Nomenklatura česká i latinská vychází zejména z webu www.biolib.cz.

Podobné dokumenty
PRAPRVOCI A PRVOCI Vojtěch Maša, 2009

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248

NEBUNĚČNÁ ŽIVÁ HMOTA VIRY

BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ

Buňka buňka je základní stavební a funkční jednotka živých organismů

BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:

VY_32_INOVACE_07_B_17.notebook. July 08, Bakterie

Název: Viry. Autor: PaedDr. Pavel Svoboda. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: biologie

Název: Bakterie. Autor: PaedDr. Pavel Svoboda. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: biologie

Neb Nebuněčná forma živé hmoty živé / neživé

Projekt realizovaný na SPŠ Nové Město nad Metují

Vzdělávací materiál projektu Zlepšení podmínek výuky v ZŠ Sloup

Buňka. Kristýna Obhlídalová 7.A

VY_32_INOVACE_ / Prvoci Prvoci jednobuněční živočichové

Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308

Buňka. základní stavební jednotka organismů

Cvičení 4: CHEMICKÉ SLOŽENÍ BUŇKY, PROKARYOTA Jméno: PROKARYOTA PŘÍPRAVA TRVALÉHO PREPARÁTU SUCHOU CESTOU ROZTĚR BAKTERIÍ

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248

Hygiena a školní zdravotnictví. Infekční onemocnění

Autor: Katka Téma: Bakterie Ročník: 2.

Didaktický učební materiál pro ZŠ INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Radovan Vlček Vytvořeno: červen 2011

Obsah. IMUNOLOGIE Imunitní systém Anatomický a fyziologický základ imunitní odezvy... 57

- na rozhraní mezi živou a neživou přírodou- živé jsou tehdy, když napadnou živou buňku a parazitují v ní nitrobuněční parazité

Říše Prvoci. (Protozoa) Autor: Katka Téma: Prvoci Ročník: 2. Opora, ochrana. Pohyb. o Pouze pokud nemají pelikulu.

VY_32_INOVACE_ / Viry a bakterie Viry život bez buňky

Aplikované vědy. Hraniční obory o ţivotě

Úvod do mikrobiologie

Číslo projektu CZ.1.07/1.5.00/ Název školy. Moravské gymnázium Brno, s.r.o. Autor. Mgr. Martin Hnilo. Biologie 1 Nebuněční viry.

VY_32_INOVACE_07_B_18.notebook. July 08, 2013

Šablona č.i, sada č. 2. Buňka, jednobuněční. Ročník 8.

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY

Základy buněčné biologie

Martina Bábíčková, Ph.D

Inovace studia molekulární a buněčné biologie

Nebuněční Viry, viroidy, priony

Mgr. Marcela Křiváková Ph.D. SZŠ Jaselská, Brno

9. Viry a bakterie. Viry

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

Elektronoptický snímek viru mozaikové choroby tabáku. Mozaiková choroba tabáku. Schéma viru mozaikové choroby tabáku

prokaryotní Znaky prokaryoty

Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou organismů s nepravým buněčným jádrem bakterií a

Testování hypotéz o vzniku eukaryotické buňky

Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách

PROKARYOTICKÁ BUŇKA - příručka pro učitele

KOTVA CZ.1.07/1.4.00/

Název: POZOROVÁNÍ PLASTIDŮ,VAKUOL, BUNĚČNÉ STĚNY Autor: Paed.Dr.Ludmila Pipková

Maturitní témata - BIOLOGIE 2018

DNÍ ZÁKLAD III INTEGROVANÝ VĚDNV. BIOLOGIE Předn. Ing. Helena Jedličkov. ková TAKSONOMIE = KLASIFIKACE ORGANISMŮ VIRY, BAKTERIE, HOUBY. č.

Digitální učební materiál

VY_32_INOVACE_002. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám

FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.:

Doména: Bakterie (Bacteria) Milan Dundr

PRVOCI tělo je tvořeno jedinou buňkou (jednobuněčné organismy)

Maturitní témata Biologie MZ 2017

Otázka: Jednobuněční živočichové - prvoci. Předmět: Biologie. Přidal(a): Krista PRVOCI. Obecné znaky:

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

VY_32_INOVACE_07_B_19.notebook. July 08, 2013

Číslo a název projektu Číslo a název šablony

Základní vlastnosti živých organismů

Co znamená, že jsou sinice prokaryotické organismy, jakou buněčnou součást v nich nikdy nenajdeme?

- molekulární nitrobuň. parazité - nemají metabolický aparát ani aparát na syntézu bílkovin

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Schéma rostlinné buňky

Prokaryota. Eubacteria - podříše: Bakterie Sinice. Struktura buňky

Marek Matouš Marinka 9. B 2015/2016. Bakterie

Mikrobiologie. KBI/MIKP Mgr. Zbyněk Houdek

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy

Nebezpečí infekce. Zpracoval: Ondráček Zdeněk 2008

základní přehled organismů

základní přehled organismů

M A T U R I T N Í T É M A T A

primární producenti: řasy, sinice, vodní rostliny konkurence o zdroje mikrobiální smyčka

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

1/II. Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: TVAR BUNĚK NERVOVÁ BUŇKA

Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.

