DOUTNAVÝ VÝBOJ. Magnetronové naprašování
|
|
- Dagmar Vlčková
- před 6 lety
- Počet zobrazení:
Transkript
1 DOUTNAVÝ VÝBOJ Magnetronové naprašování
2 Efektivním způsobem jak získat částice vhodné k růstu povlaku je nahrazení teploty používané u odpařování ekvivalentem energie dodané dopadem těžkéčástice přenosem hybnosti při srážce. Iont urychlený elektrickým polem dopadající na povrch pevné látky může vyrazit z povrchu terče (targetu) částice jeho materiálu. Ty pak obdobně jako u vakuového napařování doletí k substrátu a tam kondenzují. Další vyraženéčástice mohou být sekundární elektrony (rychlé důležité pro udržení výboje) a i dopadající ionty se mohou odrazit. Takto popsaný proces probíhá při diodovém rozprašování a je málo účinný, pro zvýšení proudu bombardujících iontů je třeba zvýšit ionizaci a toho lze dosáhnou vložením magnetického pole, které zakřiví a tím prodlouží dráhy letu nabitých částic. Rozprašovací zařízení zvané magnetron se objevilo až kolem roku 1970 a nerovnovážný magnetron až 1984.
3 Obecně lze rozprašovat všechny materiály, které mají dostatečně nízkou tenzi par aby je bylo možné vložit do vakua. Nicméně některé slitinové materiály se rozprašují preferenčně - tedy nejsou pro rozprašování příliš vhodné. Běžně naprašované kovy (Cu, Ti, Al, W, Mo, Cr, Si atd.) SELFSPUTTERING sputtering yield 3,5 3 2,5 2 1,5 1 0,5 Cr Nb V Ti C ion energy [ev]
4 Co se děje na terči při DC rozprašování kovového (tj. elektricky vodivého) terče inertním plynem např. Cu a Ar? V doutnavém výboji jsou ionty inertního plynu urychlovány katodovým spádem na terč (U m + U p ). Na katodě jsou těmito dopady rozprašovány atomy terče nebo adsorbované atomy pracovního plynu. Tedy ve výboji máme pouze dva prvky a to z rozprášeného terče a výbojového plynu v různých stavu (ionty, neutrály, rychlé neutrály, exitovanéčástice) a elektrony. Um Up Ar + Ar + odražený e - Sekundární elektron M nebo M + rozprášené Ar nebo Ar + Ionty z plazmatu Us Uf 0
5 V závislosti na podmínkách na rostoucí vrstvě (dodatečný ohřev, elektrické předpětí) je možné řídit strukturu a stechiometrii rostoucí vrstvy. Typické pracovní podmínky v magnetronovém výboji jsou: Magnetické pole: 200 až 500G Pracovní tlak:0,1 až 10 Pa Katodový spád: 300 až 700V Tloušťka terče:3 až 20mm Rozprašovací výtěžek je úměrný výkonové hustotě na terči a je omezený možností chlazení terče aby nedocházelo k jeho odpařování, a roste s hmotností bombardujících iontů. Pro různé materiály terčů jsou výtěžky rozdílné viz grafy.
6 Rozprášenéčástice mají za výše uvedených podmínek mají při dopadu na substrát obvykle energii od 1 do 10 ev, což je podstatně více než je obvyklé např. při vakuovém napařování, kde jsou obvyklé energie odpařených částic přibližně kt (0.1 až 0.3 ev). Právě vysoká energie rozprášených částic je důvodem výrazně lepší adheze naprašovaných vrstev k substrátu. a možností ovlivňovat strukturu povlaků několika faktory: tlakem pracovního plynu, předpětím na substrátu apod.
7 Reaktivní naprašování Reaktivní naprašování můžeme popsat jako proces při kterém rozprašujeme (kovový) terč za přítomnosti chemicky aktivního plynu, který reaguje jak s rozprášeným materiálem, tak i s terčem samotným. Reaktivní magnetronové naprašování je velice populární technika při vytváření nových materiálů se specifickými vlastnostmi ze široké skupiny komponent a slitin jako jsou oxidy, nitridy, karbidy, fluoridy a arsenidy. Pokud dále budeme hovořit o oxidech, tak tím rozumíme všechny tyto skupiny produktů. V průmyslové praxy jsou nejběžněji reaktivně naprašované oxidy (ITO, A12O3, In2O3, SnO2, SiO2, Ta2O5), nitridy (TaN, TIN, A1N, Si3N4, CNX), karbidy (TiC, WC, SiC), sulfidy (CdS, CuS, ZnS) a oxidonitridy a oxidokarbidy Ti, Ta, Al, a Si.
