Testování hypotéz o vzniku eukaryotické buňky
|
|
- Bohumil Mašek
- před 6 lety
- Počet zobrazení:
Transkript
1 Testování hypotéz o vzniku eukaryotické buňky Koncept aktivity: Studenti se v rámci práce po skupinách nebo individuálně pokusí přiřadit čtyři reálné hypotézy o vzniku eukaryotické buňky a roli mitochondrií v něm k pozorováním, která jim nejlépe odpovídají. Úloha představuje dané hypotézy, které jsou vědeckou komunitou v současnosti považovány za pravděpodobné, a ukazuje, že pozorovaný stav přírody mohou stejně dobře vysvětlovat velmi odlišné hypotézy. Rozhodnout mezi nimi lze na základě dalších pozorování a experimentů, testujících různé předpoklady, které z jednotlivých hypotéz plynou. Studenti dostanou k dispozici čtyři krátké texty (str. 2-3) stručně představující dané hypotézy (např. jaké typy prokaryotických buněk daly svým splynutím vzniknout buňce eukaryotické, jaké evoluční tlaky ke splynutí vedly nebo jaké bylo pořadí vzniku eukaryotických novinek) a čtyři krátké texty pozorování (str. 4) shrnující relevantní informace, které o dnešních eukaryotických buňkách víme nebo můžeme zjistit v budoucnosti (např. čemu jsou příbuzné geny pro určitou část buněčného metabolismu). Ke každé hypotéze lze přiřadit jedno z pozorování, které jí nejlépe odpovídá. Zadání Jednou z největších záhad současné biologie je otázka, jak vznikla eukaryotická buňka. Předpokládáme, že život na Zemi po dlouhou dobu existoval pouze v podobě jednoduchých prokaryotických buněk: bakterií a archeí. Někdy v době před dvěma až jednou miliardou let se z těchto buněk vyvinul nový, složitější typ: eukaryotická buňka. Proces vzniku eukaryotické buňky se označuje termínem eukaryogeneze. Součástí eukaryogeneze bylo pravděpodobně jednak zesložiťování již existujících prokaryotických buněk, jednak jejich vzájemné symbiotické splývání. Jsme si jistí, že eukaryotická buňka je chimérou alespoň dvou typů buněk, z nichž jedna dala vzniknout jádru a druhá mitochondrii. Řada dalších zásadních otázek ale zůstává nezodpovězena. Problém je, že neznáme žádné fosilie, které by eukaryogenezi dokumentovaly, ani živé organismy, představující její mezistupně. Fosilní záznam i živá příroda jsou plné typických prokaryot a typických eukaryot, avšak cokoli mezi tím chybí. Při svém pátrání po povaze eukaryogeneze jsme tak odkázáni na nepřímé důkazy a teoretizování. Biologové a bioložky již vymysleli desítky různých eukaryogenetických hypotéz evolučních příběhů, které vysvětlují vznik eukaryot z prokaryot. Některé jsou elegantnější než jiné, některé jednodušší, jiné originálnější, ale všechny jsou v podstatě představitelné a možné. Jak mezi nimi rozhodnout? Každá správná vědecká hypotéza musí být testovatelná tzn. musí z ní vyplývat nějaké předpoklady, které lze ověřovat dalším pozorováním nebo experimenty. Na následujících listech jsou stručně představené čtyři eukaryogenetické hypotézy, které jsou dnes mezi biology a bioložkami oblíbené. Vaším úkolem je seznámit se s každou z nich a pokusit se každou přiřadit k jednomu souboru pozorování, které najdete na posledním listě. Každé hypotéze odpovídá jeden soubor pozorování, která ji nejlépe podporují. Pamatujte, že stačí jediné pozorování, které hypotézu jasně vyvrací, aby byla hypotéza zavržena. Ne všechna pozorování ji ale musí přímo podporovat některá mohou odpovídat více různým hypotézám nebo mohou být zcela zbytečná. Připomeňme si několik důležitých faktů: 1. Prokaryota se vyskytují ve dvou formách: bakterie a archea. 