4. ZKOUŠENÍ CIHELNÉHO ZDIVA V KONSTRUKCI
|
|
- Bohumil Navrátil
- před 9 lety
- Počet zobrazení:
Transkript
1 4. ZKOUŠENÍ CIHELNÉHO ZDIVA V KONSTRUKCI 4.1. Stanovení pevnosti v tlaku zdicích prvků Pevnost v tlaku zjištěná nedestruktivně Schmidt LB Tvrdoměrné metody zkoušení cihel jsou modifikací metod používaných pro beton. Z odrazových tvrdoměrů byl pro účely zkoušení cihelných zdicích prvků vyvinut typ Schmidt LB (obr. 4.1). Zásadním rozdílem proti tvrdoměru Schmidt L na beton je pouze výrazně menší poloměr kulové plochy razníku razník je zakulacený. Kalibrační vztahy v normách jsou uvedeny pouze pro beton. Pro cihly bylo vytvořeno několik různých kalibračních vztahů pro nové i staré cihly na pracovištích, která se touto problematikou zabývala, např. VAAZ Brno, FAST VUT v Brně, PÚDIS Praha. Ve cvičení bude použit obecný kalibrační vztah pro staré cihly vytvořený na Ústavu stavebního zkušebnictví viz. obr Obr. 4.1 Tvrdoměr Schmidt LB pro zkoušení cihelného zdiva Metodika provádění a vyhodnocování zkoušek pevnosti v tlaku cihel tvrdoměrem Schmidt LB je prakticky shodná s metodikou pro Schmidt L na beton (s výjimkou kalibračního vztahu, který je pochopitelně odlišný). Na obroušeném povrchu cihly se provede minimálně 5, optimálně však 10 měření odrazu. Hodnota jednotlivých platných měření se nesmí lišit od aritmetického průměru všech měření na témže zkušebním místě více než o ± 20 %. Hodnoty odrazů, které vybočují z těchto mezních odchylek, se vyloučí a ze zbývajících platných měření (musí jich zůstat alespoň 5) se vypočte nový aritmetický průměr odrazů R. Tato hodnota se použije pro výpočet pevnosti v tlaku f b,e dle kalibračního vztahu. Poznámka: Protože vztah mezi pevností v tlaku a tvrdostí cihel se může lišit podle lokality a rovněž podle vlastností povrchu zdiva, je nutné obecný kalibrační vztah mezi tvrdostí a pevností v tlaku vždy upřesnit (součinitel upřesnění α). K upřesnění vztahu nám slouží celé zdicí prvky vyjmuté z konstrukce, které před rozdrcením upneme v lisu a zkoušíme pomocí tvrdoměru. 19
2 35 30 f b,e = 0,956 R - 5,444 Kalibrační vztah pro Schmidt LB Pevnost v tlaku fb,e [MPa] Odraz R Obr. 4.2 Kalibrační vztah pro stanovení pevnosti v tlaku starých plných pálených cihel z hodnoty odrazu měřené tvrdoměrem Schmidt LB Pevnost v tlaku na vzorcích odebraných z konstrukce Pevnost v tlaku zdících prvků se určuje podle ČSN EN [4.1] jako průměrná pevnost v tlaku stanoveného počtu vzorků celých zdicích prvků. Minimální počet vzorků je šest, ale tento počet je v případě diagnostiky zděných konstrukcí třeba upravit dle velikosti konstrukce. Norma připouští rovněž zkoušet reprezentativní části zdicích prvků, zejména v případě větších prvků. Tato reprezentativní tělesa, např. krychle se mají vyřezat z různých míst prvku (myšleno na okraji, uvnitř). V tom případě se počet zkušebních těles logicky zvyšuje. Pevností v tlaku zdících prvků, uvažovanou při návrhu, je normalizovaná pevnost v tlaku f b. Normalizovaná pevnost v tlaku se získá přepočtem pevnosti zdicích prvků na pevnost ve stavu přirozené vlhkosti (6±2) %, pokud nebyla v tomto stavu již stanovena, a vynásobí se součinitelem vlivu výšky a šířky zdících prvků δ (tab. 4.1). Normalizované zkušební těleso má přitom rozměr mm. Poznámka: Přepočet pomocí součinitele δ se použije i v případě stanovení pevnosti v tlaku zdicích prvků nedestruktivním způsobem tvrdoměrem Schmidt LB, neboť kalibrační vztahy byly vytvořeny pro celé plné pálené cihly. 20
3 Tab. 4.1 Součinitel vlivu výšky a šířky zdicích prvků δ Výška zdícího Nejmenší vodorovný rozměr zdícího prvku (mm) prvku (mm) nebo větší nebo větší 0,85 0,95 1,15 1,30 1,45 1,55 0,85 1,00 1,20 1,35 1,45 0,70 0,90 1,10 1,25 1,35 0,70 0,90 1,10 1,25 1,35-0,65 0,95 1,10 1,15 Poznámka: Lineární interpolace je povolena Stanovení pevnosti v tlaku malty Metod pro stanovení či spíše odhad pevnosti v tlaku malty ve spárách zdiva je několik, v praxi je však nejrozšířenější metoda upravené vrtačky Druhy upravených vrtaček pro zjištění pevnosti malty ve spárách Pro zkoušení malty ve spárách zdiva byla v pražském Technickém a zkušebním ústavu stavebním (dále TZÚS) upravena ruční vrtačka, známá odborné veřejnosti jako