8 Výhody reaktivního naprašování Možnosti vytváření povlaků sřízenou stechiometrií a složením s vysokou rychlostí růstu a to vše v průmyslovém měřítku. Terče ze základních prvků jsou obvykle čistší a levnější a tedy výsledné povlaky mohou být také vysoce čisté. Terče ze základních prvků se obvykle snadněji opracovávají a připevňují k nosné desce (je-li to vůbec potřeba) na rozdíl od keramických terčů. Základní prvky (často v praxi kovy) jsou často mnohem lepšími vodiči tepla, tedy chlazení terče je jednodušší a můžeme používat vysoký rozprašovací výkon na jednotku plochy. Vyhneme se složitějším RF zdrojů a nákladným RF přizpůsobením protože většina základních prvků používaných k rozprašování jsou elektricky vodivé. Kompozitní vrstvy můžeme deponovat i pod teplotou substrátů 300 o C.
9 Technologicky je ale reaktivní naprašování komplikované. Do procesu vstupuje mnoho nezávislých parametrů. Komplikací je, že reaktivní plyn nepůsobí pouze na rostoucí naprašovanou vrstvu, ale působí i na samotný rozprašovaný terč. Dochází k tzv. otravě terče. Tím dochází k ovlivnění samotného rozprašování přítomností reaktivního plynu a vzniku hysterezního jevu jako nežádoucích efektů. Jako příklad sledujme reaktivní naprašování SiO 2 naprašováním Si v atmosféře Ar + O 2.
10 Začíná se odprašovat křemík a při pomalém připouštění kyslíku tlak neroste, kyslík je spotřebováván rostoucí vrstvou SiO 2. V bodu A je všechen potřebný O 2 spotřebováván. Další nárůst parciálního tlaku O 2 vede k vytváření oxidové vrstvy na terči (A-B). Následkem je prudký pokles naprašovací rychlosti (B-C) a tlak kyslíku roste. Snížení průtoku O 2 (D- C)nemá okamžitý efekt musí se odprášit oxid z terče. Pak přejde proces opět do odprašování Si (D-A). Proces prochází hysterezní křivkou (ABCDA). To znamená, že není možné rozprašovat terč v intervalu parciálních tlaků p RG odpovídajících přechodu mezi body B-C hysterezní křivky a proto nazýváme tento interval zakázaným.
11 Hysterezní jev je nežádoucí, protože vede k nestabilitě procesu naprašování a proto se ho snažíme eliminovat. Podstatné je, že pro jedno složení výbojové směsi (tok reaktivního plynu) mohou být deponovány vrstvy s dvěmi různými fyzikálními vlastnostmi podle toho, je-li proces v kovovém či oxidovém (nitridovém apod.) módu. Hysterezní jev v přechodové oblasti lze omezit následujícími postupy: Omezení toku reaktivního plynu na terč Pulzní napouštění plynu Řízení čerpací rychlosti Optimalizace vzdálenosti terč-substrát Existence zakázaného intervalu parciálních tlaků reaktivního plynu znamená, že bez dalších opatření nelze realizovat naprašování v určitém intervalu stechiometrií.
12 Proto je nutné pracovat právě za depozičních podmínek těsně před vznikem hysterezní křivky v přechodové oblasti, tj. tok reaktivního plynu fr1, což je obtížné z hlediska udržení stability. Každá větší odchylka v toku nebo tlaku reaktivního plynu povede k přechodu do oxidačního režimu rozprašování a posléze při regulaci systému zpět do kovového modu procesu rozprašování. A tímto cyklem bude rostoucí vrstva znehodnocena. Je nutné zavést řízení procesu pomocí rychlé zpětné vazby vázané na sledování některého z parametrů reprezentujícího stav terče (resp. stupeň jeho otrávení). Takový parametrů je několik, evidentně je to parciální tlak reaktivního plynu a celkový tlak v systému, také ale katodové napětí, výbojový proud a depoziční rychlost. Můžeme využít i sledování některé vlastnosti deponované vrstvy nebo sledovat vybranou optickou emisníčáru citlivou na změnu výbojových podmínek odpovídajících změnám na terči.
