Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5



Podobné dokumenty
Ing. Michal Lattner Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ II.

Mechanické zkoušky ZKOUŠKY TVRDOSTI MATERIÁLU

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

OVMT Zkoušky tvrdosti

Podle hodnoty tvrdosti lze odhadnout také další vlastnosti materiálu. V hojné míře se pro tyto účely používají empirické koeficienty.

Zkoušení mechanických vlastností zkoušky tvrdosti. Metody charakterizace nanomateriálů 1

Požadavky na technické materiály

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

NAUKA O MATERIÁLU I. Zkoušky tvrdosti, zkoušky technologické a defektoskopické. Přednáška č. 05: Zkoušení materiálových vlastností II

A U T O R : I N G. J A N N O Ž I Č K A S O Š A S O U Č E S K Á L Í P A V Y _ 3 2 _ I N O V A C E _ _ Z K O U Š K Y M A T E R I Á L U _ P W P

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů

Ověření vlastností školního tvrdoměru Meopta Poldi-Vickers. Petr Vojvodík

Měření tvrdosti modifikovaných ocelí. Jan Komárek

Měření tvrdosti ocelí se středním obsahem uhlíku. Radek Šimara

Měření tvrdosti kovů. Luboš Ošťádal

Měření tvrdosti odlitků dynamickou metodou. Zkoušky tvrdosti. Vlivy na měření

MĚŘENÍ TVRDOSTI MATERÍÁLŮ A ZPRACOVÁNÍ NAMĚŘENÝCH VÝSLEDKŮ

Česká metrologická společnost, z.s.

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Tendence laboratorního a provozního měření tvrdosti ocelí v oblasti odborného znalectví

Zkoušky vlastností technických materiálů

MĚŘENÍ TVRDOSTI MATERIÁLŮ A VYHODNOCOVÁNÍ VÝSLEDKŮ V PODMÍNKÁCH FIRMY WERA WERK S.R.O. BYSTŘICE N. P.

Laboratoř mechanického zkoušení kovových materiálů

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Měření tvrdosti konstrukčních ocelí. Roman Hanák

Měření tvrdosti ocelí s nízkým obsahem uhlíku. Jindřich Škývara

Česká metrologická společnost

APLIKACE MIKROTVRDOSTI K HODNOCENÍ KVALITY PLASTOVÝCH DÍLŮ. vliv expozice v tenzoaktivním prostředí motorových paliv a geometrie dílu

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

Metody hodnocení mikrotvrdosti tepelně zpracovaných ocelí. Bc. Martin Vašinka

MĚŘENÍ TVRDOSTI KOVŮ. Kristina Eliášová

Měření tvrdosti kovů. Martin Vašinka

SOUČASNÉ TRENDY V METODÁCH MĚŘENÍ TVRDOSTI


Měření tvrdosti kovů. Radek Šašinka

Fyzikální těmito vlastnosti se zabývá fyzika a patří sem např. teplota tání, délková a objemová roztažnost, tepelná vodivost atd.

Zkoušky tvrdosti. Zkoušky vnikací

MORFOLOGIE VÝSTŘIKU - VLIV TECHNOLOGICKÝCH PODMÍNEK. studium heterogenní morfologické struktury výstřiků

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

I.) Nedestruktivní zkoušení materiálu = návštěva laboratoří nedestruktivního zkoušení a seznámení se se základními principy jednotlivých metodik.

1.1.1 ZKOUŠKA TAHEM Provádí se na zkušební tyči (průřez kruhový nebo obdélníkový), upnuté do čelistí

Podniková norma Desky z PP-B osmiúhelníky

Česká metrologická společnost

ZKUŠEBNICTVÍ A TECHNOLOGIE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. Metrologie, dílenské měření délkových rozměrů, struktura povrchu, tvrdost součástí

VLIV ZPŮSOBŮ OHŘEVU NA TEPLOTNÍ DEGRADACI TENKÝCH OTĚRUVZDORNÝCH PVD VRSTEV ZJIŠŤOVANÝCH POMOCÍ VYBRANÝCH METOD

Testovací přístroje a seismometry HR-100/200/300/400 PRC Přístroje na zkoušky tvrdosti podle Rockwella

ZKOUŠKA PEVNOSTI V TAHU

Měření tvrdosti polymerů. Michal Martinek

Vysoká škola báňská - Technická univerzita Ostrava. Fakulta metalurgie a materiálového inženýrství. Katedra materiálového inženýrství DIPLOMOVÁ PRÁCE