2. Mezi bakterie patří řada menších skupin, například alfaproteobakterie a deltaproteobakterie. 3. Mitochondrie v eukaryotických buňkách se vyskytují buď v podobě aerobních mitochondrií provozujících buněčné dýchání spotřebovávající kyslík (jako v lidských buňkách), nebo v podobě různých anaerobních organel, které pro jednoduchost nazýváme hydrogenosomy, využívajících jiné metabolické dráhy a často produkujících molekulární vodík (např. u parazita bičenky poševní). A jak je to ve skutečnosti? Je některá z hypotéz blíže pravdě než ostatní? Nebo se máme poohlížet jinde? Co když předek mitochondrie nebyl pro svého hostitele zpočátku užitečný, ale šlo o parazita? Co když při eukaryogenezi hrály zásadní roli viry, o nichž víme, že dokáži své hostitelské buňky donutit vytvářet složité struktury vzdáleně připomínající jádro? Co když vše proběhlo úplně jinak? Zatím nedokážeme rozhodnout. Zkrátka zatím nemáme dostatek dat, abychom mohli sestavit takový jednoznačný soubor pozorování, jaké jsme vám zde nabídli. Potřebujeme osekvenovat více organismů, lépe prozkoumat rozmanitost prvoků a archeí, vyvinout lepší metody na analýzu genetických dat a tak podobně. Jedno je jisté: při rychlosti, s jakou se tato oblast biologie rozvíjí, nás čekají ještě velká překvapení! 1
2 Eukaryogenetické hypotézy: Vodíková hypotéza Na počátku eukaryogeneze stála symbióza mezi vodík produkující a vodík spotřebovávající prokaryotickou buňkou. Předek mitochondrie ze skupiny alfaproteobakterií byl schopný provádět jak aerobní metabolismus (tedy buněčné dýchání), tak anaerobní metabolismus produkující vodík coby odpadní produkt. Dnešní aerobní mitochondrie na jedné straně a anaerobní hydrogenosomy na straně druhé tedy oba vznikly zjednodušením původně univerzálnější organely. Druhým partnerem v této symbióze byl metanogenní (metan produkující) archeon, jenž získával energii pomocí reakce mezi vodíkem (získávaným od symbionta) a oxidem uhličitým. Oba partneři byli na počátku běžnými prokaryotickými buňkami. Výhody vzájemného soužití je ale tlačily ke stále těsnější asociaci, až metanogenní archeon pohltil (dosud neznámým mechanismem) předka mitochondrie. Všechny ostatní inovace eukaryotických buněk, jako jádro, vnitřní membrány a cytoskelet, vznikly až později jako důsledek této symbiózy. Hypotéza fagocytujícího archeona Značná část eukaryotických inovací vznikla ještě před symbiózou s předkem mitochondrie. Vše začalo jednou skupinou archeí, která ztratila svou buněčnou stěnu, a zároveň si vyvinula jednoduchý dynamický cytoskelet. To jim umožnilo měnit tvar buňky a živit se pohlcováním jiných buněk fagocytózou. Tento způsob výživy vystavil buňku velkému množství cizí DNA a zintenzivnil tak získávání cizích genů (tzv. horizontální genový přenos, HGT) a zrychlil evoluci genomu. V reakci na to se později vyvinulo jádro, které odděluje DNA od zbytku buňky a genom tak do jisté míry stabilizuje. Alfaproteobakteriální předek mitochondrie měl podobný metabolismus jako dnešní aerobní mitochondrie. Po jeho pohlcení nedošlo ke strávení, ale hostitel se postupně naučil využívat jej jako zdroj energie. Tento nový, nebývale efektivní, zdroj energie umožnil hostitelské buňce vyvinout si složitější vnitřní uspořádání a větší rozměry. Anaerobní metabolismus některých mitochondriálních organel je pozdější inovací, která vznikla vícekrát nezávisle na sobě, a to pravděpodobně mechanismem horizontálního genového přenosu. 2