Inovace studia molekulární a buněčné biologie

Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_01_3_18_BI1 DÝCHACÍ SOUSTAVA

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

Lékařská orální mikrobiologie I VLLM0421p

Nebuněčný život (život?)

Vitální barvení, rostlinná buňka, buněčné organely


Doména Archaea. Tato doména nebyla rozpoznána až do konce 70. let minulého století

Cytosin Thymin Uracil

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Název: POZOROVÁNÍ PRVOKŮ

Pořadové číslo projektu: CZ.1.07/1.4.00/ Datum:

EDUCAnet gymnázium a střední odborná škola Praha, s.r.o. Jírovcovo náměstí 1782, Praha 4 Mikrosvět II.

PROCARYOTA - úvod. Obecná a buněčná biologie pro gymnázium. Procaryota úvod, pracovní list biologie. I. ročník čtyřletého gymnázia

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Hana Turoňová Název materiálu:

Nebuněčné živé soustavy viry virusoidy viroidy

Buňky, tkáně, orgány, soustavy

Transkript:

1

Obsah Slovo úvodem... 4 Hlavní domény života... 5 Systematika eukaryot... 8 Molekulární fylogenetika... 14 1. Viry, viroidy, priony a další nebuněčné částice... 18 2. Bakterie... 23 3. Sinice... 32 4. Archaea... 35 5. Excavata... 38 6. SAR I. (Stramenopiles)... 44 7. SAR II. (Rhizaria, Alveolata)... 47 8. Amoebozoa... 54 9. Chytridie, hmyzomorky a spájivé houby... 58 10. Vřeckovýtrusné houby... 63 11. Lichenizované houby... 69 12. Stopkovýtrusné houby... 74 Autorské řešení úloh... 79 Obrazové tabule... 89 Seznam použité a doporučené literatury... 110 3

Slovo úvodem Milé kolegyně, milí kolegové, případně studenti, kterým se dostala tato publikace do rukou, dovolte, abych Vám představil Sbírku atraktivních úloh z biologie problematických skupin organismů. Vznikla jako volné pokračování Sbírky atraktivních úloh z botaniky, kterou jsem díky podpoře grantem MHMP dal dohromady v roce 2011. Sbírka by Vám měla zpřístupnit nové trendy v systematice organismů. Kdo sleduje proměny moderní systematiky zejména eukaryot v posledních letech, ví, že se neustále s novými daty mění. Sice není nutné tím zatěžovat studenty v rámci běžných hodin základní biologie, ale asi bychom měli vědět, co se děje. Právě proto, aby Vás studenti nezaskočili otázkami typu: Proč už nejsou hlenky houby?, nebo Proč se zkoumá léčba malárie pomocí herbicidů?, nebo Proč už nejsou hnědé, zelené a červené řasy spolu?, je tu naše sbírka. Poprosil jsem o spolupráci řadu lidí z oboru, kteří se na vzniku sbírky podíleli. Chtěl bych poděkovat Jardovi Nunvářovi a Ivanu Čepičkovi za úvodní kapitoly, Janičce Pilátové, Ondrovi Koukolovi, Jardovi Nunvářovi a Vlastě Čepelové za recenzi sbírky, Hance Maškové za úžasné obrázkové přílohy, Evženu Markalousovi za typografickou korekturu, Jirkovi Ševčíkovi za titulní list, Majdě Holcové, Lence Sochorové a Janě Pilátové za přípravu praktických cvičení pro závěrečný seminář. Sbírka má podobnou strukturu jako sbírka z botaniky. Nabízí různé problémové úlohy, doplňovačky, křížovky, schémata a otázky z biologie virů, bakterií, archeí a všech eukaryotických skupin, vyjma rostlin a živočichů. Opět jsem se pokusil rozdělit úlohy na základní (označené vykřičníkem za číslem úlohy, např. 2 1!) a pokročilé, to definitivní rozhodnutí o použitelnosti úlohy nechávám na Vašem uvážení. Zároveň nabízí náměty na laboratorní cvičení (označené LAB; už nešlo moc dodržet schéma na jednu kapitolu čtyři úlohy, zejména středoškolské úlohy na viry a archea prostě neexistují). Úlohy jsem čerpal z citované literatury a většinu ozkoušel na kroužku Biologie pro střední školy (Stanice přírodovědců, DDM Praha). Dvanáct obrazových tabulí vhodně text doplňuje. Novum představují tři úvodní kapitoly, které si kladou za cíl odstranit problematické vnímání systematiky malých organismů a pomoct Vám v orientaci v moderní taxonomii. Nomenklatura česká i latinská vychází zejména z webu www.biolib.cz. Protože sbírka byla dokončována v chvatu, omlouvám se předem za všechny chyby a nedokonalosti. Budu rád za jakoukoliv zpětnou vazbu na sima@gybot.cz. Tak ať se Vám sbírka líbí a daří se s její pomocí mít hodiny biologie atraktivní. Petr Šíma, autor 4

