Open Access Repository eprint



Podobné dokumenty
Příloha 3. Výpočet a měření pro účely kontroly pokrytí území signály mobilních širokopásmových datových sítí

Příloha 3. Výpočet a měření pro účely kontroly pokrytí území signály mobilních širokopásmových datových sítí

Repeatery pro systém GSM

Ėlektroakustika a televize. TV norma ... Petr Česák, studijní skupina 205

Měření výkonu zesilovače

Budování aplikačních rozhraní pro obousměrnou komunikaci mezi ERMS a jejich vztah k Národnímu standardu pro komunikaci mezi ERMS.

QRS DETEKTOR V PROSTŘEDÍ SIMULINK

Zabezpečení dat v systémech mobilních komunikací

Indoor navigace Assisted GPS

Modulace OFDM DVB-T, DAB, DRM

Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol

Mobilní komunikace. Vývojové trendy sítě GSM (2G) a 3G. Petra Píšová

MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ

13. Sítě WAN. Rozlehlé sítě WAN. Počítačové sítě I. 1 (6) KST/IPS1. Studijní cíl. Představíme rozlehlé sítě typu WAN. Doba nutná k nastudování

Příloha č. 54. Specifikace hromadné aktualizace SMS-KLAS

část plánu využití rádiového spektra č. PV-P/9/ pro kmitočtové pásmo 39,5 43,5 GHz. Článek 1 Úvodní ustanovení

Zákon o elektronickém podpisu

POZMĚŇOVACÍ NÁVRHY 12-21

NÁVOD K OBSLUZE MODULU VIDEO 64 ===============================

Specifikace předmětu plnění veřejné zakázky: Poskytování mobilních hlasových a datových služeb pro potřeby Města Uherské Hradiště

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash Vibrio

BRICSCAD V16. Modelování strojírenských sestav

MINISTERSTVO PRO MÍSTNÍ ROZVOJ UŽIVATELSKÁ PŘÍRUČKA IS KP 14+ PRO INTEGROVANÉ NÁSTROJE: ŽÁDOST O PODPORU STRATEGIE CLLD. Verze: 1.

Rozšířená nastavení. Kapitola 4

Algoritmizace a programování

Semestrální práce z předmětu mobilní komunikace na téma: Bezdrátové optické sítě

Integrovaný Ekonomický Systém Zakázkový list - IES WIN 2006

Co najdete v ASPI? (pro uživatele SVI FSE UJEP)

POPIS VÝROBKU A ZAMÝŠLENÉ POUŽITÍ

Aktivity s GPS 3. Měření některých fyzikálních veličin

FWA (Fixed Wireless Access) Pevná rádiová přípojka

6. Příklady aplikací Start/stop Pulzní start/stop. Příručka projektanta VLT AQUA Drive

Formulář pro výpočet prokazatelné ztráty z poskytování univerzální služby Souhrnná tabulka

Kontrola správnosti sledování a měření objemu vypouštěných odpadních vod dle 92 vodního zákona

V této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému.

Centrum pro flexibilní zpracování plechových polotovarů (II)

PŘÍLOHA 10 SMLOUVY O PŘÍSTUPU KE KONCOVÝM ÚSEKŮM. Pravidla a postupy

Směrnice kvestorky AMU č. 1/2004

Objektově orientované databáze

2015 Evidenční číslo:

Bezdrátové připojení (pouze u vybraných modelů) Uživatelská příručka

1. LINEÁRNÍ APLIKACE OPERAČNÍCH ZESILOVAČŮ

Výpočet dotace na jednotlivé druhy sociálních služeb

Tel/fax: IČO:

Číslo zakázky (bude doplněno poskytovatelem dotace) 1 Název programu: Operační program Vzdělávání pro konkurenceschopnost

S_5_Spisový a skartační řád

SRF08 ultrazvukový dálkoměr

6A. Měření spektrálních charakteristik zdrojů optického záření

INFORMATIKA pro LÁZEŇSTVÍ. Ing. Petr Janík

Mobilní telefon GSM Zpracoval: Ing. Jiří Sehnal

ZADÁVACÍ DOKUMENTACE

KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2

TIP: Pro vložení konce stránky můžete použít klávesovou zkratku CTRL + Enter.

