Fyzikální metody nanášení tenkých vrstev
Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce) Je třeba vakuový systém Dostatečná střední volná dráha (10 5 torr 10 3 Pa) Čistota vzniklé vrstvy dopadajíčástice vypařované látky i částice zbytkových plynů (ultravysoké vakuum)
Daná látka se ve vakuovém systému převede dodáním dostatečného tepla do plynného stavu Přímočarý pohyb vypařených molekul Dopad na podložku, která má mnohem nižší teplotu než vypařovací zdroj kondenzace ve formě tenké vrstvy Pro vznik epitaxní vrstvy musíme zajistit, aby částice dopadající na povrch podložky mohly zaujmout správné pozice v krystalické mříži (ohřev podložky na určitou teplotu)
Možnosti ohřevu Odporový ohřev vypařované látky umístěné v lodičce z materiálu o vysokém bodu tání (W, Mo, Ta) Vypařování pomocí elektronového děla Vypařování pomocí laserového svazku
Odporový ohřev používanétvary lodiček Pokud materiál lodičky chemicky reaguje s nanášeným materiálem, používají se separační vložky (Al 2 O 3, BeO)
Vypařování pomocí elektronového děla
Napařování slitin a sloučenin Dochází k disociaci a různým složkám odpovídají různé vypařovací rychlosti i různé koeficienty kondenzace na podložce vznikající vrstva nemá stechiometrické složení odpovídající složení výchozího materiálu Řešení: metoda flash vypařovaná látka se ve formě jemných zrníček rovnoměrně sype na vypařovací element, který je na vysoké teplotě a z něhož se v těchto malých kvantech daná látka vypaříkvantitativně použití dvou nebo více vypařovacích zdrojů, jejichž teploty se volí tak, aby se dosáhlo požadované stechiometrie
Typická napařovací aparatura RV rotační vývěva DV difuzní vývěva V 1, V 2, V 3 ventily R recipient Q vypařovací zdroje T držáky s podložkami
Možná uspořádání držáků substrátů k dosažení homogenity vrstev
Katodové naprašování Proces, při kterém se materiál katody rozprašuje pod vlivem dopadajících iontů Nejjednodušší systém diodový R recipient P podložky K katoda
Recipient je vyčerpán a naplněn inertním plynem, obyčejně Ar, na tlak řádově desetin torru (10 Pa) Mezi elektrodu, na níž je umístěn rozprašovaný materiál a která je katodou, a anodu, na níž jsou umístěny podložky, se vkládá napětí řádově několik kv, tak aby vznikl doutnavý výboj a aby katodový prostor tohoto výboje byl přibližně roven vzdálenosti katoda anoda Ionty pracovního plynu dopadají na katodu se značnými energiemi a vyrážejí odtud částice, které jsou z větší části neutrální, z menší části ionizované Tyto částice se vzhledem k poměrně vysokému tlaku v systému nepohybují přímočaře k podložkám, ale vykonávají v důsledku srážek pohyb spíše difuzního charakteru. Část z nich dopadá na podložky a vytváří tam vrstvu rozprášeného materiálu.
Teplota v systému zůstává nízká (katoda, která se ohřívá ztrátovým výkonem výboje, se obyčejně chladí vodou) Energie částic dopadajících na podložky jsou však v tomto případě mnohem vyšší, než při napařování. napařování energie částic odpovídá energii tepelné (řádově desetiny ev) naprašování energie částic daná kinetickou energií částic vyrážených ionty z povrchu( řádově ev až desítky ev) větší vlastní energie dopadajících částic větší pohyblivost po povrchu větší pravděpodobnost, že zaujmou energeticky nejvýhodnější pozice (tj. pozice odpovídající rovnovážné mříži daného materiálu). vznikají epitaxní vrstvy i při nízkých teplotách podložky
Výhody Nanášení látek s vysokou teplotou tání Při naprašování slitin se nemění stechiometrie Rychlost naprašování se dobře reguluje pomocí proudu a napětí Dobrá adheze vrstev k substrátu Nevýhoda Obtížnější dosažení vysoké čistoty
Zlepšení čistoty naprašovaných vrstev Nízkotlaké naprašování Snížení tlaku znemožní zapálení doutnavého výboje je třeba dodatečný zdroj ionizace svazek elektronů, které způsobí nárazovou ionizaci zbytkových plynů vysokofrekvenční výboj Často se aplikuje magnetické pole vhodného tvaru, které jednak zlepšuje podmínky výboje, protože mění tvar drah nabitých částic, jednak fokusuje výboj do účinné oblasti a homogenizuje ho
Vložení nesymetrického střídavého napětí vzniklá vrstva je po určitou část periody katodou. V této fázi je vrstva sama rozprašována a vzhledem k tomu, že nečistoty na povrchu mívají mnohem menší vazebné energie než vlastní materiál, dochází k jejímu čistění
Vysokofrekvenční naprašování naprašování zejména dielektrických materiálů zabraňuje nabíjení nevodivého vzorku a umožňuje přípravu vrstev i takových materiálů jako je křemen, korund apod.