Kučerova vrtačka. Metoda je založena na vzájemném statisticky významném vztahu mezi pevností malty ve spárách a odporem malty proti vnikání vrtáku při příklepovém vrtání touto vrtačkou s danými parametry. Proti běžné ruční vrtačce je zde navíc příklep, počítadlo otáček a tlačná pružina v opěrce o předepsané tuhosti, pomocí níž je zajištěn předepsaný přítlak. Mírou odporu malty je pak hloubka vrtu vrtákem do zdiva o průměru 8 mm viz. obr Metoda dosáhla značné obliby, přestože vlastní zkoušení bylo vzhledem k charakteru přístroje poměrně fyzicky namáhavé. Z toho důvodu TZÚS Praha vyvinul nový typ elektrické vrtačky, nesoucí označení PZZ 01 též viz. obr Obr. 4.3 Vrtačky pro zkoušky pevnosti malty ve spárách - ruční a elektrická. 21
4 Jako pohonná jednotka byla u inovovaného typu zkušebního přístroje PZZ 01 použita pro snadnější obsluhu AKU vrtačka. Na stavitelném kroužku funkčního nástavce v přední části vrtačky se přednastaví stupeň předpokládané pevnosti zkoušeného materiálu podle zkušebního předpisu pro příslušnou zkoušku. Tím je automaticky nastaven příslušný počet otáček zkušebního vrtáku, po jejichž provedení se vrtačka automaticky vypne. Definovaný přítlak na zkušební vrták je dán tlakem pružiny, jehož rozmezí je mechanicky aretováno. Dále byl změněn rovněž průměr vrtáku na 6 mm, což výrazně zlepšilo použitelnost metody z hlediska tloušťky spár Zkušební postup pro upravené vrtačky Zkušební postup je prakticky shodný pro oba typy upravených vrtaček, liší se pouze kalibrační vztahy. Zkušební místo se volí na tlačených prvcích (sevření spáry). Zkušební místo se upraví takto: Pokud je zdivo omítnuto, odstraní se omítka na ploše cca 200 x 150 mm tak, že ložné spáry jsou přibližně v podélné ose upravené plochy. Při zkoušce malty se malta v jedné ložné spáře vyseká, resp. vyškrábe vhodným nástrojem přibližně 20 mm za líc zdiva z důvodu odstranění omítky a zkarbonatované vrstvy viz. obr Obr. 4.4 Umístění vrtu ve spáře zdiva řez zdivem Při zkoušce malty se v upravené ložné spáře provedou tři vrty ve vzájemných vzdálenostech cca 40 mm a minimálně 50 mm od případné hrany zdiva. Při použití obecných kalibračních vztahů se vrty provedou při nastavení stupnice na 25 otáček (ruční vrtačka), respektive na stupeň 1 (vrtačka PZZ 01). V případě použití specifických kalibračních vztahů se nastavení provede na stupeň, který byl použit při kalibraci pro daný materiál. Hloubka vrtu se změří hloubkoměrem. Jako platné měření se uvažuje hloubka vrtu d, která se neliší od průměrné hloubky d m ze všech tří vrtů o více než 30 %. 22
5 Pokud kritériu nevyhovují dva z vrtů, zkušební místo se neuvažuje. Pokud kritériu nevyhovuje jeden vrt, vyloučí se tento vrt z měření a nahradí se novým vrtem. V případě, že ani nahrazení jednoho vývrtu není splněno kritérium, zkušební místo se neuvažuje Vyhodnocení zkoušky Kalibrační vztahy jsou vytvořeny výrobcem obou vrtaček pro různé vstupní podmínky, mezi nimiž je zejména jiný typ přítlaku, jiný průměr vrtáku, jiný způsob vyvození otáček. Nejsou tedy vzájemně porovnatelné, protože respektují různost obou vrtaček. Kalibrační vztahy pro ruční vrtačku i elektrickou vrtačku PZZ01 jsou uvedeny na obr Kalibrační vztahy pro pevnost v tlaku malty 5,0 Elektrická vrtačka Ruční vrtačka Pevnost v tlaku fm,e [MPa] 4,0 3,0 2,0 1,0 Ruční vrtačka f m,e = 184,43x -1,5548 PZZ01 f m,e = 288,21x -1,3873 0, hloubka vrtu d [mm] Obr. 4.5 Kalibrační vztahy pro pevnost v tlaku malty ve spáře zdiva z hloubky vrtu zjištěného ruční a elektrickou vrtačkou Ze tří platných měření na jednom zkušebním místě se vypočte aritmetický průměr hloubky vrtů d m se zaokrouhlením na 1 mm. Informativní hodnota pevnosti malty f m,e se stanoví v závislosti na zjištěné průměrné hloubce vrtu d m z obecného kalibračního vztahu pro daný typ přístroje. Pevnost získaná zkouškou jednoho zkušebního místa se považuje za ekvivalentní hodnotě pevnosti malty získané zkoušením jednoho zkušebního tělesa. Z výsledků všech zkoušek na konstrukci se určí výběrový průměr pevnosti malty f m. 23