AMC/IEM HLAVA B PŘÍKLAD OZNAČENÍ PŘÍMOČARÉHO POHYBU K OTEVÍRÁNÍ

DYNAMICKÉ VÝPOČTY PROGRAMEM ESA PT

PŘEDBĚŽNÁ ČESKÁ TECHNICKÁ NORMA

KX-TDA verze Rozšiřte kapacitu a schopnosti Vašeho systému KX-TDA povýšením na verzi 2.02.

Nástavba lázeňského domu Janáček Lázně Teplice nad Bečvou a.s. Reg. číslo projektu: CZ.1.12/3.3.00/ VÝZVA

Praktické úlohy- zaměření specializace

Systém MCS II. Systém MCS II < 29 >

Poskytování příspěvků a dotací z rozpočtu města

Směrnice pro vedení, vypracování a zveřejňování bakalářských prací na Vysoké škole polytechnické Jihlava

PCM30U Řízení, dohled, synchronizace

Poukázky v obálkách. MOJESODEXO.CZ - Poukázky v obálkách Uživatelská příručka MOJESODEXO.CZ. Uživatelská příručka. Strana 1 / 1. Verze aplikace: 1.4.

250. Štítek musí obsahovat alespoň tyto údaje:

NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO PŘÍRUČKA UŽIVATELE

Veřejná zakázka malého rozsahu

Hodnoty SNR na účastnických vedeních

Měření základních vlastností OZ

PŘÍLOHA 1.7 SMLOUVY O PŘÍSTUPU K VEŘEJNÉ PEVNÉ KOMUNIKAČNÍ SÍTI PROGRAM ZVYŠOVÁNÍ KVALITY

Web n walk NÁVOD PRO UŽIVATELE. Manager

Silnice č. II/635 Mohelnice Litovel (kř. Červená Lhota)

Doplňující informace. A. Komentář k položkám Podklad pro stanovení záloh příspěvku vlastníka (nájemného) a na služby pro období 01/ /2015.

Směrnice rektora č. 7/2014

modul Jízdy a Kniha jízd uživatelská příručka

Pokyny České pošty pro označování Doporučených zásilek čárovými kódy

Inteligentní zastávky Ústí nad Labem

Návod na zřízení datové schránky právnické osoby nezapsané v obchodním rejstříku

Soubory a databáze. Soubor označuje množinu dat, která jsou kompletní k určitému zpracování a popisují vybrané vlastnosti reálných objektů

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

PŘIJÍMACÍ ŘÍZENÍ. Strana

VYBRANÉ PARAMETRY OVLIVŇUJÍCÍ RYCHLOST AUTOMOBILOVÉ DOPRAVY V PROSTŘEDÍ GIS SELECTED PARAMETERS AFFECTING THE SPEED OF CAR TRAFFIC IN GIS ENVIRONMENT

PCM30U Popis zařízení 3UST

Zadávací dokumentace

Zateplení tělocvičny ZŠ v Ludgeřovicích

Možnosti zavedení jednotné metodiky m ení korozní rychlosti na kovových úložných za ízeních.

Návrh. VYHLÁŠKA ze dne o zdravotnické dokumentaci. Rozsah údajů zaznamenávaných do zdravotnické dokumentace

DPH v Evropském společenství UPLATŇOVÁNÍ V ČLENSKÝCH STÁTECH INFORMACE PRO SPRÁVNÍ ORGÁNY / HOSPODÁŘSKÉ SUBJEKTY INFORMAČNÍ SÍTĚ ATD.

CENY ZA POUŽITÍ ŽELEZNIČNÍ DOPRAVNÍ CESTY VE VLASTNICTVÍ ČESKÉ REPUBLIKY A PODMÍNKY JEJICH UPLATNĚNÍ OD DO

ČESKÁ TECHNICKÁ NORMA

MĚŘENÍ IMPEDANCE. Ing. Leoš Koupý 2012

PODROBNÉ VYMEZENÍ PŘEDMĚTU VEŘEJNÉ ZAKÁZKY A TECHNICKÉ PODMÍNKY

Nákup zdravotnických pomůcek

Staroegyptská matematika. Hieratické matematické texty

Město Mariánské Lázně

Město Janovice nad Úhlavou

170/2010 Sb. VYHLÁŠKA. ze dne 21. května 2010

o nakládání s elektrozařízeními a elektroodpady), ve znění pozdějších předpisů

Zefektivnění zadávání znaků na mobilním telefonu bez T9

Laboratorní příručka

Transkript:

Open Access Repository eprint Terms and Conditions: Users may access, download, store, search and print a hard copy of the article. Copying must be limited to making a single printed copy or electronic copies of a reasonable number of individual articles or abstracts. Access is granted for internal research, testing or training purposes or for personal use in accordance with these terms and conditions. Printing for a for-fee-service purpose is prohibited. Title: M??ení výkonové úrovn? v LTE systémech Author(s):, Soumya S. Dash;, Fréderic Pythoud;, Martin Hudli? Year: 015, Volume: n/a, Issue: n/a Event name: 43rd meeting of the Czech electrotechnical society, subgroup Microwave technique, place: Prague, Czech Republic, date: 18 November 015 Funding programme: EMRP A169: Call 01 Metrology for Industry (II) Project title: IND51: MORSE:Metrology for optical and RF communication systems Copyright note: This is an author-created, un-copyedited version of an article accepted for publication at the 43rd meeting of the Czech electrotechnical society, subgroup Microwave technique. Czech electrotechnical society is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. EURAMET Secretariat Bundesallee 100 38116 Braunschweig, Germany Phone: +49 531 59-1960 Fax: +49 531 59-1969 secretariat@euramet.org www.euramet.org

EMRP IND51 MORSE project Authors: Soumya S. Dash, Fréderic Pythoud, Martin Hudlička Title: RF Power Metrology in LTE Systems (original title in Czech: Měření výkonové úrovně v LTE systémech) Venue: 43 rd meeting of the Czech electrotechnical society, subgroup Microwave technique, Prague, 18th November 015, pp. 1-4 ISBN 978-80-0-067-3

43 rd meeting of the Czech electrotechnical society, subgroup Microwave technique, Prague, 18th November 015, ISBN 978-80-0-067-3 MĚŘENÍ VÝKONOVÉ ÚROVNĚ V LTE SYSTÉMECH Dr. Soumya S. Dash 1, Dr. Fréderic Pythoud 1, Ing. Martin Hudlička, Ph.D. 1 Eidgenössisches Institut für Metrologie METAS, Švýcarsko Český metrologický institut, Odd. primární metrologie vf elektrických veličin, Radiová 3, 10 00 Praha 10, E-mail: mhudlicka@cmi.cz ÚVOD Vývoj standardů pro mobilní komunikace je v posledních letech velmi rychlý. Buňkové sítě vzniklé v 80. letech minulého století označované jako první generace (1G) byly ještě analogové, pouze s hlasovými službami. Každá další generace už je založena na přenosu hlasu nebo dat zakódovaných číslicově. Druhá generace (G) nabídla přenosovou kapacitu až 8,8 kbit/s (GSM, CDMA, EDGE). Třetí generace (3G) dále zvýšila přenosové rychlosti až na Mbit/s a zavedla množství dalších služeb. Pro další nárůst přenosové rychlosti a zvýšení kvality služeb začalo konsorcium 3GPP pracovat na sítích čtvrté generace (4G), které jsou dnes zastoupeny standardy Long-Term Evolution (LTE a LTE-A). Tyto sítě již dokážou nabídnout přenosové rychlosti v řádu stovek Mbit/s. Vývoj standardů a vlastnosti budoucích sítí páté generace přehledně shrnují např. články [1], []. Pro posouzení expozice obyvatel neionizujícím zářením pocházejícím z mobilních komunikačních systémů je velmi důležité dokázat spolehlivě měřit a předpovědět expozici v nejméně příznivém případě, tedy při maximální přenosové rychlosti a vysílané úrovni. V ČR jsou expoziční limity, tedy nejvyšší přípustné hodnoty expozice, zakotveny v legislativě a respektují doporučení nadnárodních směrnic (více o této problematice např. [3]). V některých evropských zemích (Švýcarsko, Německo) jsou zavedeny i limity pro vyzařovaný výkon daného zařízení, který by dosáhlo při maximální možné vysílací úrovni a maximálním datovém toku (installation limit values). Tyto limity obvykle udávají nižší povolenou úroveň, než odpovídá směrnicím. Odpovídající úrovně lze sice měřit laboratorně, ale v běžném provozu zařízení v takovém režimu nemusí pracovat trvale a je potřeba nalézt metodu, která dokáže z úrovně měřené při běžném provozu spolehlivě extrapolovat hodnoty pro maximální provoz. Vzhledem k charakteru signálu pro mobilní komunikace (velká šířka pásma, pokročilé modulační metody) a jeho šíření (odrazy od překážek, pohyb přijímače) není přesné měření úrovně jednoduchou a jednoznačnou úlohou. FYZICKÁ VRSTVA LTE Fyzická vrstva sítí čtvrté generace je velmi rozsáhlou problematikou a vyčerpávající popis lze nalézt např. v [4]. V tomto příspěvku budou zmíněny jen některé důležité vlastnosti. Ortogonální kmitočtový multiplex (OFDM) Principem je rozdělení přenášeného pásma do systému subnosných vln, které vytvářejí ortogonální soustavu a které mohou být nezávisle modulovány datovými symboly (většinou lineární modulace třídy PSK nebo QAM). Tyto vlny mají relativně malé vzájemné rozestupy, takže jejich spektra se výrazně překrývají, přičemž každá ze subnosných se nachází na kmitočtu, kde spektra všech ostatních subnosných procházejí nulou. Vysoký datový tok je rozdělen do několika menších s delším trváním symbolu, což činí přenos robustním zejména vůči účinkům mnohacestného šíření signálu. Princip ukazují Obr. 1 a Obr.. Obr. 1 Kmitočtově-časová reprezentace OFDM symbolu [5]. Obr. Spektrum čtyř OFDM subnosných [5]. Koncept generování OFDM signálu je zobrazen naobr. 3. Datové symboly jsou synchronně a nezávisle přenášeny pomocí vysokého počtu ekvidistantně rozložených subnosných tak, aby jejich nulové body ve spektru odpovídaly funkci