Mikrotvrdost modifikovaného PA66 pomocí beta záření. Tomáš Žalek

MĚŘENÍ TVRDOSTI KOVOVÝCH MATERIÁLŮ

Měření tvrdosti polymerů. Radek Matula

Zkoušky vlastností technických materiálů

Integrita povrchu a její význam v praktickém využití

HODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE

Návod k řešení úloh pro SPŠ

6 ZKOUŠENÍ STAVEBNÍ OCELI

Česká metrologická společnost

Stavební hmoty. Přednáška 3

Tvrdoměry Rockwell/ Super Rockwell/ Brinell. Tvrdoměry Micro-Vickers. Tvrdoměry Vickers. Tvrdoměry Vickers + Brinell. Tvrdoměry Shore přenosné

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

STUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

LABORATORNÍ ZKOUŠKY VZORKY LABORATORNÍ ZKOUŠKY. Postup laboratorních zkoušek

7. Diagnostika zděných konstrukcí

3.2 Mechanické vlastnosti

Výpočet skořepiny tlakové nádoby.

Nomenklatura Název Okamžitý stav

Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech:

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

Měřidla ze skladu určená k prodeji Nomenklatura Název Okamžitý stav Posuvné měřítko se stavítkem Posuvné měřítko se

Hodnocení vlastností folií z polyethylenu (PE)

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:

STANOVENÍ MIKROTVRDOSTI TENKÝCH OCHRANNÝCH POVRCHOVÝCH VRSTEV. Laboratorní cvičení předmět: Experimentální metody v tváření

Vliv beta záření na mikro-mechanické vlastnosti polymerů. Bc. Martin Pouzar

Okruh otázek s odpověďmi pro vstupní test.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

ZKOUŠENÍ MATERIÁLŮ I.

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

OVMT Mechanické zkoušky

HODNOCENÍ MECHANICKÝCH VLASTNOSTÍ TENKOVRSTVÝCH SYSTÉMŮ Z GRAFU ZÁVISLOSTI MÍRY INFORMACE NA ZATÍŽENÍ

4. ZKOUŠENÍ CIHELNÉHO ZDIVA V KONSTRUKCI

Hodnocení mechanických vlastností vybraných druhů ocelí. Jakub Kabeláč

VLASTNOSTI TENKÝCH VRSTEV PŘI VYŠŠÍCH TEPLOTÁCH. Antonín Kříž Petr Beneš Martina Sosnová Jiří Hájek

Slovo úvodem. Centrum pro povrchové úpravy a letošní ProFinTech. strana 1

Výzkumný a zkušební ústav Plzeň s.r.o. Zkušební laboratoř Tylova 1581/46, Plzeň

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

Metody diagnostiky v laboratoři fyzikální vlastnosti. Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D.

Přístroje pro stanovení odrazové pružnosti pryže

STANOVENÍ MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ SVAROVÉHO SPOJE NA ZÁKLADĚ MĚŘENÍ TVRDOSTI

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

STOLNÍ A PŘENOSNÉ TVRDOMĚRY

EVALUATION OF FAILURES AND MODIFICATION OF SYSTEMS THIN FILM BASIC MATERIAL TO THE DEPTH OF MATERIAL SYSTEMS

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

Materiálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, Chomutov

EXPERIMENTÁLNÍ METODY. Ing. Jiří Litoš, Ph.D.

Transkript:

Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru Dynamicko-plastické : Poldi kladívko, Baumannovo kladívko Staticko plastické : Brinell, Vickers, Rockwell Dynamicko-elastické : Shoreho skleroskop, Duroskop 2 a). Popište zkoušku tvrdosti podle Brinella, uveďte hlavní přednosti. Podstata zkoušky: vtlačování cizího tělíska ve tvaru kuličky do povrchu zkoušeného materiálu, silou F. Podmínky : Tvrdost se určuje jako poměr zkušebního zatížení a povrchu vtisku (má tedy povahu napětí). Zkouška se provádí na povrchu, který je hladký a rovný, bez okujené vrstvy, cizích tělísek a bez mazadel. Tloušťka zkušeného tělesa musí být alespoň osminásobkem hloubky vtisku. Na protilehlé straně zkušebního tělesa nesmí být po zkoušce patrné viditelné stopy deformace. Vnikací tělísko je buď ocelová kalená kulička D [mm] pro materiály s tvrdostí menší než 350, nebo kulička z tvrdokovu D [mm] pro materiály s tvrdostí menší než 650. Aby byla zkouška co nejreprezentativnější, vybírá se průměr zkušební kuličky pokud možno co největší; pokud to tloušťka zkušebního tělesa dovolí, používá se přednostně kulička o D = 10 [mm]. V normě jsou stanoveny vzdálenosti středů jednotlivých vtisků od sebe i od okraje zkušebního tělesa. Zatížení F [N]: zkušební přístroj musí být schopen vyvolat a stanovit zkušební zatížení v rozsahu od 9,807 [N] do 29,42 [kn] podle ČSN EN 10003-2, zkušební zatížení musí být vybráno tak, aby průměr vtisku d byl v rozmezí hodnot od 0,24.D do 0,6.D 0,102. F poměr 2 musí být vybrán s ohledem na zkoušený materiál a jeho tvrdost podle tabulky D uvedené v normě (např. pro ocel má být 0,102. 2 D F = 30). Zkušební zatížení směřuje kolmo k povrchu zkušebního tělesa bez rázů a chvění; doba od počátku zatěžování do plné hodnoty zatížení musí být v rozmezí 2 až 8 [s], doba působení plného zatížení musí být od l0 do 180 [s].