Hlavní domény života Přírodovědci zabývající se evolucí si odjakživa kladli otázku, co byl prapůvodní předek všeho živého jinými slovy, jak vypadalo primitivní tělo takového organismu. Tato prabuňka se v českém jazykovém prostředí tradičně nazývá eobiont. Nicméně, v mezinárodní literatuře se většinou potkáváme s libozvučným akronymem LUCA (z angl. Last Universal Common Ancestor, poslední univerzální společný předek). Soudí se, že superprimitivní prabuňka LUCA sestávala v podstatě ze tří nezbytných komponent. Cytoplazma (s volně uloženou DNA) byla vlastním samostatným prostředím, kde probíhaly životní děje metabolismus. Plazmatická membrána cytoplazmu uzavírala a izolovala od vnějšího, vodného prostředí (fosfolipidová dvojvrstva je pro velkou většinu látek neprostupná, propouští jen povolené molekuly pomocí specifických membránových kanálů). Nad membránou se nacházela buněčná stěna, pevný obal z polymerních molekul. Vzhledem k vysoké koncentraci osmoticky aktivních látek v cytoplazmě fungovala buněčná stěna jako mechanická bariéra proti prasknutí vlivem osmotického přetlaku. Stavbou svých buněk odpovídají praorganismu LUCA prokaryota bakterie a archea. Na tom není nic překvapivého prokaryota jsou nejstarší a nejpůvodnější životní formy, které známe. V rámci bakterií rozlišujeme dvě velké skupiny, grampozitivní a gramnegativní bakterie, podle odlišného výsledku Gramova barvení. Za rozdílnou barvitelnost jsou zodpovědné rozdíly ve stavbě buněčné stěny. Na rozdíl od grampozitivních bakterií, gramnegativní buňky mají nad buněčnou stěnou tzv. vnější membránu, opatřenou póry. Která z obou skupin bakterií je původní a která odvozená, nelze s jistotou zjistit jejich evoluční separace nastala tak dávno, že dokonce i sekvence jejich DNA neposkytují použitelnou informaci pro molekulárně-fylogenetické analýzy (viz kapitola Molekulární fylogenetika) na toto téma byly udělány desítky studií, s diametrálně odlišnými závěry. Nicméně lze se důvodně domnívat (a některé zajímavé teorie tomu nahrávají), že grampozitivní bakterie představují evolučně původní typ uspořádání prokaryotické buňky s jedinou membránou (tento stav se ostatně vyskytuje i u jejich sesterské prokaryotní skupiny archeí). http://en.wikipedia.org/wiki/archaea Archea byla dlouho (až do konce 70. let) systematicky řazena na jednu hromadu spolu s bakteriemi, díky prakticky totožné mikroskopické stavbě jejich buněk. Až molekulární fylogenetika vyčlenila archea jako samostatnou nadříši, sesterskou bakteriím. Ukázalo se, že stavbou svých molekul se obě tyto skupiny fundamentálně liší. Nejlépe je to vidět na příkladu fosfolipidů plazmatické membrány. Zatímco v bakteriálních fosfolipidech jsou nevětvené alkylové 5

skupiny (5) mastných kyselin připojeny ke glycerolu esterovou vazbou (6), u archeí jsou součástí fosfolipidů polyizoprenové jednotky (1), vázané éterovou vazbou (2). Rovněž chirální konfigurace na prostředním uhlíku glycerolu je opačná (3,7). Od bakterií se archea dále odlišují aparátem realizace genetické informace, tj. molekulami, které se účastní replikace, transkripce a translace. Tyto molekuly jsou dokonce mnohem příbuznější eukaryotním organismům než bakteriím! Donedávna byla archea proto kladena do těsné evoluční blízkosti eukaryotům. V posledních letech přišli molekulární fylogenetikové se šokujícím, avšak velmi dobře podloženým zjištěním: jádro eukaryotických buněk vzniklo přímo z archeálního mikroorganismu. Z fylogramu níže lze vyvodit, že eukaryota (v obdélníku) se vyštěpují jako vnitřní skupina archeí (v elipsách). Zdroj: Williams T A, and Embley T M Genome Biol Evol 2014;6:474-481 Eukaryota jsou buněčnou chimérou (hybridem). Kromě archeální složky se při vzniku eukaryot zásadním způsobem uplatnila bakterie ze skupiny alfaproteobakterií, která byla pohlcena a v procesu nazývaném endosymbióza dala vzniknout mitochondrii. Vzhledem k tomu, že u všech hlavních skupin eukaryot mitochondrie nalézáme (ať už v klasické formě nebo pozměněné jako hydrogenozómy nebo mitozómy), soudíme, že původní eukaryot již mitochondrie ve své buňce obsahoval. Podle široce přijímané teorie následuje objevení se eukaryot po vzniku oxygenní fotosyntézy. Přítomnost kyslíku je pro anaerobní bakterie, které tehdy zcela převládaly, toxická. Mitochondrie tedy možná plnily dvě funkce ochrana 6