43 rd meeting of the Czech electrotechnical society, subgroup Microwave technique, Prague, 18th November 015, ISBN 978-80-0-067-3 sin(x)/x. Pro omezení Dopplerova efektu (pohyb přijímače) a zpoždění signálu (mnohacestné šíření) se mezi subnosné vkládá ochranný interval. Dále je ke každému symbolu v časové oblasti přidáván tzv. cyklický prefix, což je kopie části konce OFDM symbolu vložená na jeho začátek. Cílem je zjednodušit časovou synchronizaci a zajistit periodicitu. Energie případných mezisymbolových interferencí je potom obsažená v prefixu, který je při vhodné volbě delší než zpoždění přenosového kanálu. Struktura rámce LTE signálu Při přenosu signálu se rozlišuje režim od základnové stanici k uživateli (downlink) a od uživatele k základnové stanici (uplink). V časové oblasti je přenos od základnové stanice k uživateli rozdělen do časových bloků (rámců), jejichž trvání je 10 ms. Každý Obr. 3 Koncept generování OFDM signálu. z bloků je dále rozdělen do 10 sub-bloků o trvání 1 ms, každý z nich potom rozdělen do slotů s trváním 0,5 ms a tyto jsou následně rozděleny na vlastní OFDM symboly. Situaci znázorňuje Obr. 4. Data v každém rámci jsou potom kódována v kmitočtové oblasti na jednotlivé sub-nosné, jejichž počet závisí na konkrétní implementaci, použité šířce pásma, vlastnostech přenosového kanálu, zvolené délce prefixu apod. Grafickým znázorněním takového rozdělení je tzv. zdrojová mřížka (resource grid), viz Obr. 5. Kromě užitečného signálu s daty je přenášeno ještě množství referenčních signálů, které umožňují lepší řízení kvality přenosu, adaptivní Obr. 4 Struktura jednoho rámce LTE signálu. změnu modulačního schématu, odhad parametrů přenosového kanálu atd. Podrobnější popis referenčních signálů lze nalézt např. v [5], metoda měření úrovně popsaná v tomto příspěvku využívá pouze tzv. Cell specific reference signal (CSR). Jedná se o posloupnost komplexních hodnot, které jsou přenášeny ve všech sub-rámcích v režimu downlink. Konkrétní poloha CSR signálu ve zdrojové mřížce v závislosti na identifikačním kódu buňky (existuje 504 unikátních identifikačních kódů buněk). Kromě referenčních signálů jsou dále přenášeny synchronizační signály. Primární synchronizační signál (PSS) se skládá ze 3 speciálních binárních sekvecí délky 6 v kmitočtové oblastu (Zadoff-Chu sekvence), které jsou na sebe vzájemně ortogonální. PSS jsou mapovány na 6 subnosných rozmístěných symetricky kolem nosného kmitočtu v každém slotu 0 a 10 příslušného rámce. Sekundární synchronizační signál (SSS) se skládá ze 168 sekvencí délky 6 v kmitočtové oblasti a v rámci mřížky je rozmístěn podobně jako PSS. Obr. 5 Zdrojová mřížka (resource grid) LTE signálu. Obr. 6 Příklad pozice CSR signálu ve zdrojové mřížce, rozestup kanálů 15 khz. MĚŘENÍ VÝKONOVÉ ÚROVNĚ Navržená metoda měření výkonové úrovně v LTE systémech spočívá v dekódování referenčního signálu CSR a synchronizačních signálů PSS a SSS a kvantifikování jejich úrovně. Prvním krokem je měření časového průběhu LTE signálu pomocí sondy elektromagnetického pole po definovanou dobu, dále číslicové zoracování signálu a rekonstrukce