3 Syntrofická hypotéza Eukaryotická buňka je chimérou tří různých typů prokaryotických buněk. Nejprve vznikla symbióza mezi metanogenním archeonem (který dal vzniknout jádru) a vodík produkujícími myxobakteriemi ze skupiny deltaproteobakterií (z nich pochází cytoplazma i cytoplazmatická membrána eukaryotické buňky). Důvodem k této symbióze byl, stejně jako u vodíkové hypotézy, přenos vodíku. Myxobakterie mají složité vývojové cykly zahrnující koordinaci a komunikaci mezi velkým množstvím buněk, což mohlo přispět k vytvoření této mezidruhové symbiózy. Endoplazmatické retikulum eukaryotické buňky je pozůstatkem spojů mezi jednotlivými buňkami myxobakterií, obklopujících jedinou buňku archeona budoucí jádro. Později byl takto vzniklým konsorciem pohlcen i předek mitochondrie, kterým byla anaerobní alfaproteobakterie využívající metan jako zdroje energie. Vznikla tak trojčetná metabolická symbióza, kde první partner dodával vodík druhému a ten dodával metan třetímu. Předek mitochondrie si později vyvinul schopnost buněčného dýchání, díky čemuž mohly být ostatní způsoby získávání energie ztraceny. Hypotéza zevnitř ven Eukaryogeneze byla poháněna potřebou co nejtěsnějšího kontaktu mezi hostitelem ze skupiny archeí a jeho alfaproteobakteriálními ektosymbionty (tedy symbionty žijícími na povrchu buňky), předky mitochondrií. Tato hypotéza předpokládá, že mezi archeálním hostitelem a předky mitochondrií docházelo k intenzivní výměně chemických látek, ale nevyžaduje žádnou konkrétní formu metabolické symbiózy. Vyměňovanými látkami tedy mohlo být cokoli a také metabolismy jednotlivých partnerů mohly být jakékoli. Pro funkci symbiózy bylo výhodné co nejvíce maximalizovat styčnou plochu mezi partnery, a tak hostitel začal vytvářet výběžky své cytoplazmatické membrány a obalovat jimi ektosymbionty. Tento proces byl završen, když se výběžky membrány nad ektosymbionty spojily a uvěznily je. Z původní buňky hostitele tak vzniklo jádro eukaryotické buňky. Obal jádra vznikl z původního povrchu buňky hostitele a jaderné póry z míst, odkud vycházely výběžky. Vnější membrána eukaryotické buňky vznikla z membrány výběžků. Z mezer mezi jednotlivými výběžky vzniklo endoplazmatické retikulum, tedy síť membránových kanálků v eukaryotické buňce. Mitochondrie byly původně uzavřené v endoplazmatickém retikulu, ale později se z něj uvolnily a dnes jsou umístěné volně v cytoplazmě. 3
4 Pozorování: Pozorování č. 1: alfaproteobakterií a deltaproteobakterií. Geny archeálního původu ukazují na příbuznost ke skupině archeí bez metanogenních zástupců. Významná část genů alfaproteobakteriálního původu si je navzájem příbuzná, a tedy pravděpodobně pochází z jednoho zdroje. Mitochondriální enzymy pro aerobní buněčné dýchání si jsou navzájem příbuzné u různých skupin eukaryot a jejich evoluční historie kopíruje evoluční historii buněk, ve kterých se nacházejí. Naproti tomu enzymy pro anaerobní metabolismus produkující vodík v hydrogenosomech jsou u různých skupin eukaryot různé a jejich evoluční historie nekopíruje evoluční historii buněk, ve kterých se nacházejí. Horizontální genový přenos do eukaryot je snadný a běžný. Pozorování č. 2: alfaproteobakterií a deltaproteobakterií. Významná část genů alfaproteobakteriálního původu si je navzájem příbuzná, a tedy pravděpodobně pochází z jednoho zdroje. Jaderný obal obsahuje proteiny podobné těm, které najdeme na povrchu buněk archeí. Mitochondrie intenzivně komunikují