6 4.3. Hodnocení existujících zděných konstrukcí Charakteristická pevnost zdiva v tlaku Charakteristická pevnost zdiva v tlaku f k se dle ČSN ISO určí z pevností zdicích prvků a malty podle vztahu f = Kf f (rov.4.1) k α b β m Kde f k je charakteristická pevnost zdiva v tlaku v N/mm 2 pro zdivo K s vyplněnými ložnými spárami; je konstanta závislá na druhu zdiva a skupině zdicích prvků; Pro nejčastější uspořádání zdicích prvků z plných cihel klasického formátu průměrné pevnosti a obyčejné malty a při střídání běhounů a vazáků ve vazbě zdiva se uvažuje konstanta K = 0,55. f b je normalizovaná průměrná pevnost v tlaku zdicích prvků v N/mm 2 ; f m je průměrná pevnost malty v tlaku v N/mm 2 ; α β je exponent závislý na tloušťce ložných spár a druhu malty, α = 0,7 pro nevyztužené zdivo s obyčejnou nebo lehkou maltou; je exponent závislý na druhu malty, β = 0,3 pro obyčejnou maltu Návrhová pevnost zdiva v tlaku Charakteristická pevnost zdiva byla vypočtena podle vlastností zdicích prvků a vlastností použité malty. Při hodnocení zdiva je však zapotřebí zohlednit další vlastnosti mající vliv na únosnost celé konstrukce. Mezi tyto vlastnosti patří zejména: Pravidelnost vazby zdiva; Vyplnění spár maltou; Zvýšená vlhkost zdiva; Svislé a šikmé trhliny ve zdivu; Návrhová pevnost zdiva v tlaku f d se podle ČSN ISO vypočítá jako podíl charakteristické pevnosti v tlaku f k a dílčího součinitele zdiva γ m, který se určí podle vztahu: γ = γ γ γ γ (rov. 4.2) m m1 m2 m3 m4 kde γ m1 je základní hodnota dílčího součinitele spolehlivosti, která se pro zdivo z plných cihel uložených na obyčejnou maltu rovná 2,0; γ m2 γ m3 γ m4 je součinitel vlivu pravidelnosti vazby a vyplnění spár maltou: 0,85 γ m2 1,2; dolní mez intervalu platí pro zcela dokonalou vazbu a bezvadné vyplnění spár; je součinitel vlivu zvýšené vlhkosti, pro vlhkost zdiva v intervalu od 4% do 20% se určí interpolací mezi hodnotami 1,0 γ m3 1,25; je součinitel zahrnující vliv svislých a šikmých trhlin ve zdivu v intervalu 1,0 γ m4 1,4, (dolní mez platí pro zdivo bez trhlin); 24
7. Diagnostika zděných konstrukcí
Technická měření a diagnostika staveb 7. Diagnostika zděných konstrukcí Libor Žídek Jan Hurta 1 Vytvořeno za podpory projektu FRVŠ č. 2529/2009 Problematika starších zděných konstrukcí Materiálová charakteristika
činžovní domy 19. a 20. století doc. Ing. Karel Lorenz, CSc.
činžovní doy 19. a. století doc. Ing. Karel Lorenz, CSc. pálené cihly klasického forátu vápenná popř. vápenoceentová alta Ústav nosných konstrukcí 1 Ústav nosných konstrukcí 3 zdivo jako nejrozšířenější
Výška [mm]
ZDĚNÉ TLAČENÉ PRVKY navrhování podle ČSN P ENV 199611 (EC6) Zdící prvky Pevnostní značka = průměrná pevnost v tlaku v MPa (např. P10, P15) Normalizovaná pevnost b = pevnostní značka x δ (součinitel δ závisí
ČVUT v Praze Kloknerův ústav
ČVUT v Praze Kloknerův ústav Posuzování pevnosti betonu v tlaku v konstrukcích JIŘÍ KOLÍSKO jiri.kolisko@klok.cvut.cz 1 2 3 4 5 6 7 V případě problému se objeví jednoduché dotazy jako Jsou vlastnosti betonu
1. VÝVRTY: ODBĚR, VYŠETŘENÍ A ZKOUŠENÍ V TLAKU
1. VÝVRTY: ODBĚR, VYŠETŘENÍ A ZKOUŠENÍ V TLAKU Problematika vývrtů ze ztvrdlého betonu je řešena normou zejména v ČSN EN 12504-1 [1]. Vývrty získané jádrovým vrtákem jsou pečlivě vyšetřeny, upraveny buď
1 Použité značky a symboly
1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req
ČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 19.100; 91.080.40 Květen 2012 ČSN 73 2011 Nedestruktivní zkoušení betonových konstrukcí Non-destructive testing of concrete structures Nahrazení předchozích norem Touto normou
Tunelářské odpoledne 3/2011,
Tunelářské odpoledne 3/2011, 14.9.2011 Nové trendy ve zkoušení betonu v konstrukci Ing. Petr Cikrle, Ph.D. 2011 PROGRAM PŘEDNÁŠKY: A. ÚVOD B. STAV NORMALIZACE V OBLASTI DIAGNOSTIKY ŽB KONSTRUKCÍ C. PŘEHLED
Přednášející: Ing. Zuzana HEJLOVÁ
NAVRHOVÁNÍ ZDĚNÝCH KONSTRUKCÍ ČSN EN 1996 Přednášející: Ing. Zuzana HEJLOVÁ 28.3.2012 1 ing. Zuzana Hejlová NORMY V ČR Soustava národních norem (ČR - ČSNI) Původní soustava ČSN - ČSN 73 1201 (pro Slovensko
STAVEBNÍ PRŮZKUM A DIAGNOSTIKA OBJEKTU SURVEY AND DIAGNOSTICS OF BUILDING CONSTRUCTION
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍHO ZKUŠEBNICTVÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF BUILDING TESTING STAVEBNÍ PRŮZKUM A DIAGNOSTIKA OBJEKTU
BL06 - ZDĚNÉ KONSTRUKCE
BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,
Ing. Petr Cikrle, Ph.D., Ing. Dalibor Kocáb ČSN EN 206 a další nové standardy pro výrobu a zkoušení betonu
Zkušební postupy pro zkoušení betonu v konstrukcích Ing. Petr Cikrle, Ph.D., Ing. Dalibor Kocáb Beton v minulosti Do 1. sv. války nízká kvalita pojiva, technologie První republika úsporné a štíhlé kce,
BL006 - ZDĚNÉ KONSTRUKCE
BL006 - ZDĚNÉ KONSTRUKCE Vyučující konzultace, zápočty, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, Registrace studentů a průběh konzultací: Studenti si
Abstrakt. Abstract. Klíčová slova. Keywords
Abstrakt Diplomová práce shrnuje metody používané pro zkoušení a vyhodnocení vlastností svislých zděných konstrukcí a dále ukazuje postup hodnocení podle normy ČSN ISO 13 822. V druhé části práce je na
Identifikace zkušebního postupu/metody
List 1 z 6 Zkoušky: Laboratoři je umožněn flexibilní rozsah akreditace upřesněný v dodatku. Aktuální seznam činností prováděných v rámci vlastního flexibilního rozsahu je k dispozici v laboratoři u vedoucího
Z P R Á V A č. 3/15. Diagnostický průzkum opěr most přes Chodovský potok, Ulice Kpt. Jaroše KARLOVY VARY
DIAGNOSTIKA STAVEBNÍCH KONSTRUKCÍ s.r.o. Svobody 814, Liberec 15, 460 15, tel.482750583, fax.482750584, mobil 603711985, 724034307 e-mail : diagnostika.lb@volny.cz, http:// www.diagnostikaliberec.cz Z
sláma, zvířecí chlupy před 9000 lety
- historický úvod - druhy stěn - pracovní diagram zdiva -přetvárný součinitel - charakteristické pevnosti -dílčí součinitele -obdélníkový průřez v patě sloupu - obdélníkový průřez v středu sloupu Cihly
Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5
Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru
STAVEBNĚ TECHNICKÝ PRŮZKUM OBJEKTU THE ARCHITECTURAL AND ENGINEERING RESEARCH OF THE BUILDING CONSTRUCTION
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍHO ZKUŠEBNICTVÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF BUILDING TESTING STAVEBNĚ TECHNICKÝ PRŮZKUM OBJEKTU
Materiály charakteristiky potř ebné pro navrhování
2 Materiály charakteristiky potřebné pro navrhování 2.1 Úvod Zdivo je vzhledem k velkému množství druhů a tvarů zdicích prvků (cihel, tvárnic) velmi různorodý stavební materiál s rozdílnými užitnými vlastnostmi,
13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky
13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost
Hodnocení vlastností folií z polyethylenu (PE)
Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení vlastností folií z polyethylenu (PE) Zadání: Na základě výsledků tahové zkoušky podle norem ČSN EN ISO 527-1 a ČSN EN ISO 527-3 analyzujte
Nedestruktivní metody 210DPSM
Nedestruktivní metody 210DPSM Jan Zatloukal Diagnostické nedestruktivní metody proces stanovení určitých charakteristik materiálu či prvku bez jeho destrukce pomocí metod založených na principu interakce
133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Navrhování zděných konstrukcí na účinky
Inovace metod hodnocení existujících stavebních konstrukcí CZ /4.2.01/0005. na řešení projektu se podílí
Hodnocení vlastností materiálů na základě předchozích zkušeností Ing. Petr Tětek SATRA, spol. s r.o. Stanovení vlastností materiálů při hodnocení existujících konstrukcí 3. dubna 2007, Kongresový sál Masarykovy
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn
RBZS Úloha 4 Postup Zjednodušená metoda posouzení suterénních zděných stěn Zdivo zadní stěny suterénu je namáháno bočním zatížením od zeminy (lichoběžníkovým). Obecně platí, že je výhodné, aby bočně namáhaná
Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová
KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování
PROTOKOL O ZKOUŠCE č. 0302/2013
MCT spol. s r. o. ZKUŠEBNÍ LABORATOŘ STAVEBNÍCH KONSTRUKCÍ A HMOT Pražská 16, 102 21 Praha 10 Hostivař, ČR, tel./fax +420 271 750 448 PROTOKOL O ZKOUŠCE č. 0302/2013 Provedené zkoušky: - Stanovení rozměrů
Český institut pro akreditaci, o.p.s. List 1 z 6
Český institut pro akreditaci, o.p.s. List 1 z 6!!! U P O Z O R N Ě N Í!!! Tento výpis má pouze informativní charakter. Jeho obsah je založen na dokumentech v něm citovaných, jejichž originály jsou k nahlédnutí
Kancelář stavebního inženýrství s. r. o.