43 rd meeting of the Czech electrotechnical society, subgroup Microwave technique, Prague, 18th November 015, ISBN 978-80-0-067-3 zdrojové mřížky LTE signálu. Před vlastním zpracováním signálu je potřeba odstranit vliv přenosového kanálu (mnohocestné odrazy, zpoždění, šum). Pro úspěšnou rekonstrukci signálu z vysílače jsou nejdůležitějšími operacemi časová a kmitočtová synchronizace, které umožní eliminaci chyb OFDM signálu a získání parametrů mřížky. Normy 3GPP a ETSI nedefinují žádný jednotný algoritmus, jak synchronizaci provést [7]. Parametry pro časovou a kmitočtovou synchronizaci LTE signálu lze získat zpracováním PSS symbolu přítomného v posledním OFDM symbolu prvního a desátého slotu jednoho rádiového rámce zdrojové mřížky. Existují 3 základní způsoby zpracování: autokorelační metoda, metoda vzájemné korelace a hybridní metoda. Autokorelační metoda Signál je korelován se svou časově posunutou kopií, přesněji s komplexně sdruženou částí zpožděnou o jeden blok opakování. Poté je proveden součet přes dobu trvání jednoho bloku opakování: n i 1 n i N L N j j j j N N 1 FFT FFT A n, N r n i e r n i N e, (1) L i 0 kde r[n] je přijatý LTE Signál v časové oblasti, L je délka posloupnosti, N je zpozdění, N FFT je počet symbolů použitých pro rychlou Fourierovu transformaci, ε je kmitočtový ofset, φ je počáteční fázový ofset a n je index diskrétního času. Zajímavé je maximum autokorelační funkce, vzorek s maximální amplitudou je vybrán jako časování symbolu PSS. Výhodou metody je spolehlivé určení kmitočtového ofsetu, nevýhodou je velká chyba odhadu časování symbolů. Metoda vzájemné korelace V této metodě je přijatý signál korelován se známou uloženou PSS posloupností délky L PSS: l LPSS i l. () LPSS i C n s i r n i Známá PSS posloupnost není ovlivněna šumem přenosového kanálu a ve srovnání s autokorelační metodou je tento způsob efejtivnější a robustnější. Výhodou je spolehlivý odhad časování symbolů, nevýhodou je snížená přesnost v případě kmitočtového ofsetu vlivem mnohacestného šíření signálu v přenosovém kanálu. Hybridní metoda Tato metoda kombinuje dobré vlastnosti předchozích metod synchronizace. Metoda vzájemné korelace je zde použita pro odhad časového ofsetu, čímž je určena poloha PSS signálu v rámci přijatého LTE signálu. Autokorelační metoda je potom použita pro odhad kmitočtového ofsetu a přesnějšímu odhadu časového ofsetu. Generování zdrojové mřížky LTE Plné signálové zpracování pro určení efektivní hodnoty signálů CSR, PSS a SSS vyžaduje řadu kroků a následné statistické vyhodnocení. Proces zpracování signálu shrnuje Obr. 7. Samotný signál je měřen pomocí sondy elektromagnetického pole, na jejíž výstup je připojen širokopásmový vzorkovač (např. digitální osciloskop). Pro ověření algoritmů byl signál generován a měřen nejdříve v laboratorních podmínkách (generátor LTE signálu s volitelným profilem přenosového kanálu). Měřený sig- Obr. 7 Proces číslicového zpracování LTE signálu na přijímači. nál je nejprve převeden do základního pásma (směšovač nebo číslicové podvzorkování). Poté je změněn vzorkovací kmitočet tak, aby byla splněna podmínka T s = 1 / (15000 048) [s]. Následně je signál rozdělen na bloky délky T f (např. T f = 30700 T s = 10 ms). Poté je zařazen synchronizační modul spolu s PSS symbolem pro určení časového a kmitočtového ofsetu. Dále je signál rozdělen do sub-rámců, následně slotů a OFDM symbolů s cyklickým prefixem. Následně je vyjmut cyklický prefix a na každý z OFDM symbolů je aplikována rychlá Fourierova transformace (FFT) pro získání sub-nosných kmitočtů. Zdrojová mřížka je potom získána z dekódovaných OFDM symbolů (osa x) a sub-nosných (osa y). Nakonec je vypočítána úroveň signálů SCR, PSS a SSS. Informace o výkonové úrovni při přenosu signálu od základnové stanice k mobilnímu terminálu (downlink) je určena terminálem. Přidělená výkonová úroveň CSR signálu je konstantní přes celou šířku pásma a přes všechny sub-rámce,