eukaryotické buňky před toxickými účinky kyslíku a zároveň produkce energie aerobní respirací. Již jsme si zčásti charakterizovali prapůvodní eukaryotní jednobuněčný organismus. Tento předek se nazývá LECA (z angl. Last Universal Eukaryotic Ancestor, poslední univerzální předek eukaryot). Vlastnosti buňky LECA rekonstruujeme na základě buněčných struktur a funkcí, které jsou společné všem skupinám žijících eukaryot. Kromě přítomnosti jádra a mitochondrie byla LECA charakteristická přítomností tzv. endomembránových systémů, tj. endoplazmatického retikula a Golgiho komplexu. Součástí komplexně uspořádaného eukaryotního membránového systému jsou i exocytické a endocytické váčky. LECA měl patrně schopnost fagocytózy, tj. aktivního pohlcování větších částic. Fagocytický způsob života pak umožňoval predaci (živých či mrtvých) prokaryot. Přechod k predátorskému způsobu života otevřel předku eukaryot cestu k ohromnému a prakticky nevyčerpatelnému zdroji potravy do té doby tvořila prokaryota jedinou životní formu na Zemi a byla všudypřítomná. Zásadní evoluční inovací u prabuňky LECA byl vznik sexuality. Prokaryotní organismy se množí výhradně nepohlavně, prostým dělením buněk. Meióza a následné splývání gamet, jevy charakteristické pro sexuální procesy, jsou přítomné prakticky u všech známých eukaryot (s výjimkou například některých hub a vířníků). Evoluční význam sexuality je zřejmý zajištění výměny genetické informace, což je nutnou podmínkou pro evoluční variabilitu, tj. schopnost měnit v následujících generacích své vlastnosti (například odolnost vůči parazitům). Podobně jako při fagocytóze, klíčovým pro průběh meiózy je cytoskelet (další systém unikátní pro eukaryota), jehož prostřednictvím se oddělují homologické chromozomy. Jak vidíte, mezi prokaryoty a eukaryoty jsou obrovské rozdíly. LECA nesla patrně všechny znaky moderních eukaryotních buněk, což znamená, že všechny vývojové mezičlánky (jichž bylo vzhledem k postupnému vzniku plejády eukaryotních znaků poměrně hodně) se nezachovaly. Vznik eukaryot byl v rámci evoluce života zcela unikátní událostí jak svou komplexitou, tak úspěšností vzniklých organismů. Stranou ponecháme evoluční původ virů, pro nějž neexistují žádné indicie a o němž můžeme tedy jen nepodloženě spekulovat. J. Nunvář 7

Systematika eukaryot I když dnes není pochyb o tom, že eukaryotická buňka vznikla během evoluce života na Zemi pouze jednou, vědci se nemohou shodnout na tom, kdy a jak k této události došlo. Větší část odborné veřejnosti se kloní k myšlence, že eukaryota jsou blízce příbuzná archeím (ať už jako jejich sesterská či vnitřní skupina). I když první eukaryotická buňka (FECA = First Eukaryotic Common Ancestor) je dosud obestřena tajemstvím, o hypotetickém posledním společném předkovi dnes žijících eukaryotických linií (LECA) toho víme poměrně mnoho (viz předchozí kapitolu). Obvykle se odhaduje, že LECA žil přibližně před 1,5 až 2 miliardami let; o času, který uplynul mezi FECA a LECA, se pouze spekuluje. Po období LECA následovala série rychlých diverzifikací a brzy vznikly dnešní hlavní linie eukaryot. K pochopení rané evoluce eukaryotické buňky zásadně přispěl výzkum současných jednobuněčných eukaryotických organismů, protist. Právě díky němu jsme dnes (přibližně od roku 2012) schopni poměrně přesně rekonstruovat morfologii a životní pochody LECA včetně takových detailů, jako jsou průběh cytoskeletárních útvarů, počet a umístění bičíků na buňce a přítomnost řady genů v genomu. Výzkum protist je však nezbytný i pro pochopení diverzity eukaryot a jejich evoluce v době po LECA. Již před několika desítkami let si totiž vědci uvědomili, že protista, ač druhově velmi chudí ve srovnání s notoricky známými mnohobuněčnými živočichy, rostlinami a houbami, ve skutečnosti tvoří většinu z několika desítek základních evolučních linií eukaryotických organismů (zde je ovšem potřeba také zmínit, že mnohobuněčnost vznikla v rámci eukaryot mnohokrát nezávisle na sobě). Je pochopitelné, že rekonstrukce fylogeneze skupiny staré dvě miliardy let s sebou přináší mnoho problémů. Jediné techniky použitelné ještě před zhruba patnácti lety, tj. srovnávací morfologie a fylogenetické analýzy založené zpravidla na jednom genu, v tomto úkolu selhaly. Naštěstí metody masivní sekvenace stlačily před několika lety cenu sekvenování DNA natolik, že se dnes velmi levně rutinně sekvenují celé genomy nebo transkriptomy i velmi obskurních organismů, u kterých se nedá očekávat, že by společnost byla ochotna poskytnout na jejich výzkum větší finanční prostředky. K dispozici je tedy mnoho dat, která se dají použít různými způsoby. Asi nejčastěji jsou prováděny fylogenomické studie, kdy se zároveň analyzuje mnoho (i více než 200) genů najednou. Fylogenomické analýzy však trpí některými závažnými problémy a někdy přinášejí zavádějící výsledky. Asi nejznámější (i když zdaleka ne nejhorší) komplikací je, že jednotlivé geny často nesdílejí evoluční historii vinou laterálního genového transferu (LGT, vypůjčení si genů od nepříbuzného organismu). Na druhou stranu, pokud dva organismy sdílejí laterální genový transfer (např. získaly v minulosti gen od stejného druhu bakterie), dá se s velkou pravděpodobností očekávat, že k tomuto LGT došlo u jejich společného předka, neboli že si jsou navzájem příbuzné. Pro eukaryotické organismy je typické, že jednotlivé geny v jejich genomu (koneckonců i celé genomy) mají neustálou tendenci se duplikovat, zdvojovat. Většinou jedna kopie duplikovaného genu brzy zanikne, ale v některých případech se uchovají obě po velmi dlouhou dobu. Každá z těchto kopií se může po nějakém čase opět duplikovat, přičemž vzniklé kopie opět mají velkou šanci zaniknout, ale mohou přežít i po velice dlouhou dobu a opět se 8

