Fluorescenční spektroskopie

Podobné dokumenty
Fluorescenční spektroskopie

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Fluorescence (luminiscence)

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

Fluorescenční spektroskopie

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

Měření koncentrace roztoku absorpčním spektrofotometrem

Základní parametry absorpčního spektra, vliv přístrojové funkce (spektrální šířky štěrbiny), vliv polohy kyvety a vlastní fluorescence vzorku

Měření šířky zakázaného pásu polovodičů

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

Úvod do spektrálních metod pro analýzu léčiv

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

Fluorescenční spektroskopie

Barevné principy absorpce a fluorescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

Návod k obsluze spektrofotometru UNICAM UV550

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

2. Zdroje a detektory světla

Derivační spektrofotometrie a rozklad absorpčního spektra

MĚŘENÍ ABSORPCE SVĚTLA SPEKOLEM

Vybrané spektroskopické metody

MĚŘENÍ PLANCKOVY KONSTANTY

2. Pomocí Hg výbojky okalibrujte stupnici monochromátoru SPM 2.

Barevné principy absorpce a fluorescence

13. Spektroskopie základní pojmy

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti nm

(Návod k praktiku) Produkty. I.typ II.typ. X 1 Σ + g nm nm. Kyslík

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Zdroje optického záření

4. Z modové struktury emisního spektra laseru určete délku aktivní oblasti rezonátoru. Diskutujte,

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Spektrometrické metody. Luminiscenční spektroskopie

Fyzikální praktikum FJFI ČVUT v Praze

Moderní nástroje pro zobrazování biologicky významných molekul pro zajištění zdraví. René Kizek

4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie

HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth edition, Blackie Academic & Professional 1996 Colin F. Poole and Salwa K.

2 Nd:YAG laser buzený laserovou diodou

Úloha 3: Mřížkový spektrometr

Spektrální charakteristiky optických komponentů

Úloha 15: Studium polovodičového GaAs/GaAlAs laseru

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

Metody charakterizace nanomaterálů I

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Přístrojové vybavení pro detekci absorpce a fluorescence

Absorpční fotometrie

Viková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika

INSTRUMENTÁLNÍ METODY

Úloha č. 1: CD spektroskopie

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK

Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.

Adsorpce barviva na aktivním uhlí

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Určení koncentrace proteinu fluorescenční metodou v mikrotitračních destičkách

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

Stručný úvod do spektroskopie

INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV

Příklady biochemických metod turbidimetrie, nefelometrie. Miroslav Průcha

FOTOAKUSTIKA. Vítězslav Otruba

Fotoelektrické snímače

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Měření optických vlastností materiálů

Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie

6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika

ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE

Měření optických vlastností materiálů

Optimalizace podmínek měření a práce s AAS

Spektrální charakteristiky fotodetektorů

MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU

METODY - spektrometrické

TECHNICKÁ UNIVERZITA V LIBERCI

Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie

CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24

Emise vyvolaná působením fotonů nebo částic

Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I

7 Fluorescence chlorofylu in vivo

Práce se spektrometrem SpectroVis Plus Vernier

MĚŘENÍ SPEKTER ZÁŘIČŮ γ

Název: Pozorování a měření emisních spekter různých zdrojů

Základy spektroskopických metod

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

4 Přenos energie ve FS

Měření vlnové délky spektrálních čar rtuťové výbojky pomocí optické mřížky

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka

fenanthrolinem Příprava

Spektrální charakteristiky

CHARAKTERIZACE MATERIÁLU II

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektrální analyzátor Ocean optics

Transkript:

Fluorescenční spektroskopie Zadání úlohy: 1) Seznamte se s blokovým schématem, principem činnosti spektrofluorimetru F4500. Uveďte spektrofluorimetr do chodu a seznamte se s jeho ovládáním. 2) Změřte 3-dimenzionální spektrum (excitačně-emisní) anorganických luminoforů ZnS(Cu) a Y2O2S(Eu). Najděte excitační vlnovou délku s maximální intenzitou luminiscence. Změřte emisní spektra luminoforů při této excitační vlnové délce. 3) Připravte extrakt pigmentů zeleného listu v 80 % acetonu tak, aby maximum absorbance v absorpčním spektru (400-750 nm) bylo pod hodnotou 0,1. Změřte fluorescenční emisní spektrum tohoto extraktu (pro emise 600-800 nm) při budících vlnových délkách 436 nm (absorpční maximum chlorofylu a) a 465 nm (absorpční maximum chlorofylu b v Soretově oblasti). 4) Z tabulkových hodnot kvantových výtěžků fluorescence chlorofylů, z jejich absorpčních spekter a normalizovaných fluorescenčních emisních spekter určete poměr koncentrací chlorofylu a a b v pigmentovém extraktu pro excitační vlnové délky 436 nm (λ 1 ) a 465 nm (λ 2 ) Pro vyhodnocení je vhodné volit λ 1 = 670 nm a λ 2 = 653 nm (emisní maxima chlorofylu a a b v acetonovém extraktu). Kvantový výtěžek fluorescence chlorofylu a (chlorofylu b) v acetonu je roven 0,3 (0,09). 5) Stanovte poměr koncentrací chlorofylů také spektrofotometricky (použijte soubor pigmenty.xls) a naměřené výsledky porovnejte. Seznam pomůcek: Materiál: anorganické luminofory Y 2 O 2 S(Eu), ZnS(Cu) zelené listy Přístroje: spektrofluorimetr Hitachi F4500 spektrofotometr Unicam UV 550 Jiné: 80% aceton, hmoždíř, tluček, CaCO 3, kyvety, soubor pigmenty.xls Teorie: Blokové schéma spektrofluorimetru: Měření budeme provádět na spektrofluorimetru F4500 (Hitachi). Přístroj pracuje na modulačním principu, vhodném pro zvýšení citlivosti detekce. Je plně ovládaný počítačem přes převodníkovou kartu GPIB. Světelný svazek pocházející z xenonové výbojky vchází do mřížkového excitačního monochromátoru, který vybírá vhodnou vlnovou délku k excitaci fluorescence (obr.1). Na polopropustném segmentu je výstupní svazek rozdělen na měřící a srovnávací. Měřící svazek je modulován průchodem přes čopr, poté dopadá na vzorek, kde budí emisi fluorescenčního záření. Emisní monochromátor skenuje fluorescenční emisní spektrum pro danou excitační vlnovou délku. Detektorem intenzity fluorescenčního signálu po průchodu emisním monochromátorem je fotonásobič. Signál z fotonásobiče je zesílen a digitalizován. Naměřená data jsou uložena do paměti počítače. Srovnávací svazek excitačního světla dopadá na samostatný srovnávací detektor. Podílem signálu z fotonásobiče a signálu ze srovnávacího 1

detektoru je automaticky prováděna korekce na spektrální charakteristiku zdroje excitačního svazku. Xe výbojka Polopropustný Čopr Vzorek segment Zdroj pro lampu Excitační monochomátor Emisní monochomátor Srovnávací detektor Fotonásobič A/D převodník Počítač Obr. 1. Blokové schéma spekrofluorimetru F4500 Korekce fluorescenčních spekter: Obecně je fluorescenční spektrum zatíženo řadou zkreslujících efektů. K základním zkreslujícím efektům patří přístrojové efekty a spektrálně optické efekty ve vzorku. Přístrojové efekty: Spektrální charakteristika budícího světelného zdroje Spektrální propustnost všech prvků excitační a detekční soustavy Spektrální citlivost fotokatody fotonásobiče Závislost spektrální a geometrické šířky štěrbiny monochromátoru (souvisí s disperzí) Přístrojová funkce monochromátoru Stupeň polarizace detekované fluorescence a jiné Praktická korekce přístrojových efektů: Ke korekčním kalibračním měřením se používá standardní emisní lampa (obvykle kalibrovaná žárovka), detektor o známé křivce spektrální citlivosti (např. vakuový optický termočlánek) nebo luminiscenční standard. Moderní spektrofluorimetry dovolují přístrojové zkreslující efekty eliminovat automaticky nebo pomocí programových procedur zabudovaných přímo do ovládacího menu řídícího systému. U spektrofluorimetru F4500 je korekce na spektrální charakteristiku excitačního svazku zajištěna zařazením přídavného srovnávacího detektoru (obr. 1). Spektrální závislost propustnosti celé excitační soustavy lze eliminovat proměřením excitačního spektra známého standardu (rhodamin B). Korekční hodnoty se ukládají do paměti řídícího počítače. Zkorigované excitační soustavy může být použito ke korekci detekční soustavy spektrofluorimetru (emisní monochromátor a detektor). K tomuto účelu se používá měření 2