43 rd meeting of the Czech electrotechnical society, subgroup Microwave technique, Prague, 18th November 015, ISBN 978-80-0-067-3 dokud se nezmění přenosové podmínky. Výkon přenášený CSR signálem je vypočítán jako lineární průměr úrovní elementů, které přenáší CSR signál v rámci šířky pásma (tedy měření výkonové úrovně je provedeno v kmitočtové oblasti). Úroveň je určena jako p ai CSR 50 P i [W], kde p a i je CSR symbol, p je číslo antény v případě přenosu více anténami (MIMO; pro každou anténu se nachází CSR signály na jiných pozicích), i je index CSR symbolu v rámci šířky pásma. Obdobně lze určit úrovně signálů PSS a SSS, jen je potřeba správně vybrat elementy zdrojové mřížky, kde se tyto signály právě nacházejí. EXPERIMENTÁLNÍ VÝSLEDKY Obr. 8 Ukázka rekonstruované zdrojové mřížky, 7 sub-nosných (1 zdrojových bloků), šířka pásma kanálu 0 MHz. Uživatelsky definovaný LTE signál je generován pomocí vektorového generátoru spolu s referenční nosnou pro zpracování signálu v základním pásmu. Signál je vzorkován digitálním osciloskopem s velkým rozlišením pro další zpracování (v případě měření ve volném prostoru je zařazena ještě sonda elektromagnetického pole a obnova nosné je provedena číslicově). Ukázka dekódované zdrojové mřížky je znázorněna na Obr. 8. Měřená úroveň je potom korigována na známé nepřesnosti měřicího řetězce (nelinearita a vertikální rozlišení osciloskopu, příp. chyby sondy elektromag. pole, vlastnosti směšovače). Bylo provedeno měření pro 59 různých scénářů přenosového kanálu, režim jedné (SISO) nebo více antén na vysílači i přijímači (MIMO). Pro laboratorní uspořádání (měření bez sondy elektromag. pole) byla určena průměrná úroveň v buňce -40,86 dbm (teoret. předpoklad -40,79 dbm) se směrodatnou odchylkou 0,41 db (1 symbol), celková úroveň -10,11 dbm (předpoklad -10 dbm). PODĚKOVÁNÍ Příspěvek vznikl v rámci řešení projektu EMRP IND51 Metrology for optical and RF communication systems [6]. EMRP je zkratka pro společný koordinovaný evropský metrologický výzkumný program spolufinancovaný z prostředků MŠMT a Evropské unie. LITERATURA [1] V. Žalud, Rádiové komunikační systémy 5G, Sdělovací technika, č. 9, 014, str. 6-10. [] V. Žalud, Veřejná pozemní mobilní komunikace: Dosavadní vývoj a perspektivy, 41. pravidelné setkání zájemců o mikrovlnnou techniku, Česká elektrotechnická společnost, Praha, listopad 014. [3] L. Jelínek, Expozice člověka neionizujícímu záření, 41. pravidelné setkání zájemců o mikrovlnnou techniku, Česká elektrotechnická společnost, Praha, listopad 014. [4] M. Rumney (ed.), LTE and Evolution to 4G Wireless, Agilent Technologies, 013,. vydání, ISBN 978-1-119-9657-1. [5] 3GPP TR 5.89, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility Study for OFDM for UTRAN enhancement; (Release 6), 3GPP, V6.0.0, 004-06. [6] Internetové stránky projektu Metrology for optical and RF communication systems, [cit.. 10. 015] Dostupné na http://www.emrp-ind51-morse.org/ [7] ETSI TS 136 300, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage, 3GPP TS 36.300, ver. 11.8.0 Release 11, 014