Tloušťka tenkých vrstev a její měření Jedna ze základních vlastností tenkých vrstev Měření Po skončení přípravy Průběžně (umožňuje měřit i rychlost růstu) Metody váhové elektrické optické dotykové speciální
Metody využívající stanovení hmotnosti Mikrováhy (Mayerova torzní mikrováha) přímé měření hmotnosti vrstev m d = S ρ d tloušťka vrstvy m zjištěná hmotnost vrstvy S plocha ρ hustota
Dynamické vážení kmitajícím křemenným výbrusem Kmitající křemenný krystal (změna frekvence krystalem řízeného oscilátoru v důsledku přírůstku hmotnosti krystalu) f = N d f vlastní frekvence kmitů krystalu N frekvenční konstanta d tloušťka vrstvy Tloušťka vrstvy musí být tak malá, aby neovlivnila elastické vlastnosti krystalu Vysoká citlivost až 10 12 g.cm 2
Elektrické metody Měření elektrického odporu a kapacity Obvykle můstkovými metodami Odporová metoda rychle rostoucí vrstvy a nízký tlak zbytkových plynů Kapacitní metoda sledování oxidových vrstev na kovových podložkách
Optické metody Vychází ze třech fyzikálních jevů, které nastávají při interakci světla s látkou Absorpce Interference Polarizace
1.Absorbční měření Absorpční zákon I = I ( ) 2 R e αd 0 1 I 0 intenzita dopadajícího světla I intenzita prošlého světla R koeficient odrazu světla na rozhraní vzduch vrstva α koeficient absorpce d tloušťka vrstvy je třeba ověřit platnost, resp. udělat kalibrační křivku Metoda umožňuje i průběžné měření tloušťky
2. Interferenční metody Využívají interference světla při dopadu na tenkou vrstvu
Pozorujeme v prošlém světle Maximum 2nd cos β = kλ 0 Minimum λ0 2nd cos β = k + ( 2 1) 2 nebo v odraženém světle Maximum λ0 2nd cos β = k + ( 2 1) 2 Minimum 2nd cos β = kλ 0
Při použití polychromatického bílého světla vrstva se jeví zabarvená podle toho, které vlnové délky byly zesíleny a které zeslabeny podle barvy přímo určujeme tloušťku vrstvy
3. Polarizační (elipsometrická) metoda Z zdroj záření F filtr P polarizátor K kompenzátor S vzorek A analyzátor D detektor záření
Lineárně polarizovaná vlna se po odrazu stává elipticky polarizovanou Poměr amplitud rovnoběžných a kolmých složek závisí na optických vlastnostech substrátu, na úhlu dopadu, na optických vlastnostech a tloušťce tenké vrstvy Kromě určení tloušťky umožňuje i určení optických vlastností vrstev Průhledné, extrémně tenké vrstvy Pracné nepoužívá se při průběžných měřeních
Dotyková metoda Tenká vrstva musí na podložce tvořit schod jeho výška se měří diamantovým hrotem posunujícím se přes tento schod
Speciální metody měření tloušťky Absorpce záření αči β z radioaktivních zdrojů Zpětný rozptyl záření β Měření intenzity Geigerovými Müllerovými čítači Rentgenová fluorescenční analýza Měříse intenzita fluorescenčního záření vybuzeného ve vrstvě budicím rtg zářením