPORT ROADS IN THE SAND TRANSPORT APPLICATION. Petr Bortlík a Jiří Zegzulka b

Vláhový režim odvodněné půdy s regulací drenážního odtoku Soukup Mojmír, Pilná Eva, Maxová Jana a Kulhavý Zbyněk VÚMOP Praha

Ing. Eva Jiránková, Ph.D., Ing. Marek Mikoláš, Ing. V 11 Petr Waclawik, Ph.D.

AAS MOŽNOSTI APLIKACE NOVÉHO FILTRAČNÍHO

Přírodní zdroje a energie

Evropská strategie Raw Materials Initiative

Ing. Kateřina Polínková V 9 MOŽNOSTÍ APLIKACE CO 2 PRO ZVÝŠENÍ VYTĚŽITELNOSTI LOŽISEK UHLOVODÍKŮ LABORATORNÍ VÝZKUM

VY_32_INOVACE_ / Stavba Země

Základy pedologie a ochrana půdy

POZEMNÍ STAVITELSTVÍ I

2 MECHANICKÉ VLASTNOSTI SKLA

Digitální učební materiál

ATMOGEOCHEMICKÝ PRŮZKUM ZÁVĚREČNÁ ZPRÁVA

REKONSTRUKCE DRENÁŽNÍCH PRVKŮ SYPANÝCH HRÁZÍ VD SLUŠOVICE A VD BOSKOVICE

STUDIE PROVEDITELNOSTI PROJEKTU POŘÍZENÍ AUTOBUSŮ CNG JAKO NÁHRADY DIESELOVÝCH VOZIDEL A VÝSTAVBA PLNICÍ STANICE VE MĚSTĚ KARVINÁ.

Optimalizace aeračních účinků na kaskádách Ing. Tomáš Adler VODING HRANICE, spol. s r.o.

Matematický model nástroj pro hodnocení parametrů transportu kontaminantů

Čištění důlních vod prostřednictvím bioremediace v přírodních mokřadech

Energetické využití ropných kalů

v oblastech těžt ěžby nerostných surovin

Doc. RNDr. Eva Hrubešová, Ph.D., T 4 Doc. Ing. Robert Kořínek, CSc., Ing. Markéta Lednická

Vulmsidozol CO2. Vulmsidzol CO2 je dvousložková vodou ředitelná kompozice určená na tvorbu vodou nepropustného

Katedra geotechniky a podzemního stavitelství

Zjištění stavu povrchu a asfaltového souvrství silnice I/3 v úseku Mirošovice - Benešov

Monitoring svahových pohybů v NP České Švýcarsko

Karta předmětu prezenční studium

Modelování proudění podzemní vody a transportu amoniaku v oblasti popelových skládek závodu Chemopetrol Litvínov a.s.

Provozní bezpečnost - Problematika vzniku, monitoringu a eliminace prašné frakce, stanovení prostředí a zón s nebezpečím výbuchu

TECHNOLOGIE I. Autoři přednášky: prof. Ing. Iva NOVÁ, CSc. Ing. Jiří MACHUTA, Ph.D. Pracoviště: TUL FS, Katedra strojírenské technologie

NÁVRH CERTIFIKOVANÉ METODIKY

Ing. Ivo Tichý, Ing. Jiří Janas Ph.D. Z 16 DIAMO, státní podnik, odštěpný závod,geam Dolní Rožínka PROPADLINY V JIHOMORAVSKÉM LIGNITOVÉM REVÍRU

Zadání Bohatství Země 2016

Metodický pokyn ČAH č. 2/2008 k vyhlášce č. 590/2002 Sb. o technických požadavcích pro vodní díla

Studny ZDENĚK ZELINKA. Kopané a vrtané studny bez sporů se sousedy a škodlivých látek ve vodě

Přirozené odtokové poměry v povodí Černého Halštrovu jsou výrazně ovlivněny lidskou činností. K těmto zásahům patří:

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ

Metodika sestavování klíčových indikátorů životního prostředí pro oblast průmyslu, energetiky a dopravy

REALIZACE VRTŮ PRO TEPELNÁ ČERPADLA PRO PROJEKTANTY, INVESTORY, ÚŘADY. Ing. Arch. Pavel Cihelka Mobil:

Studentská vědecká konference 2004

Výhled cen plynu do roku 2020 (a vliv břidlicového plynu)

Koncepce Ministerstva zemědělství v období ochrana půdy.