13 Konstrukce magnetického obvodu magnetronu vytváří v oblasti několika cm nad povrchem terče pole dostatečně silné k vyvolání cykloidních drah elektronů. Výška oblasti plazmatu nad terčem je přibližně rovna Larmorovu poloměru. Maximální hodnota B je přibližně v polovině poloměru (kruhového) terče. Výsledkem je, že z terče se nejintenzivněji odprašuje tomu odpovídajícíčást povrchu erozní zóna. A tomu také odpovídá rozložení tloušťky naprášeného povlaku :
14 Eroded magnetron target.
15 Až doposud jsme popisovali proces depozice s vyváženým magnetronem (vlevo). Jeho magnetický obvod je navržen tak, že nedochází k přesycení jádra. Podstatné zlepšení přinesl vynález nevyváženého magnetronu (1984), u něhož je část magnetického pole uzavřena přes oblast plazmatu včetně substrátu. Tím je zesílen iontový tok na substrát a zvyšuje se účinek dopadu iontů na strukturu povlaků.
16 Magnetronové naprašování umožňuje vytváření povlaků s řízenou strukturou, reaktivní naprašování také s různými stechiometriemi, které v mnoha případech nelze jinými metodami vůbec vytvořit. Důvodem je to, že lze řídit energii iontů vytvářejících povlak a ten může růst za silně nerovnovážných podmínek. K dispozici máme tyto parametry : - tlak pracovního plynu určuje hustotu Ar iontů bombardujících povrch rostoucí vrstvy, - předpětí na substrátu rovněžřídí energii iontů, - teplota substrátu určuje mobilitu částic na povrchu
17 Jako příklad uvádíme změnu struktury povlaku z čistého titanu na ocelové podložce v závislosti na předpětí U S na substrátu. Při napětí - 50 V roste polykrystalický povlak s různými orientacemi zrn. Při V vymizí fáze s orientací (010), (002) i (011) a zvýší se podíl fáze (110). Povlak deponovaný při 1300 V obsahuje jen fázi (110). Čáry železa jsou důsledkem prosvítání signálu ze substrátu vzhledem k menší tloušťce povlaku.
18 Požadujeme-li naprášení povlaku s určitou strukturou a stechiometrií, musíme podle toho volit parametry depozičního procesu: tlak pracovního plynu p Ar, tlak reaktivního plynu p rg, napětí na magnetronu U m, předpětí na substrátu U b, teplotu substrátu T S. Za účelem zjednodušení této volby byly vytvořeny různé modely. Nejznámější je model Messiera a Movchana & Demchishina:
19 Teplota substrátu: rozhodující je poměr teploty substrátu T S a teploty tání materiálu povlaku T m. Zhruba lze rozlišit interval tohoto poměru 0 až 0,3 (nízká pohyblivost deponovaných částic), 0,3 až 0,7 (vysoká pohyblivost částic umožňuje přesun částic do míst s optimální vazební energií a vytvoření jemné struktury) a interval 0,7 až 1,0 v němž dochází k rekrystalizaci povlaku a zhrubnutí jeho struktury.
Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev
Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná
VíceFyzikální metody přípravy tenkých vrstev. Martin Kormunda
Fyzikální metody přípravy tenkých vrstev Co je to za techniky? Procesy vyváření tenkých vrstev fyzikálními metodami využívají procesy probíhající za nízkého tlaku k dosažení efektivního transportu částic
VíceREAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz
REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s
VíceDOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
VícePrincip naprašování. Rozdíly proti napařování: 1. metoda získávání par 2. nutnost použití pracovního plynu 3. ionizace par a prac. plynu.
Přednáška 6 Naprašování: princip metody, magnetrony, ss naprašování, pulzní naprašování, rf naprašování naprašovací rychlost, naprašování kovů, slitin a sloučenin. Princip naprašování Převedení pevné látky
VíceVakuové metody přípravy tenkých vrstev
Vakuové metody přípravy tenkých vrstev Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical Vapour Deposition (PE CVD Plasma Enhanced CVD nebo PA CVD Plasma Assisted CVD) PVD
VíceVybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008
Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD
VícePlazmové metody Materiály a technologie přípravy M. Čada
Plazmové metody Existuje mnoho druhů výbojů v plynech. Ionizovaný plyn = elektrony + ionty + neutrály Depozice tenkých vrstev za pomocí plazmatu je jednou z nejpoužívanějších metod. Pomocí plazmatu lze
VíceTECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III.