duplikovat. Výsledkem tohoto procesu je, že eukaryotické genomy obsahují několik až velmi mnoho různě starých kopií většiny genů. Pořadí proběhlých duplikací, které je možno zrekonstruovat, je opět možno využít při studiu rané evoluce eukaryot. Jedna z mála struktur, která je velmi běžná v současných eukaryotických buňkách a která organismu LECA téměř určitě chyběla, je plastid, fotosyntetická organela. Všechny eukaryotické plastidy jsou semiautonomní organely, tj. vznikly ze samostatně žijících organismů (prokaryotických i eukaryotických). Studium plastidů během několika posledních let zásadně změnilo pohled na evoluci. Plastidy mají totiž velmi pestrou evoluční historii, která, jak se ukázalo, příliš nesouvisí s evoluční historií zbytku buňky. Tím se liší od mitochondrie, další semiautonomní organely, která vznikla pouze jednou, ještě před diverzifikací LECA na současné skupiny eukaryot. Nejpůvodnějším typem plastidu je primární plastid (u rostlin se nazývá chloroplast), který vznikl symbiózou heterotrofní eukaryotické buňky se sinicí. Primární plastidy jsou tedy, stejně jako mitochondrie, eubakteriálního původu. Organismy s primárními plastidy se nazývají primární řasy. Donedávna se soudilo, že primární plastidy vznikly pouze jednou, u předka skupiny Archaeplastida (viz níže), a to velmi dávno, nejméně před miliardou let. Dnes je však jisté, že primární plastid vznikl nezávisle také u jednoho druhu krytenky (Paulinella chromatophora), a to velice nedávno, jen před několika desítkami milionů let. Některé primární řasy vstoupily v minulosti do symbiózy s heterotrofními organismy a vznikly z nich sekundární plastidy (viz schéma v úloze 6 2). Sekundární plastidy jsou strukturně složitější než primární plastidy (jsou obaleny více membránami, mohou mít více genomů), oproti svým řasovým předkům jsou však extrémně zjednodušeny, nejsou to již samostatné organismy, ale semiautonomní organely. Z přírody známe i terciární plastidy. Ty vznikly pozřením organismu, který obsahoval sekundární plastidy. Terciární plastidy (nebo alespoň plastidy vyššího než druhého řádu) jsou dnes s jistotou známé pouze u některých obrněnek (Dinoflagellata). Pro další část příběhu o plastidech je důležité, že skupina primárních řas Archaeplastida se již velmi dávno rozrůznila do několika linií, z nichž důležité jsou zelené a červené řasy (skupina zelené rostliny Viridiplantae zahrnující i zelené řasy a ruduchy Rhodophyta). Ze zástupců obou linií vznikly sekundární plastidy. Ty se podle původu zpravidla také nazývají zelené a červené. Se zelenými plastidy nejsou problémy, je celkem jisté, že vznikly třikrát nezávisle na sobě u poměrně malých skupin, z nichž významnější jsou pouze krásnoočka (Euglenoidea). Zato červené sekundární plastidy představují zásadní problém. Řasy s červenými sekundárními plastidy jsou velmi diverzifikované, patří sem např. rozsivky, chaluhy, skrytěnky, haptofyty, obrněnky, dokonce i parazitičtí výtrusovci. Představují tedy většinu známé diverzity řas. V roce 2002 byla formulována chromalveolátní hypotéza, která tvrdila, že sekundární červené plastidy vznikly pouze jednou, u společného předka všech zmíněných skupin, které jsou si navzájem příbuzné a dohromady tvoří skupinu Chromalveolata. Poté se ukázalo, že těmto chromalveolátům jsou příbuzné i některé skupiny bez plastidů. O nich se tedy předpokládalo, že jejich zástupci v minulosti měli červené sekundární plastidy. Takto rozšířená Chromalveolata (též Chromista) zahrnovala značnou část eukaryotické diverzity a chromalveolátní hypotéza byla po deset let jednou z nejvíce sjednocujících teorií eukaryotické evoluce. V roce 2013 však došlo k jejímu pádu, ukázalo se, že chromalveolátní 9