Ing. Vladimír Polívka, Ing. Igor Němec Z 5 REKULTIVACE ODVALU DOLU TUCHLOVICE

ŽÁDOST O POVOLENÍ K NAKLÁDÁNÍ S POVRCHOVÝMI NEBO PODZEMNÍMI VODAMI NEBO JEHO ZMĚNU

PEMZA, ALTERNATIVNÍ FILTRAČNÍ MATERIÁL VE VODÁRENSTVÍ

Těžba ropy a zemního plynu v Polsku

Název části obce. Obec Věžnice se nachází v Kraji Vysočina a leží na jihovýchod od města Havlíčkův Brod. Obcí protéká vodní tok Šlapanka.

Cíle a navrhované metody

Zkušenosti z MPZ stanovení TZL 2009 na prašné trati a jejich další směr

TESTOVÁNÍ MEMBRÁNOVÝCH MODULŮ PRO SEPARACI CO 2 Z BIOPLYNU

Prášková metalurgie. Výrobní operace v práškové metalurgii

Sanace kontaminovaného území Plzeň Libušín kombinací několika sanačních metod

NÁVRH NA JMENOVÁNÍ PANA ING. MARTINA KLEMPY, PH.D. DOCENTEM PRO OBOR APLIKOVANÁ GEOLOGIE

LIMITY VYUŽITÍ ÚZEMÍ CHRÁNĚNÁ LOŽISKOVÁ ÚZEMÍ. Objekt limitování. Důvody limitování. Vyjádření limitu. Právní předpisy

Ložisková hydrogeologie. Úvod

METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA ZEMĚ VODA

ENVItech Bohemia s.r.o. Vyhodnocení kvality ovzduší v Otrokovicích v roce 2015

Sanace následků hydrochemické těžby uranu v severočeské křídě

TISKOVÁ ZPRÁVA. Douglaska tisolistá může být nadějí pro chřadnoucí lesy

Ing. Simona Psotná, Ing. Taťána Barabášová V 10 APLIKACE PYROLÝZNÍCH OLEJŮ VE FLOTACI UHLÍ

LIKVIDACE SPLAŠKOVÝCH ODPADNÍCH VOD

3. HYDROLOGICKÉ POMĚRY

Využití metod lehké geofyziky v inženýrské geologii a pro potřeby geologického mapování

Parlament České republiky POSLANECKÁ SNĚMOVNA 2012 VI. volební období

OZM Research s.r.o. Nádražní Hrochův Týnec

Potrubí a tvarovky Technologie s budoucností. SWISS Made

ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA (19) ÚŘAD PRO VYNÁLEZY A OBJEVY

ZÁKLADNÍ USTANOVENÍ. 1 Předmět úpravy

Příručka pro podporu prodeje výrobků JCB

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: geografie, základy společenských věd, historie

Transkript:

prof. Ing. Petr Bujok, CSc. 1, Ing. Martin Klempa, 2 V 2 Ing. Jaroslav Němec, DrSc. 2, Ing. Petr Němec, Ph.D. 3 VYUŽITÍ OPUŠTĚNÝCH DŮLNÍCH DĚL A UZAVŘENÝCH HLUBINNÝCH UHELNÝCH DOLŮ PRO GEOSEKVESTRACI CO 2 SE ZAMĚŘENÍM NA ŘÍZENÍ VÝSTUPU METANU A ELIMINACI JEHO NEKONTROLOVATELNÝCH VÝSTUPŮ Z PODZEMÍ 1. Úvod projekt ČBÚ č. 60-08 Emise CO 2 vznikající lidskou činností tzv. antropogenní emise CO 2 a jejich vzestupný trend, jsou považovány za vážné nebezpečí pro udržitelný vývoj lidstva a jejich omezování za nezbytnou podmínku ochrany životního prostředí. Oxid uhličitý je významný z plynů způsobujících skleníkový efekt, který se projevuje oteplováním zemského povrchu v důsledku změn toků tepelného záření mezi zemí a atmosférou. V současnosti je ve světě rozpracováno několik projektů řešících teoreticky i poloprovozně ukládání CO 2 v různých geologických formacích. Jsou to především programy národní, např. v USA, Kanadě, Austrálii a Japonsku. V rámci Evropské unie byl např. řešen projekt RECOPOL představující ukládání oxidu uhličitého v uhelných slojích v Dolnoslezské pánvi. Hlavním cílem těchto projektů je zjištění, zda ukládání CO 2 v posuzovaných geologických formacích je ekonomicky únosné a ekologicky bezpečné. Pro Českou republiku připadají především následující možnosti ukládání: a) Ložiska ropy a zemního plynu Potenciálním úložným prostorem zde jsou vytěžená i aktivně produkující ložiska ropy a zemního plynu, ve kterých lze injektáží CO 2 (metoda EOR = Enhanced Oil Recovery) zlepšit výtěžnost zbytkové ropy o 10 až 15%. Ložiska ropy jsou výhodnou variantou, protože před vlastní těžbou byly vrstvy s uhlovodíky těsně uzavřeny v měřítku geologického času a obdobně může být uzavřen i oxid uhličitý. Další výhodou je jejich vysoká prozkoumanost a tedy dostatek informací pro výběr vhodné lokality pro ukládání, 1 Institut geologického řízení jeho inženýrství, využití Hornicko a dlouhodobý geologická monitoring. fakulta, VŠB Kapacita Technická ložiska univerzita ropy Ostrava; pro petr.bujok@vsb.cz, martin.klempa@vsb.cz, 2 Energie stavební a báňská a.s.; nemec@enas.cz; 3 Eurogas a.s; eurogas@ugn.cas.cz. 1

ukládání CO 2 je závislá na pórovém prostoru uvolněném po odtěžení ropy a dalším pórovém prostoru vyplněném vodou ležícím pod roponosnými vrstvami. Vyčerpaná ložiska po těžbě zemního plynu představují vhodné pórové, horninové struktury jak pro sekvestraci CO 2, tak pro zřizování podzemních zásobníků dováženého zemního plynu. b) Hluboce uložené uhelné sloje Netěžené nebo opuštěné uhelné sloje nabízejí další možnost ukládání, protože injektovaný CO 2 je přednostně adsorbován uhlím, zatímco původně adsorbovaný metan je jím vytláčen. Tato metoda může být zvláště významná v případě metanem bohatých ložisek uhlí, kde výtěžnost metanu pro primární etapu těžby je okolo 20 60%. Vedle ukládací kapacity pro CO 2 tak ale vzniká potenciál pro zachycení desorbovaného metanu. Jeho dalším využitím lze významně snížit náklady na uložení CO 2. Klíčovým faktorem při tomto způsobu uložení je propustnost (permeabilita) uhelné sloje. 2. Ložiska ropy a zemního plynu Prakticky každé ložisko ropy a zemního plynu je využitelné pro skladování tekutých odpadů, tedy i CO 2, protože splňuje základní podmínku této činnosti, a tou je hydrodynamická uzavřenost obzoru. Při výběru injektážní zóny je však potřeba provést detailní geologický, hydrogeologický a chemický průzkum. Nedílnou součástí při výběru injektážní zóny je také zjištění a zhodnocení technického stavu injektážích vrtů, resp. sond, protože špatný technický stav injektážích vrtů může zapříčinit znehodnocení injektážní zóny, případně ohrozit okolní životní prostředí. Po konzultacích s pracovníky firmy MND a.s. byla vytipována jako nejpříznivější struktura podle navržených kritérií i se zohledněním vzdáleností od zdroje CO 2 (uvažovaná elektrárna Hodonín) některá z ker ložiska Podvorov (1). Kromě tohoto ložiska byla ze širšího výběru vhodných lokalit doporučena k dalšímu výzkumu rovněž ložiska Koryčany a Ždánice. 2