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ III. NANÁŠENÍ VRSTEV V mikroelektronice se nanáší tzv. tlusté a tenké vrstvy. a) Tlusté vrstvy: Používají se v hybridních integrovaných obvodech. Nanáší
VíceDOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
VíceIradiace tenké vrstvy ionty
Iradiace tenké vrstvy ionty Ve většině technologických aplikací dochází k depozici tenké vrstvy za nízké teploty > jsme v zóně I nebo T > vrstvá má sloupcovou strukturu, je porézní a hrubá. Ukazuje se,
VícePlazma v technologiích
Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,
VíceVýstupní práce Materiály a technologie přípravy M. Čada
Výstupní práce Makroskopická veličina charakterizující povrch z pohledu elektronických vlastností. Je to míra vazby elektronu k pevné látce a hraje důležitou roli při procesech transportu nabitých částic
VíceFYZIKA VE FIRMĚ HVM PLASMA
FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody
VícePřednáška 3. Napařování : princip, rovnovážný tlak par, rychlost vypařování.
Přednáška 3 Napařování : princip, rovnovážný tlak par, rychlost vypařování. Realizace vypařovadel, směrovost vypařování, vypařování sloučenin a slitin, Vypařování elektronovým svazkem a MBE Napařování
VíceVytržení jednotlivých atomů, molekul či jejich shluků bombardováním terče (targetu) ionty s vysokou energií (~kev)
Naprašování: Vytržení jednotlivých atomů, molekul či jejich shluků bombardováním terče (targetu) ionty s vysokou energií (~kev) Po nárazu iont předává hybnost částicím terče, dojde k vytržení Depozice
VíceFyzikální metody nanášení tenkých vrstev
Fyzikální metody nanášení tenkých vrstev Vakuové napařování Příprava tenkých vrstev kovů některých dielektrik polovodičů je možné vytvořit i epitaxní vrstvy (orientované vrstvy na krystalické podložce)
VíceNaprašování nanokompozitních vrstev Ti-Si-O-N a jejich vlastnosti
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra fyziky Naprašování nanokompozitních vrstev Ti-Si-O-N a jejich vlastnosti Bakalářská práce Plzeň 2012 Michal Zítek Prohlášení Prohlašuji,
VícePlazmové svařování a dělení materiálu. Jaromír Moravec
Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.
VíceAnomální doutnavý výboj
Anomální doutnavý výboj Výboje v plynech ve vakuu Základní procesy ve výboji Odprašování dopadající kladné ionty vyrážejí z katody částice, tím dochází k úbytku hmoty katody a zmenšování rozměrů. Odprašování
VícePřednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje
Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu
VíceZákladní typy článků:
Základní typy článků: Články z krystalického Si c on ta c t a ntire fle c tio n c o a tin g Tenkovrstvé články N -ty p e P -ty p e Materiály a technologie pro fotovoltaické články Nové materiály Gratzel,
VíceTenká vrstva - aplikace
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
VíceDepozice tenkých vrstev I.