s endoplazmatickým retikulem. Eukaryota s jádrem, ale bez mitochondrií, neexistují ani nikdy neexistovala. Pokud existují, tak proto, že mitochondrie druhotně ztratila. Pozorování č. 3: alfaproteobakterií a deltaproteobakterií. Geny archeálního původu ukazují na příbuznost ke skupině archeí s metanogenními zástupci. Významná část genů alfaproteobakteriálního původu si je vzájemně příbuzná, a tedy pravděpodobně pochází z jednoho zdroje. To samé platí pro geny deltaproteobakteriálního původu. Podstatná část proteinů organizujících struktury v cytoplazmě je bakteriálního původu. Enzymy mitochondriálního aerobního metabolismu jsou jiného původu než zbytek mitochondriálních proteinů. Eukaryota s jádrem, ale bez mitochondrie možná existovala nebo stále existují. Pozorování č. 4: alfaproteobakterií. Významná část genů alfaproteobakteriálního původu si je navzájem příbuzná, a tedy pravděpodobně pochází z jednoho zdroje. Jaderný obal obsahuje proteiny především archeálního původu. Enzymy pro energetický metabolismus aerobních i anaerobních mitochondriálních organel si jsou navzájem příbuzné u různých skupin eukaryot a jejich evoluční historie kopíruje evoluční historii buněk, ve kterých se nacházejí. Horizontální genový přenos do eukaryot je obtížný a vzácný. Eukaryota s jádrem, ale bez mitochondrií, neexistují ani nikdy neexistovala. Pokud existují, tak proto, že mitochondrie druhotně ztratila. 4
5 Řešení: Vodíkové hypotéze nejlépe odpovídá pozorování č. 4. Hypotéze fagocytujícího archeona nejlépe odpovídá pozorování č. 1. Syntrofické hypotéze nejlépe odpovídá pozorování č. 3. Hypotéze zevnitř ven nejlépe odpovídá pozorování č. 2. 5
Buňka. Autor: Mgr. Jitka Mašková Datum: Gymnázium, Třeboň, Na Sadech 308
Buňka Autor: Mgr. Jitka Mašková Datum: 27. 10. 2012 Gymnázium, Třeboň, Na Sadech 308 Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0702 VY_32_INOVACE_BIO.prima.02_buňka Škola Gymnázium, Třeboň, Na Sadech
BUNĚČ ORGANISMŮ KLÍČOVÁ SLOVA:
BUNĚČ ĚČNÁ STAVBA ŽIVÝCH ORGANISMŮ KLÍČOVÁ SLOVA: Prokaryota, eukaryota, viry, bakterie, živočišná buňka, rostlinná buňka, organely buněčné jádro, cytoplazma, plazmatická membrána, buněčná stěna, ribozom,
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Číslo a název projektu Číslo a název šablony
Číslo a název projektu Číslo a název šablony DUM číslo a název CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT SSOS_ZE_1.05
Buňka. základní stavební jednotka organismů
Buňka základní stavební jednotka organismů Buňka Buňka je základní stavební a funkční jednotka těl organizmů. Toto se netýká virů (z lat. virus jed, je drobný vnitrobuněčný cizopasník nacházející se na
Aplikované vědy. Hraniční obory o ţivotě
BIOLOGICKÉ VĚDY Podle zkoumaného organismu Mikrobiologie (viry, bakterie) Mykologie (houby) Botanika (rostliny) Zoologie (zvířata) Antropologie (člověk) Hydrobiologie (vodní organismy) Pedologie (půda)
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
PRAPRVOCI A PRVOCI Vojtěch Maša, 2009
PRAPRVOCI A PRVOCI Vojtěch Maša, 2009 Opakování Prokarytotické organismy Opakování Prokaryotické organismy Nemají jádro, ale jen 1 chromozóm neoddělený od cytoplazmy membránou Patří sem archea, bakterie
Buňka. Kristýna Obhlídalová 7.A
Buňka Kristýna Obhlídalová 7.A Buňka Buňky jsou nejmenší a nejjednodušší útvary schopné samostatného života. Buňka je základní stavební a funkční jednotkou živých organismů. Zatímco některé organismy jsou