skupiny si nejsou příbuzné, což zpochybňuje i jednotu sekundárních červených plastidů. V současné době je tedy situace taková, že nevíme, kolikrát červené sekundární plastidy vznikly. Není dokonce ani jisté, zda jsou skutečně sekundární po pádu chromalveolátní hypotézy není důvod nepředpokládat, že některé z nich mohou být terciární nebo dokonce kvartérní. I když jistot ohledně evoluce eukaryot je nyní méně než před dvěma lety, zdá se, že eukaryotické organismy lze rozdělit do tří velikých linií, superskupin: Amorphea, Diaphoretickes a Excavata. Ty se dále dělí na řadu skupin, přičemž skupinám Opisthokonta, Amoebozoa, Archaeplastida, SAR a Excavata je tradičně (slovem tradičně je míněno přibližně od roku 2004) přisuzován status říše (Excavata je superskupina i říše). Superskupina AMORPHEA zahrnuje říše Opisthokonta a Amoebozoa a několik drobných skupin bičíkatých protist. Svůj název tato skupina dostala podle toho, že buňky organismů sem patřících často nemají pevný tvar mohou to být měňavky. To však nelze považovat za sjednocující znak, měňavkovité organismy se běžně vyskytují i v obou zbývajících superskupinách. Říše Opisthokonta získala svůj název ( zadobičíkovci ) podle unikátního postavení bičíků na buňkách. Oproti jiným skupinám totiž buňky opistokont mají často jediný bičík, který navíc vybíhá ze zadní části buňky a směřuje dozadu, viz lidské spermie. Řada opistokont (např. převážná většina hub) však bičíky ztratila, anebo má naopak mnohobičíkaté buňky (mnoho živočichů, u hub pak oddělení Neocallimastigomycota). Kromě bičíků je známa řada molekulárních znaků spojujících linie opistokont. Opisthokonta je druhově zdaleka nejbohatší říší (s více než milionem popsaných druhů), patří sem totiž živočichové (Metazoa) a houby (Fungi). Kromě těchto dvou mnohobuněčných skupin je známo pouze několik málo set druhů opistokontních protist. Opisthokonta se rozpadají na dvě evoluční linie, Holozoa a Holomycota. Holozoa obsahuje živočichy (Metazoa), jim blízce příbuzné jednobuněčné trubénky (Choanoflagellata) a několik dalších protistních linií. Linie Holomycota (= Nucletmycea) zahrnuje houby (Fungi) a malou skupinu měňavek Nucleariida (= Cristidiscoidea). Říše Amoebozoa je druhově mnohem chudší než Opisthokonta, zahrnuje přibližně 3000 známých druhů. V naprosté většině případů se jedná o bezbičíkaté měňavky, měňavkovité bičíkovce (pohybující se pomocí bičíků i panožek) nebo améboflageláty (střídající fázi měňavky a bičíkovce), odtud jméno Amoebozoa. Z řady linií amébozoí lze zmínit Tubulinea (sem patří např. známé rody měňavek Amoeba a Chaos a krytenky skupiny Arcellinida), Dictyosteliida (mnohobuněčné hlenky, např. modelový organismus Dictyostelium discoideum), Myxogastria (plasmodiální hlenky, např. vlčí mléko Lycogala) a Archamoebae (např. měňavka úplavičná, Entamoeba histolytica). Stojí za zmínku, že poměrně blízká příbuznost říší Opisthokonta a Amoebozoa je známá již přibližně deset let. Taxon, který tyto říše sdružoval, se nazýval Unikonta. Unikonta proto, že se soudilo, že jejich poslední společný předek byl jednobičíkatý organismus, u něhož se navíc bičíky během buněčného cyklu chovaly jinak než u ostatních eukaryotických říší (ty se 10