Určení tvrdosti materiálu: změří se dva kolmé průměry vtisku d 1 [mm], d 2 [mm], z nich se vypočítá aritmetický průměr d [mm], tvrdost se počítá ze známých hodnot D, F, d podle vztahu 1 9,80665 nebo je určena pomocí hodnot D, F, d z tabulek, jež jsou součástí normy. 2 F, π D 2 2 ( D D d ) Výsledná informace o hodnotě tvrdosti je zapisována následujícím způsobem: Hodnota tvrdosti HBX (X = S v případě použití ocelové kalené kuličky, X = W pro kuličku z tvrdokovu), číslice charakterizující podmínky zkoušky v pořadí průměr kuličky D [mm] / velikost zkušebního zatížení F [0,102N] / doba působení zkušebního zatížení [s], je-li jiné než 10 až 15 [s], např.: - 350 HBS 5/ 750 tvrdost podle Brinella stanovená ocelovou kuličkou o 5 [mm], při zkušebním zatížení 7 355 [N], působícím po dobu od 10 do 15 [s], - 600 HBW 1/30/20 tvrdost podle Brinella stanovená kuličkou z tvrdokovu o 1 [mm], při zkušebním zatíženi 294,2 [N] působícím po dobu 20 [s]. Přednosti : Jedná se o principielně jednoduchou zkoušku, je také nejstarší zkouškou. 2 b). Změřte tvrdost vzorku ze slitiny mědi metodou Brinella a stanovte číslo tvrdosti. U Brinellovy zkoušky uveďte použité vnikající tělísko ( materiál, tvar, rozměry ), zátěžnou sílu, zátěžný stupeň a dobu zatěžování. Průměr prvního vtisku : d1=1,8mm Průměr druhého vtisku : d2=2mm Tvrdost dle Brinella je 84,9 HB 5/250/10 3 a). Popište zkoušku tvrdosti podle Vickerse, uveďte hlavní přednosti. Existuji tři typy zkoušek podle Vickerse, které se liší rozsahem použitého zkušebního zatížení: - ČSN EN ISO 6507-1 Část 1: HV 5 až HV 100 - ČSN EN ISO 6507-2 Část 2: HV 0,2 až HV méně než 5 - ČSN EN ISO 6507-3 Část 3: Zkouška mikrotvrdosti podle Vickerse (HV méně než 0,2). Podstata zkoušky: vtlačováni diamantového vnikacího tělesa ve tvaru pravidelného čtyřbokého jehlanu s vrcholovým úhlem mezi protilehlými stěnami = 136 do povrchu zkušebního tělesa vlivem zkušebního zatíižení F působícího kolmo ke zkoušenému povrchu po stanovenou dobu a změření úhlopříček vtisku, který zůstane na povrchu zkoušeného materiálu po odlehčení zkušebního zatížení. Tvrdost se určuje jako poměr zkušebního zatížení a povrchu vtisku (má tedy povahu napětí). Zkouška se provádí na povrchu, který je hladký a rovný, bez okujené vrstvy, cizích tělisek a bez mazadel. Tloušťka zkoušeného tělesa nebo vrstvy musí být alespoň 1,5.d (d je aritmetický průměr dvou úhlopříček vtisku). Na protilehlé straně zkušebního tělesa nesmí být po zkoušce patrny viditelné stopy deformace. Vnikací tělísko je diamant ve tvaru pravidelného čtyřbokého jehlanu s vrcholovým úhlem = 136 podle ISO 146. V normě jsou stanoveny vzdálenosti středů jednotlivých vtisků od sebe i od okraje zkušebního tělesa.