intenzity světla rozptýleného na difúzním segmentu při synchronním měřícím módu (to je s paralelní změnou vlnové délky excitačního a emisního monochromátoru). Spektrálně optické efekty ve vzorku: Reabsorpce fluorescence Sekundární fluorescence Efekt vnitřního filtru Spektrální závislost odrazivosti a rozptylu světla Nehomogenní absorpce Při měření fluorescenčních spekter silně zředěných roztoků lze spektrálně optické efekty ve vzorku považovat za zanedbatelné. Ohyb na mřížce excitačního monochromátoru: Spektrofluorimetr Hitachi F4500 používá pro excitační i emisní monochromátor optickou mřížku a ne optický hranol. Na optické mřížce dochází k ohybu světla, jehož výsledkem je ohybové spektrum s ohybovými maximy a minimy. Světlo vycházející z mřížky však také vzájemně interferuje a tato interference je charakterizována příslušným interferenčním spektrem. Optické mřížky jsou konstruovány tak, aby se nechtěné ohybové a interferenční jevy maximálně vzájemně vyrušily. Nicméně i tak, na výstupu excitačního monochromátoru lze detekovat ne jenom světlo o požadované vlnové délce, ale i světlo s celočíselné násobky požadované vlnové délky. Jinými slovy, daný vzorek je ozařován ne jenom světlem o požadované vlnové délce, ale i světlem o vlnové délce celočíselných násobků požadované vlnové délky. Je proto třeba vhodně volit excitační vlnovou délku a detekovaný interval emisních vlnových délek (při měření emisního spektra), aby násobek excitační vlnové délky nezasahoval do detekovaného intervalu emisních vlnových délek. Pokud tento požadavek nelze realizovat, musíme se být vědomi, že součásti měřeného signálu je i artefakt, který nemá se spektrálními vlastnostmi vzorku nic společného. Tento artefakt je vidět při měření 3- dimenzionálních spekter anorganických luminoforů v této úloze. Výše popsaná vlastnost optických mřížek se nevyskytuje u optických hranolů, kde se výběr požadované vlnové délky světla děje na základě lomu světla. Optické hranoly však mají malou světelnost (hodně světla se ztratí při průchodu hranolem) a mají nelineární závislost geometrické šířky štěrbiny na optické šířce štěrbiny. Optické mřížky, oproti optickým hranolům, nepohlcují tolik světla a závislost geometrické na optické šířce štěrbiny je lineární. Z těchto důvodu, jsou monochromátory založené na optické mřížce více časté. Luminiscence krystalů: Krystalické luminiscenční materiály se nazývají luminofory. Většina luminoforů patří buď k polovodičům se širokým zakázaným pásem nebo k izolátorům. Obě tyto skupiny látek jsou charakterizovány zaplněným valenčním pásem (VLP) a prázdným vodivostním pásem (VP), šířka zakázaného pásu (ZP) mezi nimi bývá kolem 3 ev nebo větší. Luminiscenční vlastnosti takových látek jsou závislé na existenci různých poruch jejich krystalové struktury, především na přítomnosti cizích atomů. Pokud tyto příměsi přímo ovlivňují emisní spektrum luminoforu, nazýváme je aktivátory. Jiné příměsi, které neovlivňují luminiscenční spektrum, ale mají vliv např. na doznívání (vytvářením tzv. elektronových pastí) nebo na zachování elektrické neutrality mřížky apod., se nazývají koaktivátory. Přítomnost aktivátorů a koaktivátorů se projeví v pásovém modelu luminoforu existencí diskrétních hladin energie v ZP. Luminiscence pak vzniká přechodem elektronu z VP do VLP (hranová emise, pásové spektrum), případně emise excitonová (čárové spektrum, pozorovatelné za nízkých teplot) nebo přechodem elektronu z VP na aktivátorovou hladinu 3