3. Ukládání CO 2 do hluboce uložených černouhelných slojí Vhodnost ukládání (sekvestrace) CO 2 do uhelných slojí a uzavřených důlních děl je dána schopností jeho adsorpce do uhelné hmoty za současného vytěsňování slojového metanu. Vzhledem k této vlastnosti a následnému vytěsňování metanu je tento způsob sekvestrace CO 2 v současné době hodnocen jako perspektivní. Laboratorně bylo prokázáno, že k vytěsnění 1 objemové jednotky metanu se do uhelné hmoty adsorbují 2 3 objemové jednotky oxidu uhličitého. Ukládání CO 2 do uhelných slojí a uzavřených důlních děl je podmíněno: geologickou charakteristikou potencionálního úložiště, fyzikálními vlastnostmi uhlí, fyzikálními vlastnostmi ukládaného oxidu uhličitého. Základním předpokladem je také střední až vysoká propustnost uhelných slojí (uvádí se cca 1 5 md). Tento požadavek může představovat bariéru komerčnímu nasazení v řadě světových uhelných revírů, pokud se nepodaří permeabilitu slojí zvýšit umělou stimulací (např. hydroštěpením). Pro výběr vhodných lokalit (pro potřeby této analýzy jsme posuzovali jednotlivé dobývací prostory situované v české části Hornoslezské pánve) jsme zvolili 4 kritéria. Jedná se o riziko výstupu metanu, mocnost pokryvných útvarů, typologii pokryvných útvarů a porušenost karbonského masívu předchozí těžbou. Další možnost ukládání nabízejí netěžené nebo opuštěné uhelné sloje, protože injektovaný CO 2 je přednostně adsorbován uhlím, zatímco původně adsorbovaný metan je jím vytláčen. Metoda může být zvláště významná v případě metanem bohatých ložisek uhlí. Výtěžnost metanu pro primární etapu těžby je zde okolo 20 60% plynu. Mimo ukládací kapacity pro CO 2 tak vzniká potenciál pro zachycení desorbovaného metanu a jeho dalším využitím lze snížit náklady na uložení. Hlavním faktorem při tomto způsobu uložení je propustnost (permeabilita) uhelné sloje. Tato metoda ukládání je v současné době námětem řady projektů v USA, Kanadě, Austrálii a v rámci Evropské unie v polské části Hornoslezské pánve. 3

4. Teoretické aspekty ukládání CO 2 Nedílnou podmínkou sekvestrace oxidu uhličitého jsou jeho mechanické vlastnosti. Předpokládá se, že horizonty určené k sekvestraci oxidu uhličitého leží v hloubce větší než 800 m. Při teplotě a tlaku pro uvedenou hloubkovou úroveň mění CO 2 svou fázovou podobu a jeho měrná hmotnost je podobná hodnotě pro kapalinu, tj. tzv. fáze superkritické kapaliny. Tento přechod do superkritického stavu je dán hodnotou tlaku 7,38 MPa a teplotou 31,1 C. V superkritickém stavu zabírá vtláčený CO 2 méně prostoru v pórech než ve své normální plynné fázi. V hloubkovém intervalu 600 800 m se zvyšuje hustota CO 2 v závislosti na hloubce. Od hloubky 1000 m dosahuje svého maxima a dále s rostoucí hloubkou se již nemění. Za normálních podmínek (teplota 25 C a tlak 0,1 MPa) má CO 2 hustotu 1,977 kg/m 3. To znamená, že 1 tuna CO 2 zaujímá objem 526 m 3. V hloubce 1000 m za teplotních a tlakových podmínek charakteristických pro tuto hloubku (35 C, 10 MPa) zabere 1 tuna CO 2 prostor 1,5 m 3 (hustota CO 2 má hodnotu 650 kg/m 3 ). Pro efektivní zatláčení by měla být hustota vtláčeného CO 2 v intervalu 600 kg/m 3 (30 C, 8 MPa) až 800 kg/m 3. Pro teoretickou představu, jakým způsobem se bude vtláčené CO 2 v zájmových horizontech chovat je využití matematického modelování procesu geochemické sekvestrace. To bylo provedeno spolupracovníkem Dr. Krzysztofem Labusem, pracovníkem Instytutu Geologii Stosowanej, Wydzialu Górnictwa i Geologii Politechniki Ślaşkiej v Gliwicích. K modelování využívá silulátor: The Geochemit s Workbench 7 (GWB). Výchozí podmínky uvedeného příkladu byly nastaveny na podmínky vrstev paralické série zvodněné pískovce vrstev Dębowieckich, místo odběru vzorků vrt Kaczyce 2, Důl Morcinek (vrstevní teplota 40 o C, vrstevní tlak po injektáži CO 2 5,34 MPa). Blíže viz lit. K. Labus, 2009. Modelové simulování proběhlo ve dvou etapách. První etapa byla zaměřená na sledování změn probíhajících v horninovém prostředí na počátku procesu zatláčení 4