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové
Základy buněčné biologie
Maturitní otázka č. 8 Základy buněčné biologie vypracovalo přírodozpytné sympózium LP, AM & DK na konferenci v Praze, 1. Máje 2014 Buňka (cellula) je nejmenší známý útvar, který je schopný všech životních
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ORGANISMY 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - organismy V této kapitole se dozvíte: Co je to organismus. Z čeho se organismus skládá. Jak se dělí
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická Odborná biologie, část biologie Společná pro
Buňka buňka je základní stavební a funkční jednotka živých organismů
Buňka - buňka je základní stavební a funkční jednotka živých organismů - je pozorovatelná pouze pod mikroskopem - na Zemi existuje několik typů buněk: 1. buňky bez jádra (prokaryotní buňky)- bakterie a
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_05_BUŇKA 2_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
VY_32_INOVACE_002. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám
VY_32_INOVACE_002 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Buňka Vyučovací předmět: Základy ekologie
Buňka. Buňka (cellula) základní stavební a funkční jednotka organismů, schopná samostatné existence. Cytologie nauka o buňkách
Buňka Historie 1655 - Robert Hooke (1635 1703) - použil jednoduchý mikroskop k popisu pórů v řezu korku. Nazval je, podle podoby k buňkám včelích plástů, buňky. 18. - 19. St. - vznik buněčné biologie jako
Schéma rostlinné buňky
Rostlinná buňka 1 2 3 5 vakuola 4 5 6 Rostlinná buňka je eukaryotní buňkou se základními charakteristikami tohoto typu buňky. Krom toho má některé charakteristiky typické pro rostlinné buňky, jako je předevšímř
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Mgr. Barbora Blažková Tematický celek: Základy ekologie Cílová skupina: 1. ročník SŠ Anotace Kontrolní test navazuje na prezentaci, která seznámila žáky se základy buněčné teorie, s druhy buněk,
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy
Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,
Úvod do mikrobiologie
Úvod do mikrobiologie 1. Lidské infekční patogeny Subcelulární Prokaryotické o. Eukaryotické o. Živočichové Priony Chlamydie Houby Červi Viry Rickettsie Protozoa Členovci Mykoplasmata Klasické bakterie
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Šablona č.i, sada č. 2. Buňka, jednobuněční. Ročník 8.
Šablona č.i, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Přírodopis Přírodopis Zoologie Buňka, jednobuněční Ročník 8. Anotace Materiál slouží pro ověření znalostí učiva o buňkách a
Buňka cytologie. Buňka. Autor: Katka www.nasprtej.cz Téma: buňka stavba Ročník: 1.
Buňka cytologie Buňka - Základní, stavební a funkční jednotka organismu - Je univerzální - Všechny organismy jsou tvořeny z buněk - Nejmenší životaschopná existence - Objev v 17. stol. R. Hooke Tvar: rozmanitý,
Evoluce (nejen) rostlinné buňky Martin Potocký laboratoř buněčné biologie ÚEB AV ČR, v.v.i. potocky@ueb.cas.cz http://www.ueb.cas.cz Evoluce rostlinné buňky Vznik a evoluce eukaryotních organismů strom
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN
FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,
1 (2) CYTOLOGIE stavba buňky
1 (2) CYTOLOGIE stavba buňky Buňka základní stavební a funkční jednotka všech živých organismů. (neexistuje život mimo buňku!) buňky se liší tvarem i velikostí - záleží při tom hlavně na jejich funkci.