(luminiscenční centrum), případně přechodem elektronu z aktivátorové hladiny do VLP. Protože tyto případy luminiscence jsou spojeny s rekombinací elektronu a díry, nazývá se tato luminiscence rekombinační a je pro ni typické pásové emisní spektrum. Buzení luminiscence v těchto případech nastává po absorpci vhodné energie přechodem elektronu z VLP do VP. K luminoforům tohoto typu patří především sulfidy (např. ZnS nebo CdS), aktivované Cu, Ag nebo Au. Jejich emise nastává v závislosti na druhu a koncentraci aktivátoru v modré až zelené části spektra. Vzniká-li luminiscence v důsledku přechodu elektronu mezi vzbuzeným a základním stavem příměsi, které jsou většinou lokalizovány v ZP luminoforu, jedná se o nerekombinační luminiscenci. Příkladem takového materiálu je Y2 O 2 S-Eu 3+. Takový luminofor lze excitovat přechodem elektronu z VLP do VP, ale i přímým buzením aktivátoru, které je ovšem podstatně méně pravděpodobné. Emisní spektrum takových luminoforů je čárové, excitační spektrum by vedle pásu v oblasti absorpční hrany mělo vykazovat i slabší čáry odpovídající přímé excitaci příměsi.3d spekter VP VP absorpce emise Cu absorpce Eu3+ VLP VLP Obr. 2. Pásové schéma ZnS-Cu Obr. 3. Pásové spektrum Y 2 O 2 S-Eu 3+ ( značí absorpci, fluorescenční emisi, => nezářivý přenos energie) Použití fluorescence pro analytické účely: Uvažujme nejjednodušší případ - směs dvou látek A a B o velmi nízké koncentraci c A a c B, o molárních absorpčních koeficientech ε A (λ) a ε B (λ). Nechť látka A má kvantový výtěžek fluorescence Φ A a látka B - Φ B. Ve zředěných roztocích pro intenzitu absorbovaného záření látkou A platí A Iabs = I0( λ).( 1 exp( εa ( λ). ca. t)) I0 ( λ).ln 10. εa ( λ ). ca. t kde t je tloušťka vrstvy roztoku. Jsou-li F A (λ) a F B (λ) fluorescenční emisní spektra těchto látek, pak pro kvantové výtěžky platí Φ A, B F A, B ( λ ) dλ 0 I ( λ). ε ( λ). c. t 0 A, B to je kvantové výtěžky jsou úměrné ploše pod emisní křivkou. Jak lze snadno ukázat platí v případě uvažované směsi látek pro dvě zvolené emisní vlnové délky λ i a danou excitační vlnovou délku λ i F( λ j) = I ( i). K A. fa ( j). A ( i). ca B. fb( 0 λ Φ λ ε λ + Φ λ j). εb( λi). Volíme-li pro danou budící vlnovou délku λ i dvě vhodné emisní vlnové délky λ 1 a λ 2, dostaneme soustavu dvou lineárních rovnic pro dvě neznámé c A a c B F( λ1) = I0( λi). K. ΦA. fa ( λ1). εa ( λ i). ca + I0( λ i). K. Φ B. fb( λ1). εb( λi). F( λ2) = I0( λi). K. ΦA. fa ( λ2). εa ( λi). ca + I0( λi). K. Φ B. fb( λ2). εb( λi). Řešení soustavy nalezneme podle pravidel lineární algebry, to je 4