CO 2, druhá hodnotila změny způsobené vlivem CO 2 po ukončení procesu jeho injektáže do propustných vrstev. V modelu byl analyzován časový úsek o rozsahu 20 tis. let (obr. č. 1). V prvních třech letech po ukončení injektáže CO 2 dochází k průběžnému nárůstu pórovitosti horninového prostředí. Následně se tato hodnota stabilizuje na maximální úroveň a dále se nemění. Presentované analýzy upozorňují na výrazné uskladňovací kapacity vodonosných kolektorů (zejména pískovců) vyskytujících se v nadloží i podloží uhelných slojí. Při aplikaci injektáže CO 2 do uhelných slojí za účelem vytěsnění metanu může docházet k neúplné sorpci CO 2 a k jeho unikání do okolního prostředí. Zmiňované zvodnělé kolektory by mohly být vhodným prostředím pro realizaci tzv. geochemické sekvestrace, kdy CO 2 nevyplňuje pouze pórový objem CO 2, ale je i chemicky vázán na některé minerály horninového skeletu (obr. č. 2). Sekvestrovaná množství CO 2 mohou být až dvojnásobná. Pro ověření teoretických předpokladů a výsledků modelového simulování byla pracovníky Institutu geologického inženýrství, Hornicko geologické fakulty navržena a realizována laboratorní aparatura s pracovním označením RK 1 (aparatura byla přihlášena k registraci jako průmyslový vzor). 4.1 Výzkum teoretických předpokladů s využitím laboratorní aparatury RK - 1 Laboratorní aparatura RK - 1 (reakční komora), obr. č. 3, je instalována v laboratořích Institutu geologického inženýrství (oddělení Aplikované geologie), Hornicko geologické fakulty, VŠB - TU Ostrava. Aparatura je používána k dlouhodobým laboratorním zkouškám vlivu CO 2 na materiály používané pro vystrojení stvolu sond (stupačky, pažnice, pakry, filtry, ) a pro sledování chemické sekvestrace CO 2 v horninovém prostředí za p, T podmínek in situ a za tzv. dynamických podmínek. První dlouhodobý pokus (zároveň první svého druhu v ČR) byl zahájen dne 16. 3. 2010 v 11.45 h. V cele A byly testovány vzorky z vrtného jádra vrtu Kaczyce 2, Důl Morcinek, vrstvy Dębowieckie (detrit) z hloubky 726,7 m. 5

V cele B byly testovány dvě sady vzorků upravené z materiálů dodaných z MND a.s. a to na vzorcích ze stupačky a ze stupačky svařené ze dvou trubek. Pokus probíhal v obou celách za konstantního tlaku 8,00 MPa a teploty 40 C. Dynamické podmínky byly zabezpečeny výkyvným mechanismem. První dlouhodobý pokus byl ukončen dne 2. 6. 2010 po 79 dnech sledování. Na obr. č. 4 je horninový vzorek vyjmutý z komory krátce po ukončení pokusu. V současné době probíhá laboratorní výzkum ovlivněných horninových vzorků v laboratořích VŠB TU Ostrava a na Přírodovědecké fakultě Masarykovy univerzity v Brně. Vzorky materiálů jsou analyzovány v laboratořích katedry Materiálového inženýrstvý Fakulty metalurgie a materiálového inženýrství VŠB TU Ostrava. 5. Závěr Z provedených analýz, laboratorních pokusů a konzultací s odborníky pro sekvestraci oxidu uhličitého do uhelných slojí, uzavřených důlních děl, vytěžených, popřípadě dotěžovaných ložisek uhlovodíků vyplývá: a. injektáž oxidu uhličitého by mělo probíhat v závislosti na hloubce a teplotě geologické formace kde se ukládání předpokládá, nejlépe pak v jeho kapalné fázi jako superkritická kapalina. b. možnost a průběh sekvestrace bude do značné míry záviset na: velikosti porózity a její struktuře, permeabilitě organické hmoty závislé na makromolekulární struktuře, která v uhelné hmotě umožňuje transport plynů (CO 2 ; CBM - coalbedmethan), permeabilitě sloje, která je zajišťovaná systémem trhlin a frakcí, stupni prouhelnění uhelné hmoty, která ovlivňuje adsorbční a desorbční pochody, vlastnostech uhelné hmoty umožňující difúzi vytěsňovaného plynu. Pro případný pilotní projekt geosekvestrace CO 2 navrhujeme lokalitu ložiska Ždánice. 6