Okruhy otázek ke zkoušce
Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.
Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková
Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního
Bu?ka - maturitní otázka z biologie (6)
Bu?ka - maturitní otázka z biologie (6) by Biologie - Pátek, Únor 21, 2014 http://biologie-chemie.cz/bunka-6/ Otázka: Bu?ka P?edm?t: Biologie P?idal(a): david PROKARYOTICKÁ BU?KA = Základní stavební a
Výukový materiál zpracovaný v rámci projektu Výuka modern
St ední pr myslová škola strojnická Olomouc, t. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka modern Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 P írodov dné
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Stavba dřeva. Základy cytologie. přednáška
Základy cytologie přednáška Buňka definice, charakteristika strana 2 2 Buňky základní strukturální a funkční jednotky živých organismů Základní charakteristiky buněk rozmanitost (diverzita) - např. rostlinná
ÚVOD DO STUDIA BUŇKY příručka pro učitele
Obecné informace ÚVOD DO STUDIA BUŇKY příručka pro učitele Téma úvod do studia buňky je rozvržen na jednu vyučovací hodinu. V tomto tématu jsou probrány a zopakovány základní charakteristiky živých soustav
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tématická oblast Odborná biologie, část biologie organismus
Strom života. Cíle. Stručná anotace
Předmět: Doporučený ročník: Vazba na ŠVP: Biologie 1. ročník Úvod do taxonomie Cíle Studenti zařadí člověka do příslušných taxonů taxonomického systému. Studenti se seznámí s principem fylogenetického
Martina Bábíčková, Ph.D
Jméno Martina Bábíčková, Ph.D. Datum 25.11.2013 Ročník 6. Vzdělávací oblast Člověk a příroda Vzdělávací obor Přírodopis Tematický okruh Základní struktura života Téma klíčová slova Buňka rostlinná a živočišná
Biologie - Kvinta, 1. ročník
- Kvinta, 1. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Odborná biologie, část biologie organismus
GENETIKA 1. Úvod do světa dědičnosti. Historie
GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných
- význam: ochranná funkce, dodává buňce tvar. jádro = karyon, je vyplněné karyoplazmou ( polotekutá tekutina )
Otázka: Buňka a dělení buněk Předmět: Biologie Přidal(a): Štěpán Buňka - cytologie = nauka o buňce - rostlinná a živočišná buňka jsou eukaryotické buňky Stavba rostlinné (eukaryotické) buňky: buněčná stěna
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
ŠVP Gymnázium Ostrava-Zábřeh. 4.8.10. Seminář a cvičení z biologie
4.8.10. Seminář a cvičení z biologie Volitelný předmět Seminář a cvičení z biologie je koncipován jako předmět, který vychází ze vzdělávací oblasti Člověk a příroda Rámcového vzdělávacího programu pro
Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.