Kancelář stavebního inženýrství s. r. o. Sídlo spol.: Botanická 256, 360 02 Dalovice, IČ: 25 22 45 81, DIČ: CZ25224581 Název akce: Stavebně technický průzkum Objekt: C. Přemostění řeky Teplé Objednavatel:
9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK
9 STANOVENÍ POŽÁRNÍ ODOLNOSTI ZDIVA PODLE TABULEK 9.1 Norma ČSN EN 1996-1-2 Evropská norma pro navrhování zděných konstrukcí na účinky požáru EN 1996-1-2 nahrazující předběžnou normu ENV 1996-1-2:1995
BL06 - ZDĚNÉ KONSTRUKCE
BL06 - ZDĚNÉ KONSTRUKCE Vyučující společné konzultace, zkoušky: - Ing. Rostislav Jeneš, tel. 541147853, mail: jenes.r@fce.vutbr.cz, pracovna E207, individuální konzultace a zápočty: - Ing. Pavel Šulák,
STANDARDNÍ OPERAČNÍ POSTUP 02/09 Ústav stavebního zkušebnictví, Fakulta Stavební, Vysoké učení technické v Brně Veveří 95, 602 00 Brno
Ústav stavebního zkušebnictví, Fakulta Stavební, Vysoké učení technické v Brně Veveří 95, 602 00 Brno STANDARDNÍ OPERAČNÍ POSTUP 02/09 (1) STANDARDNÍ OPERAČNÍ POSTUP PRO PŘEPOČET HODNOTY SOUČINITELE VZDUCHOVÉ
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:
Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
Sanace nosných konstrukcí
ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Sanace nosných konstrukcí Historický dům v Telči Prezentace byla vytvořena za laskavé podpory grantu FRVŠ 2960/2011. Popis objektu dům
Zděné konstrukce podle ČSN EN : Jitka Vašková Ladislava Tožičková 1
Zděné konstrukce podle ČSN EN 1996-1-2: 2006 Jitka Vašková Ladislava Tožičková 1 OBSAH: Úvod zděné konstrukce Normy pro navrhování zděných konstrukcí Navrhování zděných konstrukcí na účinky požáru: EN
Stanovení mechanických parametrů historických stavebních materiálů pomocí šetrné destruktivní metody zdivo a zdicí prvky
Návrh metodiky Stanovení mechanických parametrů historických stavebních materiálů pomocí šetrné destruktivní metody zdivo a zdicí prvky 2015 Výstup řešení projektu: Zpracovatel: Autoři: DF12P01OVV030 Metodika
Zkoušení cihlářských výrobků
Zkoušení cihlářských výrobků 1 Vzhled a rozměry 2 Zjišťování vzhledu a rozměrů ČSN 722602 Vizuálně zjišťujeme: vzhled, tvar, začouzení, trhlinky, množství zlomků, poškození ploch, hran a rohů. Zjišťování
Obr. 19.: Směry zkoušení vlastností dřeva.
8 ZKOUŠENÍ DŘEVA Zkoušky přírodního (rostlého) dřeva se provádí na rozměrově přesně určených vzorcích bez suků, smolnatosti, dřeně a jiných vad. Z výsledků těchto zkoušek usuzujeme na vlastnosti dřeva
Metody diagnostiky v laboratoři fyzikální vlastnosti. Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D.
Metody diagnostiky v laboratoři fyzikální vlastnosti Ing. Ondřej Anton, Ph.D. Ing. Petr Cikrle, Ph.D. OBSAH Vzorky betonu jádrové vývrty Objemová hmotnost Dynamické moduly pružnosti Pevnost v tlaku Statický
2. přednáška. Petr Konvalinka
EXPERIMENTÁLNÍ METODY MECHANIKY 2. přednáška Petr Konvalinka Experimentální vyšetřování pevnostních vlastností betonu Nedestruktivní metody zkoušky pevnosti Schmidtovo kladívko odpor v otlačení pull-out
NAVRHOVÁNÍ ZDĚNÝCH KONSTRUKCÍ ZE SYSTÉMU. dle ČSN EN a ČSN EN NEICO - ucelený systém hrubé stavby
ZE SYSTÉMU dle ČSN EN 1996-1-1 a ČSN EN 1996-3 NEICO - ucelený systém hrubé stavby K dosažení co nejlepších výsledků navrhování zdiva z betonových skořepinových tvárnic NEICO a k zachování hlavních výhod
3. PEVNOST V TLAKU BETONU NA VÝVRTECH
3. PEVNOST V TLAKU BETONU NA VÝVRTECH Vývrty jsou válcové zkušební vzorky, získané z konstrukce poocí dobře chlazeného jádrového vrtáku. Vývrty jsou pečlivě vyšetřeny, upraveny buď zabroušení, anebo koncování
Vzhled a rozměry 20.3.2014. Zjišťování vzhledu a rozměrů. Zkoušení cihlářských výrobků ČSN 722602
Zkoušení cihlářských výrobků 1 Vzhled a rozměry 2 Zjišťování vzhledu a rozměrů ČSN 722602 Vizuálně zjišťujeme: vzhled, tvar, začouzení, trhlinky, množství zlomků, poškození ploch, hran a rohů. 1 Měří se:
Zdivo YTONG a statika
- České a evropské normy Zatížení staveb Statické parametry a návrh zdiva YTONG Ověření pevnosti zdiva zkouškami Vliv vlhkosti na pevnost zdiva Únosnost zdiva Ytong a Silka Návrh stěn budovy z materiálu
Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem
2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se
ČSN EN OPRAVA 1
ČESKÁ TECHNICKÁ NORMA ICS91.010.30; 91.080.30 Červen 2010 Eurokód 6: Navrhování zděných konstrukcí Část 1-1: Obecná pravidla pro vyztužené a nevyztužené zděné konstrukce ČSN EN 1996-1-1 OPRAVA 1 73 1101
CEMVIN FORM Desky pro konstrukce ztraceného bednění
CEMVIN FORM Desky pro konstrukce ztraceného bednění CEMVIN CEMVIN FORM - Desky pro konstrukce ztraceného bednění Vysoká pevnost Třída reakce na oheň A1 Mrazuvzdornost Vysoká pevnost v ohybu Vhodné do vlhkého
Zděné konstrukce. Zděné konstrukce historický vývoj
Zděné konstrukce -historický úvod - druhy stěn - pracovní diagram zdiva - přetvárný součinitel - charakteristické pevnosti - dílčí součinitele - obdélníkový průřez v patě sloupu - obdélníkový průřez v
ČSN EN 1917 ( ) Vstupní a revizní šachty z prostého betonu, drátkobetonu a železobetonu ze srpna 2004 se opravuje takto:
ČESKÁ TECHNICKÁ NORMA ICS 93.030 Listopad 2007 Vstupní a revizní šachty z prostého betonu, drátkobetonu a železobetonu ČSN EN 1917 OPRAVA 1 72 3147 idt EN 1917:2002/AC:2006-12 Corrigendum Tato oprava ČSN
Rozsah diagnostického průzkumu byl specifikován na základě naší prohlídky a následně v naší nabídce. Jedná se konkrétně o:
1. Úvod Na základě objednávky obce jsme provedli diagnostický průzkum mostu, který má sloužit pro rozhodnutí o způsobu opravy mostu, resp. jako podklad pro zpracování projektové dokumentace opravy mostu.
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
Výpočet skořepiny tlakové nádoby.
Václav Slaný BS design Bystřice nad Pernštejnem 1 Výpočet skořepiny tlakové nádoby. Úvod Indukční průtokoměry mají ve své podstatě svařovanou konstrukci základního tělesa. Její pevnost se musí posuzovat
Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1
Návrh a posouzení plošného základu podle mezního stavu porušení ULS dle ČSN EN 1997-1 1. Návrhové hodnoty účinků zatížení Účinky zatížení v mezním stavu porušení ((STR) a (GEO) jsou dány návrhovou kombinací
PROTOKOL číslo: / 2014
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ ZKUŠEBNÍ LABORATOŘ AKREDITOVANÁ ČIA pod č.1048 Thákurova 7, 166 29, Praha 6 ODBORNÁ LABORATOŘ - OL 181 telefon: 2 2435 5429 fax: 2 2435 3843 Zakázkové
HELUZ AKU KOMPAKT 21 broušená
broušená Použití Cihelné bloky broušená jsou určeny pro konstrukci vnitřních nenosných stěn výšky maximálně 3,5 m s vysokou přidanou hodnotou vyznačující se vysokou mírou zvukové izolace. Cihelné bloky
Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem
Sendvičové panely smykový test výplňového materiálu čtyřbodovým ohybem Protokol o zkoušce Výrobce a dodavatel: ISMAT solution, s.r.o. Dolení 184, 411 85 Horní Beřkovice Obchodní rejstřík vedený u Krajského
Vysoké učení technické v Brně Zkušební laboratoř při ÚTHD FAST VUT v Brně Veveří 95, Brno
List 1 z 13 Pracoviště zkušební laboratoře: 1. Pracoviště V 2. Pracoviště P Purkyňova 139, 602 00 Brno Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní
16. Základní požadavky EN 845-2
16. Základní požadavky EN 845-2 Evropská norma EN 845-2 Specifikace pro pomocné výrobky pro zděné konstrukce Část 2: Překlady stanovuje požadavky na předem vyrobené překlady nad otvory do světlosti 4,5
ETAG 001. KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete)
Evropská organizace pro technická schválení ETAG 001 Vydání 1997 ŘÍDICÍ POKYN PRO EVROPSKÁ TECHNICKÁ SCHVÁLENÍ KOVOVÉ KOTVY DO BETONU (Metal anchors for use in concrete) Příloha B: ZKOUŠKY PRO URČENÁ POUŽITÍ