Základní použitá literatura: 1) Zpráva k 3. Kontrolnímu dni, Projekt č. 60-08 Možnosti geosekvestrace CO 2 v podmínkách hlubinných dolů. Závěrečná zpráva za etapu č. 2 Vyhledávání vhodných geologických formací a důlních děl pro ukládání CO 2 v ČR. Kolektiv autorů, VŠB TU Ostrava, červenec 2009. 2) Zpráva k 5. Kontrolnímu dni, Projekt č. 60-08 Možnosti geosekvestrace CO 2 v podmínkách hlubinných dolů. Dílčí zpráva za etapu č. 5 Výzkum možností ovlivnění procesu trvalého ukládání CO 2 včetně vytěsňování CH 4. Kolektiv autorů, VŠB TU Ostrava, prosinec 2009. 3) Zpráva k 7. Kontrolnímu dni, Projekt č. 60-08 Možnosti geosekvestrace CO 2 v podmínkách hlubinných dolů. Dílčí zpráva za etapu č. 6 Vypracování principů metod ukládání CO 2 do geologických formací a důlních děl v ČR. Kolektiv autorů, VŠB TU Ostrava, červenec 2010. 4) Zpráva k 7. Kontrolnímu dni, Projekt č. 60-08 Možnosti geosekvestrace CO 2 v podmínkách hlubinných dolů. Dílčí zpráva za etapu č. 7 Vypracovat zásady návrhu pilotního projektu geosekvestrace CO 2 v ČR. Kolektiv autorů, VŠB TU Ostrava, červenec 2010. 5) Bujok, P. (2003): Vliv vrtného průzkumu, těžby a uskladňování kapalných a plynných uhlovodíků na životní prostředí. Sborník vědeckých prací Vysoké školy báňské Technické univerzity Ostrava, řada hornicko-geologická, Monografie 10, Ostrava 2003. 6) Firemní materiály (2000 2009): Baker Huges Incorporated, Downhole Products, Cameron, Weatherford International, Haliburton Energy Services, Schlumberger. Domposite Catalog. 7) Firemní materiály MND a.s., Hodonín; MND Servisní a.s., Lužice. 8) Kubiszová, A. (2008): Aplikace CO 2 pro zvýšení vytěžitelnosti ložisek s vysoce viskózní ropou. Diplomová práce, Ostrava 2008. 9) Labus, K.; Bujok, P. (2009): Abandoned Coal Mines Source of Unconventional Forms of Energy & Space for CO 2 Geosequestration. 24 th World Gas Conference, Reviewing the Strategies for Natural Gas, Argentina, 5 9 October. 10) Krevelen, D.W. Coal Science, Elsevier,1957. 11) Essenhigh, R.H. Chemistry of Cola Utiization, Elliott, M.A.M.Y. 1981. 12) White, C.M. a kol.: Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery. Energy and Fuels 2005, 19, 659 724. 13) Šimek J.: Geologická sekvestrace + vymezení potencionálních úložišť v České republice; GIS-Geoindustry; 2005. 7

obr. č. 1 Změny probíhající po ukončení injektáže CO 2. Hodnoty CO 2 : a v krátkém časovém intervalu (do 5 let), b v dlouhém časovém intervalu (do 20ti let), c změny koncentrací CO 2 (aq) a HCO - 3, d změna hodnoty ph, e změny pórovitosti horninového prostředí (K. Labus, 2009) 8

obr. č. 2 Schematické znázornění řezu kolektorskou horninou pískovec (zvětšeno) A stav bez reakce CO 2 s karbonáty; B reakce CO 2 s karbonáty obr. č. 3 boční pohled na aparaturu RK 1 po odstranění vnějšího tepelného krytu (P. Bujok, M. Klempa, 2010, in 3) obr. č. 4 horninový vzorek vyjmutý z cely A krátce po ukončení pokusu (P. Bujok, M. Klempa, 2010, in 3) 9