KOLOBĚH LÁTEK A TOK ENERGIE Látky jako uhlík, dusík, kyslík a voda v ekosystémech kolují. Energii se do ekosystémů dostává z vnějšku a opět z něj vystupuje. Základní podmínky pro život na Zemi. Světlo
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Obecná charakteristika živých soustav
Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují
A. chromozómy jsou rozděleny na 2 chromatidy spojené jen v místě centromery. B. vlákna dělícího vřeténka jsou připojena k chromozómům
Karlova univerzita, Lékařská fakulta Hradec Králové Obor: všeobecné lékařství - test z biologie Vyberte tu z nabídnutých odpovědí (1-5), která je nejúplnější. Otázka Odpověď 1. Mezi organely membránového
Biologie I. Buňka II. Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings
Biologie I Buňka II Campbell, Reece: Biology 6 th edition Pearson Education, Inc, publishing as Benjamin Cummings BUŇKA II centrioly, ribosomy, jádro endomembránový systém semiautonomní organely peroxisomy
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Rekonstrukce evoluce plastidů
Rekonstrukce evoluce plastidů Koncept aktivity: Studenti se v rámci práce po skupinách pokusí zrekonstruovat evoluci sekundárních plastidů a do fylogenetického stromu na pracovním listu zakreslit, kde
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
Otázka: Jednobuněční živočichové - prvoci. Předmět: Biologie. Přidal(a): Krista PRVOCI. Obecné znaky:
Otázka: Jednobuněční živočichové - prvoci Předmět: Biologie Přidal(a): Krista Obecné znaky: PRVOCI starobylé organismy velikost v mm a menší (mikroskopická velikost) kosmopolitní výskyt tělo=1 buňka eukaryotická
VY_32_INOVACE_003. VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám
VY_32_INOVACE_003 VÝUKOVÝ MATERIÁL zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07. /1. 5. 00 / 34. 0696 Šablona: III/2 Název: Základní znaky života Vyučovací předmět:
od eukaryotické se liší svou výrazně jednodušší stavbou a velikostí Dosahuje velikosti 1-10 µm. Prokaryotní buňku mají bakterie a sinice skládá se z :
Otázka: Buňka Předmět: Biologie Přidal(a): konca88 MO BI 01 Buňka je základní stavební jednotka živých organismů. Je to nejmenší živý útvar schopný samostatné existence a rozmnožování. Každá buňka má svůj
Prokaryota x Eukaryota. Vibrio cholerae
Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky
Číslo materiálu: VY 32 INOVACE 18/08
Číslo materiálu: Název materiálu: PÍSEMNÉ OPKOVCÍ TESTY 1.pololetí Číslo projektu: CZ.1.07/1.4.00/21.1486 Zpracovala: Marcela Kováříková 1. Co je symbioza. Jaký je rozdíl mezi symbiozou a parazitismem.
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
Přírodopis. 6. ročník. Obecná biologie a genetika
list 1 / 7 Př časová dotace: 2 hod / týden Přírodopis 6. ročník (P 9 1 01) (P 9 1 01.1) (P 9 1 01.4) (P 9 1 01.5) (P 9 1 01.6) (P 9 1 01.7) (P 9 1 02) P 9 1 02.1 rozliší základní projevy a podmínky života,
Cílená konstrukce bioaugmentačních preparátů a jejich pozice v procesu efektivních bioremediací
Cílená konstrukce bioaugmentačních preparátů a jejich pozice v procesu efektivních bioremediací Průmyslová ekologie 2011 Bioaugmentace cílené vnesení mikrobiální populace v podobě tzv. biopreparátu (inokula)
Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.
PROKARYOTICKÁ BUŇKA - příručka pro učitele
Obecné informace PROKARYOTICKÁ BUŇKA - příručka pro učitele Celek Prokaryotická buňka je rozvržen na jednu vyučovací hodinu. Žáci se postupně seznamují se stavbou bakteriální buňky (s jednotlivými strukturami).