Zatížení F [N]: - Zkušební zatížení se liší podle použité metody: pro HV 5 až HV 100 je F = 49,03 až 980,7 [N], pro HV 0,2 až HV méně než 5 je F = 1,9614 až méně než 49,03 [N] a pro tvrdost menší než HV 0,2 je F < 1,961[N]. - Zkušební přístroj musí být schopen vyvolat a stanovit zkušební zatížení v potřebném rozsahu - Zkušební zatížení směřuje kolmo k povrchu zkušebního tělesa bez rázů a chvěni; doba od počátku zatěžování do plné hodnoty zatížení nesmí překročit 10 [s], doba působení plného zatížení musí být od 10 do 15 [s]. Určení tvrdosti materiálu: - změří se délka úhlopříček vtisku d 1 [mm], d 2 [mm], z nich se vypočítá aritmetický průměr d [mm], - tvrdost se počítá ze známých hodnot F, d podle vztahu HV 136 2 F sin 1 2 F = 0, 1891 2 2 9,80665 d d =, nebo je určena pomocí hodnot F, d z tabulek, jež jsou součástí normy. Výsledná informace o hodnotě tvrdosti je zapisována následujícím způsobem: hodnota tvrdosti HV číslice charakterizující podmínky zkoušky velikost zkušebního zatížení F [N] / doba působení zkušebního zatížení [ s ], je-li jiné než 10 až 15 [s], například: - 640 HV 1 tvrdost podle Vickerse stanovená při zkušebním zatížení 9,807 [N] působícím po dobu od 10 do 15 [s], - 640 HV 1/20 tvrdost podle Vickerse stanovená při zkušebním zatížení 9,807 [N] působícím po dobu 20 [s]. Přednosti : Zkouškou podle Vickerse, jsme schopni stanovit tvrdost materiálů, které bychom zkouškou podle Brinella neurčili. Je použitelná pro tvrdší materiály. 3 b). Změřte tvrdost bíle označeného vzorku metodou Vickerse a z naměřených hodnot stanovte číslo tvrdosti. Uveďte použité vnikající tělísko (materiál, tvar, rozměry ), zátěžnou sílu a dobu zatěžování. 1. Délka úhlopříček vtisku : 0,507mm 2. Délka úhlopříček vtisku : 0,501mm Průměr výsledků : 0,504mm Tvrdost dle Vickerse je 219HV 30

4 a). Popište zkoušku tvrdosti podle Rockwella, uveďte hlavní přednosti. Podstata zkoušky: vtlačování vnikacího tělesa ve tvaru diamantového kužele nebo ocelové kuličky do povrchu zkušebního tělesa postupně nadvakrát za určitých podmínek. Měří se trvalá hloubka vtisku h pod předběžným zatížením. Zkouška se provádí na povrchu, který je hladký a rovný, bez okujené vrstvy, cizích tělísek a bez mazadel. Tloušťka zkoušeného tělesa nebo vrstvy musí být alespoň desetkrát větší než trvalá hloubka vtisku kuželového vnikacího tělesa a alespoň pětkrát větší než trvalá hloubka vtisku ocelové kuličky. Na protilehlé straně zkušebního tělesa nesmí být po zkoušce patrny viditelné stopy deformace. Při zkouškách na válcových a kulových površích musí být použity opravné součinitele uvedené v normě. Vnikací tělísko je - bud' ocelová kulička o průměru D = 1,5875 nebo 3,175 [mm] v souladu s EN 10109-2, - nebo diamantový kužel s vrcholovým úhlem 120 a poloměrem zaoblení na vrcholu 0,200 [mm] dle EN 10109-2. - v normě jsou stanoveny vzdálenosti středů jednotlivých vtisků od sebe i od okraje zkušebního tělesa. Zatížení F [N]: - Zkušební přístroj musí být schopen vyvolat zkušební zatížení dle tab. 1 a v souladu s EN 10109-2, - Vnikací těleso se přivede do styku se zkoušeným povrchem a zatíží se předběžným zatížením F 0, - Měřicí zařízení se nastaví do počáteční polohy a zatížení se zvýší o F 1 z F 0 do F v čase větším než 2 [s] a menším než 8 [s]. - Přídavné zatížení F 1 se odlehčí tak, aby zůstalo předběžné zatížení F 0, přičemž trvání celkového zatížení F musí být 4 ± 2 [s]. - Po celou dobu zkoušky musí být zkušební stroj chráněn před rázy a chvěním. Určení tvrdosti materiálu: Hodnota tvrdosti se stanovuje z trvalé hloubky vtisku h ; odečítá se obvykle přímo na měřícím zařízení. Výsledná informace o hodnotě tvrdosti je zapisována následujícím způsobem: - tvrdost podle Rockwella pro stupnice A H a K se označuje: hodnota tvrdosti, za ní následuje HR a značka stupnice, např.: 59 HRC tvrdost podle Rockwella 59 měřená na stupnici C. - tvrdost podle povrchového Rockwella pro stupnice N a T se označuje: hodnota tvrdosti, za ní následuje HR, číslo reprezentující celkové zkušební zatížení a značka stupnice, např. 70 HR 30 N tvrdost podle povrchového Rockwella 70 měřená na stupnici 30 N s celkovým zkušebním zatížením 294,2 [N]. Přednosti : Odčítání tvrdosti přímo na stroji, zátěžná síla je již na stroji nastavena.