dohromady nazývaly Bikonta). Existence unikont byla podložena i několika molekulárními znaky. Postupně se však ukázalo, že přinejmenším předek skupiny Amoebozoa byl dvoubičíkatý, na jeho bičících nebylo nic zvláštního a že molekulární znaky údajně podporující Unikonta byly ve skutečnosti špatně interpretovány. Kromě toho byly objeveny dvoubičíkaté linie blízce příbuzné opistokontům a/nebo amébozoím (např. Breviatea, Apusomonadida a Mantamonadida), což koncept Unikonta/Bikonta zničilo. Na tomto příkladu je patrný význam výzkumu malých a zdánlivě nedůležitých skupin. Superskupina DIAPHORETICKES zahrnuje zejména dvě říše, Archaeplastida a SAR, a několik protistních linií. Své jméno ( různotvarci ) dostala podle toho, že organismy sem patřící jsou tak diverzifikované, že nesdílejí žádný společný znak. Důležité je, že sem patří naprostá většina eukaryot s plastidy. Mimo Diaphoretickes má plastidy pouze malá skupina krásnooček patřící do superskupiny Excavata; zástupci superskupiny Amorphea plastidy nemají a zřejmě nikdy neměli. Problém chromalveolát a chromist byl zmíněn výše. Zástupce říše Archaeplastida spojuje přítomnost primárního plastidu, který zde velmi pravděpodobně vznikl pouze jednou, ještě před rozdělením společného předka archaeplastid na tři dnes žijící linie, zelené rostliny (Viridiplantae = Chlorobiota), červené řasy (ruduchy, Rhodophyta) a glaukofyty (Glaucophyta). Zelené rostliny jsou velmi diverzifikovaná skupina, která v sobě obsahuje mnoho linií zelených řas a mnohobuněčné vyšší rostliny (Embryophyta). Červené řasy jsou významné proto, že z nich vznikly sekundární červené plastidy, které zapříčinily formulování nešťastné chromalveolátní hypotézy. Jméno říše SAR (= Harosa) je zkratka z názvů tří skupin, které sem patří Stramenopiles, Alveolata a Rhizaria. Tyto linie nespojuje žádný morfologický znak a jejich příbuznost byla odhalena před šesti lety pomocí fylogenomických analýz. Všechno jsou to velké skupiny s tisíci až desetitisíci známými druhy. Stramenopiles je největší skupina řas, patří sem např. rozsivky (Bacillariophyceae), zlativky (Chrysophyceae) a chaluhy (Phaeophyceae). Fotosyntetická Stramenopiles mají komplexní (= vyššího řádu než primární) červené plastidy. Kromě řas zahrnují Stramenopiles i nefotosyntetické linie, např. řasovky (Oomycota), opalinky (Opalinida) a lidského parazita Blastocystis hominis. Skupina Alveolata dostala svůj název podle kortikálních alveolů, plochých vakuol ležících pod cytoplasmatickou membránou, které zpevňují povrch buňky. Mimo jiné sem patří tři obsáhlé a velmi důležité skupiny protist obrněnky (Dinoflagellata), nálevníci (Ciliophora) a výtrusovci (Apicomplexa = Sporozoa). Obrněnky mají velmi často v kortikálních alveolech celulózové pláty (odtud název skupiny) a mnoho z nich fotosyntetizuje; najdeme u nich mnoho typů různých komplexních plastidů. Výtrusovci jsou vnitrobuněční paraziti, patří sem např. hromadinky = gregariny (běžní paraziti hmyzu), kokcidie (známá kokcidie je Toxoplasma gondii) a krvinkovky (nejvýznamnější jsou původci malárie rodu zimnička Plasmodium). Je zajímavé, že parazitické kokcidie a krvinkovky mají komplexní červené plastidy (apikoplasty), ty však již neslouží k fotosyntéze. Nálevníci jsou velmi známou skupinou mnohobičíkatých protist. I když jejich pohybové struktury jsou často označovány jako brvy nebo řasinky, nejedná se o nic jiného než o bičíky. 11

Jméno skupiny Rhizaria připomíná již nepoužívané jméno Rhizopoda (kořenonožci), kam byly dříve (přibližně do roku 1980) řazeny všechny měňavkovité organismy. Rhizaria je totiž po amébozoích druhá velká skupina měňavkovitých organismů. Patří sem např. obrovské skupiny dírkonožců (Foraminifera) a mřížovců (Radiolaria). Rhizaria je však velmi diverzifikovaná skupina, jejíž jednotlivé linie nespojují výrazné morfologické znaky. Zato těch molekulárních je k dispozici dost. Kromě měňavek sem patří i řada bičíkovců, např. skupina Cercozoa (ta obsahuje mimo jiné, krytenky skupiny Euglyphida, kam, pro změnu, patří již zmíněná Paulinella chromatophora s primárními plastidy), popř. parazitické haplosporidie (Haplosporidia) a nádorovky (Plasmodiophoromycota). Kromě Archaeplastida a SAR patří do Diaphoretickes řasy skrytěnky (Cryptophyta) a haptofyty (Haptophyta) s komplexními plastidy červeného původu a několik linií heterotrofních protist, z nichž nejvýznamnější jsou centrohelidní slunivky (Centrohelida). Dříve byly tyto linie řazeny do chromalveolát, nyní to vypadá, že některé jsou příbuzní SAR (jak se předpokládalo), zatímco jiné patří spíše k Archaeplastida. Superskupina (a zároveň říše) EXCAVATA je druhově poměrně chudá zahrnuje přibližně 2000 druhů. Excavata, jako snad jediná vyšší skupina eukaryot, byla nejprve definována na základě morfologických znaků. V původním stavu exkaváti měli (a někteří dosud mají) na břišní straně rýhu, kudy prochází bičík. Vlněním bičíků vzniká proud vody, který strhává bakterie do buněčných úst uložených v břišní rýze. Řada exkavát však tuto rýhu ztratila a jejich příslušnost k pravým exkavátům lze doložit pouze pomocí molekulárně fylogenetických analýz. Velikou skupinou exkavát jsou metamonády (Metamonada). Patří sem obvykle bičíkovci se čtyřmi bičíky, u některých zástupců však došlo ke zmnožení bičíků až na několik tisíc. Metamonády jsou anaerobní a obvykle žijí jako komenzálové ve střevech živočichů včetně člověka, několik druhů je však parazitických, např. bičenka Trichomonas vaginalis nebo lamblie Giardia intestinalis. Další skupinou exkavát jsou Heterolobosea. Jsou to obvykle améboflageláti (tj. organismy střídající fázi měňavky s fází bičíkovce), nejznámější zástupce je Naegleria fowleri, smrtelný (i když fakultativní) lidský parazit napadající CNS. Velmi významnou skupinou exkavát jsou Euglenozoa. Sem patří dva ekologicky značně odlišné typy organismů, krásnoočka (Euglenoidea) a kinetoplastidi (Kinetoplastea). Některé druhy krásnooček mají sekundární zelené plastidy. Mezi kinetoplastidy patří původci významných lidských chorob, Trypanosoma brucei (spavá nemoc), T. cruzi (Chagasova choroba) a několik druhů rodu Leishmania (leishmaniózy). Jak lze očekávat, existují eukaryotické organismy, které nelze s jistotou zařadit do žádné superskupiny a je možné, že v budoucnosti pro ně budou vytvořeny nové superskupiny. Jedná se např. o bičíkovce linií Malawimonadida, Diphylleida a Spironemida. Volně dostupná (i když někdy poněkud zastaralá) literatura Čepička I, Eliáš M, Hampl V (2010) Řád z chaosu: Rozmanitost protistů z pohledu 21. století. Vesmír 89, 464. http://casopis.vesmir.cz/clanek/rad-z-chaosu Adl SM et al. (2012) The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59, 429-493. http://onlinelibrary.wiley.com/doi/10.1111/j.1550-7408.2012.00644.x/full 12