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Téma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK
Téma: MORFOLOGIE ŢIVOČIŠNÝCH BUNĚK ŢIVÉ SOUSTAVY Nebuňečné (priony, viroidy, viry) Buněčné (jedno- i mnohobuněčné organismy) PROKARYOTICKÝ TYP BUNĚK 1-10 µm Archebakterie Eubakterie (bakterie a sinice)
Molekulární diagnostika
Molekulární diagnostika Odry 11. 11. 2010 Michal Pohludka, Ph.D. Buňka základní jednotka živé hmoty Všechny v současnosti známé buňky se vyvinuly ze společného předka, tedy buňky, která žila asi před 3,5-3,8
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Přírodopis 6. ročník Zpracovala: RNDr. Šárka Semorádová Obecná biologie rozliší základní projevy a podmínky života, orientuje se v daném přehledu vývoje organismů
Název: Fotosyntéza, buněčné dýchání
Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Maturitní témata - BIOLOGIE 2018
Maturitní témata - BIOLOGIE 2018 1. Obecná biologie; vznik a vývoj života Biologie a její vývoj a význam, obecná charakteristika organismů, přehled živých soustav (taxonomie), Linného taxony, binomická
Program kursu Rostlinná buňka
Program kursu Rostlinná buňka 1) Poznávání rostlinných buněk Buňka a vývoj jejího poznání Srovnání rostlinné a živočišné buňky Jak jsou buňky rozčleněny: membrány 2) Buněčné membrány a vakuoly rostlinných
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
Modelov an ı biologick ych syst em u Radek Pel anek
Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
VZNIK EUKARYOTICKÉ BUŇKY EUKARYOGENEZE (PROTISTOLOGIE 2013) - VLADIMÍR HAMPL
VZNIK EUKARYOTICKÉ BUŇKY EUKARYOGENEZE (PROTISTOLOGIE 2013) - VLADIMÍR HAMPL Tento text obsahuje veškeré informace potřebné ke zvládnutí otázek týkajících se eukaryogeneze na zkoušce z protistologie. Při
1/II. Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: TVAR BUNĚK NERVOVÁ BUŇKA
Cvičení 2: ŽIVOČIŠNÁ BUŇKA, PROTOZOA Jméno: Skupina: TVAR BUNĚK NERVOVÁ BUŇKA Trvalý preparát: mícha Vyhledejte nervové buňky (neurony) ve ventrálních rozích šedé hmoty míšní. Pozorujte při zvětšení, zakreslete
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
Eukaryotická buňka. Stavba. - hlavní rozdíly:
Eukaryotická buňka - hlavní rozdíly: rostlinná buňka živočišná buňka buňka hub buněčná stěna ano (celulóza) ne ano (chitin) vakuoly ano ne (prvoci ano) ano lysozomy ne ano ne zásobní látka škrob glykogen
Maturitní témata Biologie MZ 2017
Maturitní témata Biologie MZ 2017 1. Buňka - stavba a funkce buněčných struktur - typy buněk - prokaryotní buňka - eukaryotní buňka - rozdíl mezi rostlinnou a živočišnou buňkou - buněčný cyklus - mitóza
základní přehled organismů
základní přehled organismů Doména Archaea Tato doména nebyla rozpoznána až do konce 70. let minulého století Co se týče morfologie, neliší se archeální buňky od buněk bakteriálních Rozdíly jsou biochemické
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Jméno: - patří sem např. bakterie - jsou vývojově nejstaršími buňkami - jsou menší a jednodušší
č. 8 název Dělení buněk anotace V pracovních listech žáci získávají základní vědomosti o dělení buněk. Testovou i zábavnou formou si procvičují získané znalosti na dané téma. Součástí pracovního listu
PROCARYOTA - úvod. Obecná a buněčná biologie pro gymnázium. Procaryota úvod, pracovní list biologie. I. ročník čtyřletého gymnázia
PROCARYOTA - úvod Datum: 26. 8. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Studijní obor: Časová dotace: Vzdělávací cíl: Pomůcky: Inovace:
základní přehled organismů
základní přehled organismů Všechny tyto organismy mají podobný chemický základ Doména Archaea Tato doména nebyla rozpoznána až do konce 70. let minulého století Co se týče morfologie, neliší se archeální
Obecná biologie Slavomír Rakouský JU ZSF
1 Obecná biologie Slavomír Rakouský JU ZSF Tyto texty jsou určeny pouze pro studijní účely (semináře z kurzu Obecné biologie) studentů JU ZSF. Jejich další šíření, publikování atd. by bylo v rozporu s