Depozice tenkých vrstev I. Naprašování Mgr. Tereza Schmidtová 15. dubna 2010 Aplikace Klasifikace Obecný přehled aplikací použití pro optické vlastnosti - laserová optika, zrcadla, reflexní a anti-reflexní
VícePlazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
VíceLaboratorní návod pro práci s naprašovačkou Denton DESK V HP TSC
Laboratorní návod pro práci s naprašovačkou Denton DESK V HP TSC 2011 Ústav fyziky a měřicí techniky VŠCHT Praha 1 Technologie naprašování kovů K depozicím kovů bude v rámci této práce využito naprašování,
VíceChemické metody plynná fáze
Chemické metody plynná fáze Chemické reakce prekurzorů lze aktivovat i UV zářením PHCVD. Foton aktivuje molekuly nebo atomy, které pak vytvářejí volné radikály nesoucí hodně energie > ty pak rozbijí velké
VícePřehled metod depozice a povrchových
Kapitola 5 Přehled metod depozice a povrchových úprav Tabulka 5.1: První část přehledu technologií pro depozici tenkých vrstev. Klasifikované podle použitého procesu (napařování, MBE, máčení, CVD (chemical
VíceVliv energie částic na vlastnosti vrstev Me-B-C-(N) připravených reaktivní magnetronovou depozicí
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH VĚD KATEDRA FYZIKY Vliv energie částic na vlastnosti vrstev Me-B-C-(N) připravených reaktivní magnetronovou depozicí Plzeň 2014 Veronika Šímová Prohlášení
VíceIII/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor
VícePočítačový model plazmatu. Vojtěch Hrubý listopad 2007
Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří
VíceTenké vrstvy. metody přípravy. hodnocení vlastností
Tenké vrstvy metody přípravy hodnocení vlastností 1 / 39 Depozice tenkých vrstev Depozice vrstev se provádí jako finální operace na hotovém již tepelně zpracovaném substrátu. Pro dobré adhezní vlastnosti
VíceObloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141
Obloukové svařování wolframovou elektrodou v inertním plynu WIG (TIG) - 141 Při svařování metodou 141 hoří oblouk mezi netavící se elektrodou a základním matriálem. Ochranu elektrody i tavné lázně před
VíceZákladní experiment fyziky plazmatu
Základní experiment fyziky plazmatu D. Vašíček 1, R. Skoupý 2, J. Šupík 3, M. Kubič 4 1 Gymnázium Velké Meziříčí, david.vasicek@centrum.cz 2 Gymnázium Ostrava-Hrabůvka příspěvková organizace, jansupik@gmail.com
VíceTechnologie a vlastnosti tenkých vrstev, tenkovrstvé senzory
Vysoká škola chemicko-technologická v Praze Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory Technologie CVD, PVD, PECVD, MOVPE, MBE, coating technologie (spin-, spray-, dip-) Ondřej Ekrt Vymezení
VíceÚvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
VíceVzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042
Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV ELEKTROTECHNOLOGIE DEPARTMENT OF
VíceFyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony
VíceIonizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
VíceDiagram Fe N a nitridy
Nitridace Diagram Fe N a nitridy Nitrid Fe 4 N s KPC mřížkou také γ fáze. Tvrdost 450 až 500 HV. Přítomnost uhlíku v oceli jeho výskyt silně omezuje. Nitrid Fe 2-3 N s HTU mřížkou, také εε fáze. Je stabilní
VícePrášková metalurgie. 1 Postup výroby slinutých materiálů. 1.1 Výroba kovových prášků. 1.2 Lisování pórovitého výlisku
Pomocí práškové metalurgie se vyrábí slitiny z kovů, které jsou v tekutém stavu vzájemně nerozpustné a proto netvoří slitiny nebo slitiny z vysoce tavitelných kovů (např. wolframu). 1 Postup výroby slinutých
VícePlazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
VíceFakulta aplikovaných věd Katedra fyziky. Pulzní magnetronová depozice tenkovrstvých materiálů ze systému Zr-Si-B-C-N.
Fakulta aplikovaných věd Pulzní magnetronová depozice tenkovrstvých materiálů ze systému Zr-Si-B-C-N Vedoucí práce: Prof. RNDr. Jaroslav Vlček, CSc. Plzeň 2012 Autor práce: Poděkování Rád bych poděkoval
VíceINTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených
VíceMgr. Ladislav Blahuta
Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ
VíceIONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:
Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální
VíceElektronová mikroskopie SEM, TEM, AFM
Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první
VíceMonika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ
Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak
VíceReaktivní magnetronové naprašování vrstev Zn-Sn-O a charakterizace jejich vlastností
Katedra fyziky Reaktivní magnetronové naprašování vrstev Zn-Sn-O a charakterizace jejich vlastností Diplomová práce Vedoucí práce: prof. Ing. Jindřich Musil, DrSc. Autor práce: Bc. Zuzana Čiperová Prohlášení
VícePlazmatické metody pro úpravu povrchů
Plazmatické metody pro úpravu povrchů Aleš Kolouch Technická Univerzita v Liberci Studentská 2 461 17 Liberec 1 Obsah 1. Plazma 2. Plazmové stříkání 3. Plazmové leptání 4. PVD 5. PECVD 6. Druhy reaktorů
VíceVzájemné silové působení
magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,
VícePOPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08
ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 262470 (И) (Bl) (22) přihláženo 25 04 87 (21) PV 2926-87.V (SI) Int Cl* G 21 G 4/08 ÚFTAD PRO VYNÁLEZY A OBJEVY (40)
VíceNa Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.
Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než
VíceZáklady vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
VíceCo je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)
Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur) -přenesení dané struktury na povrch strukturovaného substrátu Princip - interakce
VíceMetody depozice povlaků - CVD
Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční
VíceProč elektronový mikroskop?
Elektronová mikroskopie Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop,, 1 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první komerční
VíceGALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.
GALAVANICKÝ ČLÁNEK V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek. Galvanický článek je zařízení, které využívá redoxní reakce jako zdroj energie. Je zdrojem
VíceANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ
Středoškolská technika 2019 Setkání a prezentace prací středoškolských studentů na ČVUT ANALÝZA POVLAKOVANÝCH POVRCHŮ ŘEZNÝCH NÁSTROJŮ Jakub Chlaň, Matouš Hyk, Lukáš Procházka Střední škola elektrotechniky
VícePřednáška 8. Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD
Přednáška 8 Chemické metody a fyzikálně-chemické metody : princip CVD, metody dekompozice, PE CVD CVD Chemical Vapor Deposition Je chemický proces používaný k vytváření tenkých vrstev. Substrát je vystaven
VíceStacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.
Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole
VíceTECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ II.
TECHNOLOGICKÉ PROCESY PŘI VÝROBĚ POLOVODIČOVÝCH PRVKŮ II. 1. OXIDACE KŘEMÍKU Oxid křemíku SiO2 se během technologického procesu užívá k vytváření: a) Maskovacích vrstev b) Izolačních vrstev (izolují prvky
VíceVEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH
VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to
VícePlazmová depozice tenkých vrstev oxidu zinečnatého
Plazmová depozice tenkých vrstev oxidu zinečnatého Bariérový pochodňový výboj za atmosférického tlaku Štěpán Kment Doc. Dr. Ing. Petr Klusoň Mgr. Zdeněk Hubička Ph.D. Obsah prezentace Úvod do problematiky
VíceNÍZKOTEPLOTNÍ PLAZMOVÁ DEPOZICE TENKÝCH VRSTEV
NÍZKOTEPLOTNÍ PLAZMOVÁ DEPOZICE TENKÝCH VRSTEV Zdeněk Hubička Fyzikální ústav AV ČR v.v.i. Praha 1 Úvod Dosud bylo vynaloženo mnoho úsilí na vývoj nízkoteplotních plazmových systémů vhodných pro nanášení
Vícegalvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu MBE Vakuová fyzika 2 1 / 39
Vytváření vrstev galvanicky chemicky plazmatem ve vakuu Vrstvy ve vakuu povlakování MBE měření tloušt ky vrstvy během depozice Vakuová fyzika 2 1 / 39 Velmi stručná historie (více na www.svc.org) 1857
VícePOPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N
ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07
VíceElektřina a magnetizmus magnetické pole
DUM Základy přírodních věd DUM III/2-T3-13 Téma: magnetické pole Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník VÝKLAD Elektřina a magnetizmus magnetické pole
VíceSTEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Samostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
VíceFotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
VíceVybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
VíceElektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů
Elektrický proud Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Vodivé kapaliny : Usměrněný pohyb iontů Ionizované plyny: Usměrněný pohyb iontů
VíceTechnologie CMOS. Je to velmi malý svět. Technologie CMOS Lokální oxidace. Vytváření izolačních příkopů. Vytváření izolačních příkopů
Je to velmi malý svět Technologie CMOS Více než 2 000 000 tranzistorů v 45nm technologii může být integrováno na plochu tečky za větou. From The Oregonian, April 07, 2008 Jiří Jakovenko Struktury integrovaných
VíceTenké vrstvy. historie předdepoziční přípravy stripping
Tenké vrstvy historie předdepoziční přípravy stripping 1 HISTORIE TENKÝCH VRSTEV Historie depozice vrstev obloukovým odpařováním z katody sahá až do devatenáctého století. Pozorování pulzního a později
VíceCharakteristika a mrtvá doba Geiger-Müllerova počítače
Charakteristika a mrtvá doba Geiger-Müllerova počítače Úkol : 1. Proměřte charakteristiku Geiger-Müllerova počítače. K jednotlivým naměřeným hodnotám určete střední kvadratickou chybu a vyznačte ji do
VícePřednáška 9. Vývěvy s vazbou molekul: kryosorpční, zeolitové, iontové a sublimační vývěvy. Martin Kormunda
Přednáška 9 Vývěvy s vazbou molekul: kryosorpční, zeolitové, iontové a sublimační vývěvy. Sorpční vývěvy využívají převážně jevu adsorpce molekul na povrchu tak jsou molekuly odstraňovány z čerpaného objemu
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV MIKROELEKTRONIKY DEPARTMENT OF
VíceSorpční vývěvy. 1. Vývěvy využívající fyzikální adsorpce (kryogenní vývěvy)
Sorpční vývěvy Využívají adsorpce, tedy vazby molekul na povrch pevných látek. Lze je rozdělit do dvou skupin:. vývěvy využívající fyzikální adsorpce. vývěvy využívající chemisorpce. Vývěvy využívající
VíceÚvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.
Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat
VíceLOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
VíceStruktura elektronového obalu
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy
Více5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
VíceTenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, )
Tenké vrstvy pro lékařství 1. Laserové vrstvy ( metody přípravy vrstev, laser, princip metody pulzní laserové depozice PLD, růst vrstev, ) 2. Vybrané vrstvy a aplikace - gradientní vrstvy, nanokrystalické
VíceSvafiování elektronov m paprskem
Svafiování elektronov m paprskem Svařování svazkem elektronů je proces tavného svařování, při kterém se kinetická energie rychle letících elektronů mění na tepelnou při dopadu na povrch svařovaného materiálu.
VíceMagnetické pole - stacionární
Magnetické pole - stacionární magnetické pole, jehož charakteristické veličiny se s časem nemění kolem vodiče s elektrickým polem je magnetické pole Magnetické indukční čáry Uzavřené orientované křivky,
VícePočet atomů a molekul v monomolekulární vrstvě
Počet atomů a molekul v monomolekulární vrstvě ϑ je stupeň pokrytí ϑ = N 1 N 1p N 1 = ϑn 1p ν 1 = 1 4 nv a ν 1ef = γν 1 = γ 1 4 nv a γ je koeficient ulpění () F6450 1 / 23 8kT v a = πm = 8kNa T π M 0 ν
VíceHmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
VícePlazmové depozice povlaků. Plazmový nástřik Plasma Spraying
Plazmové depozice povlaků Plazmový nástřik Plasma Spraying Plazmový nástřik patří do kategorie žárových nástřiků. Žárový nástřik je částicový proces vytváření povlaků o tloušťce obvykle větší než 50 µm,
VíceElektrostruskové svařování
Nekonvenční technologie svařování Elektrostruskové svařování doc. Ing. Ivo Hlavatý, Ph.D. ivo.hlavaty@vsb.cz http://fs1.vsb.cz/~hla80 1 Elektroda zasahuje do tavidla, které je v pevném skupenství nevodivé.
VíceOrbitaly ve víceelektronových atomech
Orbitaly ve víceelektronových atomech Elektrony jsou přitahovány k jádru ale také se navzájem odpuzují. Repulzní síly způsobené dalšími elektrony stíní přitažlivý účinek atomového jádra. Efektivní náboj
VíceDělení a svařování svazkem plazmatu
Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?
VíceTheory Česky (Czech Republic)
Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider
VíceNahlédnutí pod pokličku vývoje SHM: Magnetronové naprašování. Počítačová simulace procesu
Nahlédnutí pod pokličku vývoje SHM: Magnetronové naprašování Počítačová simulace procesu Magnetronové naprašování princip metody vývoj technologie Magnetronové naprašování princip metody Zdroj: Jan Valter,
VíceMetody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
VíceVÝROBKY PRÁŠKOVÉ METALURGIE
1 VÝROBKY PRÁŠKOVÉ METALURGIE Použití práškové metalurgie Prášková metalurgie umožňuje výrobu součástí z práškových směsí kovů navzájem neslévatelných (W-Cu, W-Ag), tj. v tekutém stavu nemísitelných nebo
VíceVývěvy s transportem molekul z čerpaného prostoru
Vývěvy s transportem molekul z čerpaného prostoru Paroproudové vývěvy Molekuly plynu získávají dodatečnou rychlost ve směru čerpání prostřednictvím proudu pracovní látky(voda, pára, plyn). Většinou je
VíceAnotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015
Anotace přednášek LŠVT 2015 Česká vakuová společnost Téma: Plazmové technologie a procesy Hotel Racek, Úštěk, 1 4. června 2015 1) Úvod do plasmochemie Lenka Zajíčková, Ústav fyzikální elektroniky, PřF
Více