Materiály k přednáškám Protistologie a Obecná protistologie na Přírodovědecké fakultě Univerzity Karlovy v Praze. http://www.protistologie.cz/ Systém eukaryot Originál I. Čepička 1. AMORPHEA 2. Opisthokonta 3. Holozoa 4. Holomycota 5. Amoebozoa 6. DIAPHORETICKES 7. Archaeplastida 8. SAR 9. Stramenopiles 10. Alveolata 11. Rhizaria 12. EXCAVATA 13. Euglenozoa I. Čepička 13

Molekulární fylogenetika Využití metod založených na biomolekulách (DNA, proteiny) způsobilo v našem chápání vztahů mezi organismy hotovou revoluci. Širšímu využití molekulárně-fylogenetických metod nutně předcházely objevy základních parametrů genetické informace: struktury DNA (1953) a tripletového kódu (1961 1962). Teprve polymerázová řetězová reakce (angl. PCR), uvedená koncem osmdesátých let a umožňující většině vědecké veřejnosti snadno namnožit specifické sekvence genů z jimi studovaných organismů, vedla spolu s rozvíjejícími se technikami sekvenace DNA k fundamentálním změnám v pojetí evoluce organismů. Proč je tak výhodné využít sekvence bází v DNA k rekonstrukci fylogeneze? Nejdůležitější je univerzální přítomnost těchto biomolekul ve všech živých systémech, včetně nebuněčných (ne)organismů virů a bakteriofágů. Vzhledem k tomu, že genom i bakterie obsahuje statisíce bází, každá z nich je nositelem evoluční informace, a to ve formě mutací. Mutace vznikají v průběhu evoluce a jsou unikátní pro jednotlivce, populace, druhy nebo vyšší taxonomické jednotky. Důležité je, že jednotlivé mutace mají jasně danou informační hodnotu ( váhu ) organismy se v dané bázi buď shodují, nebo ne. Klasická fylogenetika byla založena na morfologických, embryologických a dalších znacích, jejichž váha nebyla vždy zřejmá a bývala stanovována intuitivně a na základě zkušenosti. Zkuste si sami jednoznačně odpovědět na otázku, který z následujících morfologických znaků je důležitější: typ semeníku (spodní, svrchní) nebo symetrie květu (pravidelný, souměrný)? Protože DNA je přítomná u všech organismů, molekulární fylogenetika jako vůbec první poskytla obraz o evolučních vztazích skupin, které prakticky žádné morfologicko/embryologické znaky nemají, například prokaryot. Pro pochopení evoluce mnoha skupin organismů bývaly dříve zásadní fosilie molekulární fylogenetiku lze přirozeně aplikovat i na nefosilizovatelné organismy. V neposlední řadě se molekulárními metodami podařilo objasnit taxonomickou pozici některých parazitických skupin organismů, které díky druhotnému zjednodušení tělní stavby vůbec neupomínaly na své volně žijící příbuzné. Tabulka níže podává stručný (a jistě i neúplný) přehled skupin organismů, kde klasická fylogenetika nedostačovala a jejichž evoluční vztahy definitivně rozlouskly až molekulární metody: viry prokaryota někteří prvoci mikroskopické houby hmyzomorky evoluční původ oblast problému vztahy mezi zástupci absence relevantních fosílií příčina problému primární absence relevantních morfolog. znaků sekundární absence relevantních morfolog. znaků 14

rybomorky krytosemenné rostliny kytovci evoluční původ oblast problému vztahy mezi zástupci absence relevantních fosílií příčina problému primární absence relevantních morfolog. znaků sekundární absence relevantních morfolog. znaků Základní princip molekulární fylogenetiky je velmi jednoduchý: čím podobnější je genetická informace dvou organismů, tím jsou si příbuznější. Jinými slovy, čím více mutací odlišuje dva druhy, tím jsou tyto od sebe evolučně vzdálenější. Grafickým znázorněním molekulární evoluce je fylogenetický strom fylogram. Vzdálenosti mezi jakýmikoliv dvěma druhy ve fylogramu jsou přímo úměrné počtu mutací, jimiž se mezi sebou odlišují. Vztah mezi vznikem mutací v evoluci a podobou fylogramu znázorňuje následující schéma, které výrazně usnadňuje pochopení problematiky. Věnujte mu prosím dostatečnou pozornost, větší počáteční úsilí se vám bohatě vrátí. 15