Ermeto Originál Trubky/Trubkové ohyby
Ermeto Originál Trubky/Trubkové ohyby Údaje k trubkám EO 1. Druhy ocelí, mechanické vlastnosti, způsob provedení Ocelové trubky EO Druhy ocelí Pevnost v tahu Mez kluzu Tažnost Rm ReH A5 (podélně) Způsob
pravidla pro pozemní stavby Pravidla pro vyztužené a nevyztužené zděné konstrukce pravidla Navrhování konstrukcí na účinky požáru
1/5 CIHLY Návrhové ČSN ČSN 73 1101 vč. změn ČSN EN 1745 ČSN P ENV 1996-1-1 ČSN P ENV 1996-1-2 ČSN P ENV 1996-1-3 ČSN P ENV 1996-3 Navrhování zděných konstrukcí Zdivo a výrobky pro zdivo Metody stanovení
NKI Zděné konstrukce doc. Ing. Karel Lorenz, CSc. Ústav nosných konstrukcí FA
NKI Zděné konstrukce doc. Ing. Karel Lorenz, CSc. Ústav nosných konstrukcí FA Přednáška 3 letní semestr 2016 17 Výpočtový model musí vystihnout chování konstrukce s odpovídající přesností vlastnosti materiálu
YQ U PROFILY, U PROFILY
YQ U PROFILY, U PROFILY YQ U Profil s integrovanou tepelnou izolací Minimalizace tepelných mostů Jednoduché ztracené bednění monolitických konstrukcí Snadná a rychlá montáž Specifikace Výrobek slepený
PRŮZKUM A POSUDEK VYUŽITELNOSTI HISTORICKÉHO MOSTU
PRŮZKUM A POSUDEK VYUŽITELNOSTI HISTORICKÉHO MOSTU Akce: Stupeň: HISTORICKÝ MOST V LOKALITĚ PORTZ INSEL posudek Vedoucí projektant: Ing.arch.Marek Tichý, Archatt s.r.o., Vídeňská 127, Brno Investor: Město
Seskupení zdících prvků uložených podle stanoveného uspořádání a spojených pojivem (maltou, zálivkou)
Seskupení zdících prvků uložených podle stanoveného uspořádání a spojených pojivem (maltou, zálivkou) cihelné, tvárnicové, kamenné, smíšené Cihla plná (CP) rozměr: 290 140 65 mm tzv. velký formát (4:2:1)
SCHÖCK NOVOMUR LIGHT SCHÖCK NOVOMUR. Uspořádání v konstrukci...18. Dimenzační tabulka / rozměry / možnosti...19. Tepelně technické parametry...
SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u rodinných domů Schöck typ 6-17,5 Oblast použití: První vrstva zdiva na stropu suterénu
PRŮZKUM A POSUDEK VYUŽITELNOSTI HISTORICKÉHO MOSTU
PRŮZKUM A POSUDEK VYUŽITELNOSTI HISTORICKÉHO MOSTU Akce: Stupeň: HISTORICKÝ MOST V LOKALITĚ PORTZ INSEL posudek Vedoucí projektant: Ing.arch.Marek Tichý, Archatt s.r.o., Vídeňská 127, Brno Investor: Město
Sanace nosných konstrukcí
ČVUT v Praze Fakulta stavební Katedra konstrukcí pozemních staveb Sanace nosných konstrukcí Buštěhrad Prezentace byla vytvořena za laskavé podpory grantu FRVŠ 2960/2011. Historie objektu jednotlivé části
Posouzení trapézového plechu - VUT FAST KDK Ondřej Pešek Draft 2017
Posouzení trapézového plechu - UT FAST KDK Ondřej Pešek Draft 017 POSOUENÍ TAPÉOÉHO PLECHU SLOUŽÍCÍHO JAKO TACENÉ BEDNĚNÍ Úkolem je posoudit trapézový plech typu SŽ 11 001 v mezním stavu únosnosti a mezním
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavebních konstrukcí 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
SCHÖCK NOVOMUR SCHÖCK NOVOMUR. Uspořádání v konstrukci...12. Dimenzační tabulka / rozměry / možnosti...13. Tepelně technické parametry...
SCHÖCK NOVOMUR Nosný hydrofobní tepelně izolační prvek zabraňující vzniku tepelných mostů u paty zdiva pro použití u vícepodlažních bytových staveb Schöck typ 20-17,5 Oblast použití: První vrstva zdiva
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍHO ZKUŠEBNICTVÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF BUILDING TESTING STAVEBNĚ TECHNICKÝ PRŮZKUM REKREAČNÍHO
Prvky betonových konstrukcí BL01 11 přednáška
Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav
Příklad zpracování závěrečné zprávy. Vladislava Návarová
Příklad zpracování závěrečné zprávy Vladislava Návarová TITULNÍ STRANA Název akce : STATICKÉ POSOUZENÍ příčin poruch a konstrukčního stavu objektu v obci XXXč.p.111 Objednatel: pan X, XXXč.p.111 Datum:
Pozemní stavitelství I. Zpracoval: Filip Čmiel, Ing.