A ca = det c B = det B det det F( λ1) fb( λ1) ΦBεB( λi) c A f A det F( λ2) B( λ2) = = det B fa ( λ1) F( λ1) ΦAεA ( λi) fa ( λ2) F( λ2) Uvedený rozbor ukazuje, že pomocí měření fluorescence můžeme zjistit poměr koncentrací c A /c B známe-li kvantové výtěžky látek A a B, Φ A, Φ B, absorpční spektra těchto látek ε A(λ) a ε B (λ) a individuální fluorescenční spektra těchto látek f A (λ) a f B (λ) normalizovaných na jednotku plochy, to je f ( λ ) dλ = fb ( λ ) dλ = 1. A 0 0 Pro absolutní měření koncentrací c A a c B bychom potřebovali znát veličiny K a I 0(λ). Veličina K zahrnuje geometrické a optické faktory měřící aparatury. Tu lze principiálně zjistit např. pomocí luminiscenčního standardu. Dodatek - zapnutí a vypnutí spektrofluorimetru F4500: Zapnutí přístroje: 1) Zapněte spínač "POWER" na přístroji do polohy ON. Tímto mimo jiné automaticky spustíte ventilátor (mělo by jít slyšet jeho hučení), který chladí světelný zdroj - xenonovou výbojku. 2) Krátce stiskněte tlačítko "Xe LAMP START" (startování xenonové výbojky) na přístroji a jakmile se na čelním panelu rozsvítí žlutá kontrolka, tlačítko uvolněte (neuvolňujte dokud se kontrolka nerozsvítí, může to trvat sekundu i déle). Tlačítka se dále již nedotýkejte, mohlo by dojít ke zničení výbojky. 3) Zapněte spínač "MAIN" na přístroji (blikne zelená kontrolka nad spínačem), čímž se aktivují všechny elektronické prvky přístroje. 4) Zapněte počítač. Po naběhnutí Windows se automaticky spustí inicializace spektrofluorimetru (rozsvítí se zelená kontrolka Run na přístroji) a následně i ovládací programu spektrofluorimetru. 5) Klikněte na ikonu Metod vpravo nahoře a nastavte parametry měření. 6) Měření spustíte kliknutím na ikonu Measure. 7) Po měření je možné data uložit kliknutím na ikonu Report, před tím zkontrolujte nastavení exportu (například i ve formátu.xls) kliknutím na ikonu Properties. Vypnutí přístroje: Pozor nedotýkejte se tlačítka "Xe LAMP START", mohly by dojít ke zničení xenonové výbojky. 1) Po ukončení práce opusťte ovládací program přístroje, zavřete všechny ostatní programy a vypněte počítač. 2) Vypněte spínač "MAIN" na přístroji (zhasne zelena kontrolka) 3) Vypněte spínač "POWER" na přístroji do polohy OFF (zhasne žlutá kontrolka nad "Xe LAMP START") 4) Po několika sekundách opět zapněte spínač "POWER" na přístroji do polohy ON opět se zapne větrák v přístroji, který chladí xenonovou výbojku bez ochlazení výbojky muže dojít k jejímu poškození 5) Větrák nechte běžet alespoň 10 minut a až pak přístroj definitivně vypněte (spínač "POWER" na přístroji do polohy OFF) a zakryjte 5

Přílohy: Obr. 4: Fluorescenční emisní spektra čistého chlorofylu a (λ ex = 436 nm) a chlorofylu b (λ ex = 465 nm) v acetonu korigovaná a normalizovaná na jednotku plochy. Spektra byla měřena při pokojové teplotě na chlorofylových extraktech o koncentraci 5.10-6 mol. l -1. Obr. 5: Spektrální závislost molárních absorpčních koeficientů chlorofylu a a chlorofylu b v acetonu 6