4 b). Změřte tvrdost vzorků s různým obsahem uhlíku metodou Rockwella, stupnice B / HRB /. Uveďte použité vnikající tělísko ( materiál, tvar, rozměry ), zátěžnou sílu a dobu zatěžování. Dodané vzorky: Červené označení 0,25%C Žluté označení 0,35%C Černé označení 0,45%C Červené označení Žluté označení Černé označení 78HRB 86HRB 96HRB 4 c). Vyjádřete graficky závislost tvrdosti na obsahu uhlíku. H R B 10 0 8 0 6 0 4 0 2 0 0 0,1 0,2 0,3 0,4 0,5 % C 5. Vysvětlete princip měření tvrdosti kladívkem Poldi. Změřte tvrdost připraveného vzorku metodou Poldi kladívka. Je to mobilní tvrdoměrné zařízení používané často ve výrobních procesech. Součásti kladívka je etalonová tyč vyrobená z materiálu o stanovené tvrdosti. Podstata zkoušky: úderem dílenského kladiva do Poldi kladívka dojde k současnému vtlačení vnikacího tělesa ve tvaru kuličky do povrchu zkušebního tělesa a do etalonu. Měří se průměry vtisku d mat a d etal, které zůstanou na povrchu zkušebního materiálu a etalonu. Tvrdost se určuje jako poměr zkušebního zatížení a povrchu vtisku (má tedy povahu napětí). Zkouška se provádí na povrchu, který je hladký a rovný, bez okujené vrstvy, cizích tělísek a bez mazadel. Na protilehlé straně zkušebního tělesa nesmí být po zkoušce patrny viditelné stopy deformace. Vnikací tělísko: je ocelová kalená kulička D = 10 [mm]. Zatížení F [N]: - Je vyvoláno ručně úderem dílenského kladiva na razník Poldi kladívka. - Vliv různé síly nárazu (a tím i různě velkého vtisku) je eliminován přítomností etalonu.

Určení tvrdosti materiálu: - změří se dva kolmé průměry vtisku ve zkoušeném materiálu d mat1 [mm], d mat2 [mm], z nich se vypočítá aritmetický průměr d mat [mm], - změří se dva kolmé průměry vtisku v etalonu d etal1 [mm], d etal2 [mm], z nich se vypočítá aritmetický průměr d etal [mm], - tvrdost materiálu je určena pomocí hodnot d mat a d etal z tabulek. Výsledná informace o hodnotě tvrdosti je zapisována následujícím způsobem: hodnota tvrdosti HB POLDI 6. Vysvětlete princip zkoušky mikrotvrdosti podle Vickerse. Jedná se měření tvrdosti jednotlivých fází, tenkých vrstev, ap. Podstata zkoušky: Princip zkoušky, použité vnikací tělísko, postup určení a výsledný zápis hodnoty tvrdosti jsou shodné s měřením tvrdosti podle Vickerse. Zařízení pro měření mikrotvrdosti je většinou spojeno s metalografickým mikroskopem. Zkouška se provádí na metalografických výbrusech připravených mechanickým, elektrolytickým či chemickým leštěním. Vyhodnocení se provádí při zvětšeních přibližně 200 až 400x. Naměřené hodnoty tvrdosti vykazují velký rozptyl a nejsou porovnatelné s hodnotami makrotvrdosti. Zatížení F [N]: používá se zatížení od 9,8.10-3 N do 49.10-1 N, podle hrubosti a předpokládané tvrdosti struktury. 7. Dle dodaných podkladů ( porovnávací tabulky tvrdosti ) stanovte přepočet tvrdosti 30 HRC na HV a HB. Uveďte, kdy lze použít porovnávacích tabulek tvrdosti. 30 HRC = 298HV = 285HB Lze je použít pro orientační hodnotu 8. Odhadněte mez pevnosti uhlíkové oceli, na které byla naměřena tvrdost 158HB. (3,4 3,6)*158HB = Ra 553 [Mpa]