Pozemní stavitelství I. Svislé nosné konstrukce Zpracoval: Filip Čmiel, Ing. NOSNÉ STĚNY Kamenné stěny Mechanicko - fyzikálnívlastnosti: -pevnost v tlaku až 110MPa, -odolnost proti vlhku, -inertní vůči
Sedání piloty. Cvičení č. 5
Sedání piloty Cvičení č. 5 Nelineární teorie (Masopust) Nelineární teorie sestrojuje zatěžovací křivku piloty za předpokladu, že mezi nulovým zatížením piloty a zatížením, kdy je plně mobilizováno plášťové
Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO
Bytová výstavba cihelnou zděnou technologií vs. KS-QUADRO Systém KS-QUADRO = každý 10. byt navíc zdarma! 3.5.2008 Bytový dům stavěný klasickou zděnou technologií Bytový dům stavěný z vápenopískových bloků
BI52 Diagnostika stavebních konstrukcí (K)
Kód předmětu Název předmětu Modernizace výuky na Fakultě stavební VUT v Brně BI52 Diagnostika stavebních konstrukcí (K) Parametry a zařazení předmětu ve studijních programech Stud. program Stavební inženýrství
POROTHERM 44 CB DF NOVINKA 2008
POROTHERM 44 CB DF Tepelněizolační vnější stěna 1/2 Cihly broušené POROTHERM 44 CB DF jsou určené pro jednovrstvé obvodové nosné i nenosné zdivo tlouš ky mm s vysokými nároky na tepelný odpor a tepelnou
Návrh složení cementového betonu. Laboratoř stavebních hmot
Návrh složení cementového betonu. Laboratoř stavebních hmot Schéma návrhu složení betonu 2 www.fast.vsb.cz 3 www.fast.vsb.cz 4 www.fast.vsb.cz 5 www.fast.vsb.cz 6 www.fast.vsb.cz Informativní příklady
3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU
3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU Vývrty jsou válcová zkušební tělesa, získaná z konstrukce poocí dobře chlazeného jádrového vrtáku. Vývrty získané jádrový vrtáke jsou pečlivě vyšetřeny, upraveny
PŘÍKLAD: Výpočet únosnosti vnitřní nosné cihelné zdi zatížené svislým zatížením podle Eurokódu 6
PŘÍKLAD: Výpočet únosnosti vnitřní nosné cihelné zdi zatížené svislým zatížením podle Eurokódu 6 A) ČS E 1996-1-1 (Část 1-1: Obecná pravidla pro vyztužené a nevyztužené zděné konstrukce) B) ČS E 1996-3
1. Mechanické vlastnosti šitých spojů a textilií
Mechanické vlastnosti šitých spojů a textilií 1. Mechanické vlastnosti šitých spojů a textilií 1.1 Teoretická pevnost švu Za teoretickou hodnotu pevnosti švu F š(t), lze považovat maximálně dosažitelnou
Výtvarné umění jako součást architektury 60. a 70. let 20. století
Výtvarné umění jako součást architektury 60. a 70. let 20. století WORKSHOP konaný v rámci projektu NAKI II Analýza a prezentace hodnot moderní architektury 60. a 70. let 20. století jako součásti národní
VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU
VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU potrubí průtokoměr průtok teplota tlak Přepočítávač množství plynu 4. ročník mezinárodní konference 10. a 11. listopadu
Technický a zkušební ústav stavební Praha, s.p. Kalibrační laboratoř TZÚS Praha, s.p. pobočka TIS Prosecká 811/76a, Praha 9 - Prosek
Pracoviště kalibrační laboratoře: 1. pobočka TIS Prosecká 811/76a, 190 00 Praha 9 2. - pobočka 0400 Tolstého 447, 415 03 Teplice 3. - pobočka 0200 Nemanická 441, 370 10 České Budějovice 4. - pobočka 0700
Uplatnění prostého betonu
Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého
ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
ZATÍŽENÍ ZATÍŽENÍ FIS A M6 (8.8) FIS A M8 (8.8) FIS A M10 (8.8) FIS A M12 (8.8) FIS A M16 (8.8) FIS A M20 (8.8) FIS A M24 (8.8) FIS A M30 (8.
Injektážní systém FIS V, FIS VW, FIS VS se svorníkem FIS A (pevnostní třídy 8.8) Nejvyšší garantovaná jednotlivé kotvy, v betonu C20/25 FIS A M6 (8.8) FIS A M8 (8.8) FIS A M10 (8.8) FIS A M12 (8.8) FIS
METODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ
1.6.2018 METODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ Posuvná měřidla jsou délková měřidla s rovnoběžnými rovinnými plochami, mezi kterými lze v daném měřícím rozsahu měřidla měřit rozměry vně
Betonové konstrukce (S)
Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem
6 Navrhování zděných konstrukcí na účinky požáru
6 Navrhování zděných konstrukcí na účinky požáru 6.1 Úvod Navrhování stavebních konstrukcí na účinky požáru je nezbytnou součástí projektové dokumentace. Zděné konstrukce, které jsou užívané na nosné i
YQ U PROFILY, U PROFILY
YQ U Profil s integrovanou tepelnou izolací Minimalizace tepelných mostů Jednoduché ztracené bednění monolitických konstrukcí Snadná a rychlá montáž Norma/předpis ČSN EN 771-4 Specifikace zdicích prvků
Nahrazuje: FK009 ze dne 01.02.2015 Vypracoval: Ing. Vojtěch Slavíček Schválil dne:01.08.2015 František Klípa
SVAŘOVANÁ SÍŤ TYPU P Strana: 1/6 1. VŠEOBECNĚ 1.1 Rozsah platnosti (1) Tato podniková norma platí pro výrobu, kontrolu, dopravu, skladování a objednávání svařované sítě FERT typu P, výrobce FERT a.s. Soběslav.
1 TZÚS Praha, s.p., pobočka 0900 Prosecká 811/76a, 190 00 Praha 9 - Prosek. Rozsah měřené veličiny. (0,01 20) m 3 /h (0,2 200) m 3 /h
List 1 z 10 Pracoviště kalibrační laboratoře: 1 TZÚS Praha, s.p., pobočka 0900 Obor měřené : průtok kalibrace [ ± ] 1 Proteklé množství studené vody (hmotnostní metoda) 2 Proteklé množství teplé vody (hmotnostní
Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.
cvičení Dřevěné konstrukce Hřebíkové spoje Základní pojmy. Návrh spojovacího prostředku Na hřebíkové spoje se nejčastěji používají ocelové stavební hřebíky s hladkým dříkem kruhového průřezu se zápustnou