Úvod do mobilních telekomunikačních sítí. Jan Jerie Jan Jerie červen 2014



Podobné dokumenty
Úvod do telekomunikačních sítí. Jan Jerie červen 2015

Identifikátor materiálu: ICT-3-50

Struktura sítě GSM. obr. 1.1 Buňková struktura

Vývoj GSM I testy technologií digitálního vysílání v Paříži (TDMA a FDMA) zemí sepsalo memorandum o technologii GSM (MoU)

Datové přenosy GPRS, EDGE

21. DIGITÁLNÍ SÍŤ GSM

Mobilní komunikace. Semestrální úloha GSM stručný přehled

Mobilní komunikace GSM

Identifikátor materiálu: ICT-3-04

Témata profilové maturitní zkoušky

Y32PMK Projekt č.3 Protokol z měření

Mobilní komunikace. Vývojové trendy sítě GSM (2G) a 3G. Petra Píšová

Datové přenosy CDMA 450 MHz

Lekce 10: mobilní komunikace

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Témata profilové maturitní zkoušky

Příloha č. 1 ke Smlouvě o poskytnutí přístupu k veřejné komunikační síti Vodafone formou národního roamingu. Příloha č. 1. Služby

Očekávané vlastnosti a pokrytí ČR sítěmi LTE

Přednáška 3. Opakovače,směrovače, mosty a síťové brány

Počítačové sítě. Lekce 4: Síťová architektura TCP/IP

Signalizační systém číslo 7 v mobilních sítích GSM

Mobilní sítě. Počítačové sítě a systémy. _ 3. a 4. ročník SŠ technické. Ing. Fales Alexandr Software: SMART Notebook

Semestrální práce-mobilní komunikace 2004/2005

České vysoké učení technické Fakulta elektrotechnická

POČÍTAČOVÉ SÍTĚ 1. V prvním semestru se budeme zabývat těmito tématy:

Rádiovéprostředky v účastnických telefonních sítích. 5.přednáška

Analogové mobilní systémy AMPS , , NMT TACS

Použité pojmy a zkratky

Identifikátor materiálu: ICT-3-03

PRINCIPY TECHNOLOGIE UMA

Počítačové sítě, v. 3.6

Český telekomunikační úřad Praha dne 4. září 2003 se sídlem Sokolovská 219, Praha 9 Č.j.: 22780/

Sítě GSM, datové přenosy GPRS, HSCSD, EDGE

Počítačové sítě, v Počítačové sítě. Lekce 10: mobilní komunikace. J. Peterka, 2008

Principy ATM sítí. Ing. Vladimír Horák Ústav výpočetní techniky Univerzity Karlovy Operační centrum sítě PASNET

Metody multiplexování, přenosové systémy PDH a SDH

Počítačové sítě Teoretická průprava II. Ing. František Kovařík

Systémy pro sběr a přenos dat

Sítě UMTS a CDMA datové přenosy

Definice pojmů a přehled rozsahu služby

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/ Vzdělávání v informačních a komunikačních technologií

Počítačové sítě. Lekce 3: Referenční model ISO/OSI

CCNA I. 3. Connecting to the Network. CCNA I.: 3. Connecting to the network

SIMATIC S GPRS. Micro Automation. Promoters Meeting October Aplikace pro GPRS. Vzdálená stanice. Server SINAUT MICRO SC.

Seznam školení (1/3)

Počítačové sítě. Počítačová síť. VYT Počítačové sítě

TECHNICKÁ SPECIFIKACE ÚČASTNICKÝCH ROZHRANÍ

TECHNICKÁ SPECIFIKACE ÚČASTNICKÝCH ROZHRANÍ. POSKYTOVANÝCH SPOLEČNOSTÍ OVANET a.s.

JAK ČÍST TUTO PREZENTACI

Počítačová síť. je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat.

Počítačové sítě internet

Mobilní a satelitní systémy

Mobilní telefonie a její možnosti využití v oblasti IZS ČR

pořádá pod záštitou PaedDr. Petra Navrátila - člena Rady Zlínského kraje 8. CELOSTÁTNÍ SEMINÁŘ UČITELŮ STŘEDNÍCH ŠKOL,

Techniky sériové komunikace > Synchronní přenos

Možnosti rozvoje služeb. mobilních sítí 4. generace

Stručně o GSM tzv. uplink tzv. downlink E-GSM (Extended-GSM) GSM-R (Railway GSM)

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 TECHNICKÉ VYBAVENÍ POČÍTAČŮ

Druhy sdělovacích kabelů: kroucené metalické páry, koaxiální, světlovodné

SIM karty a bezpečnost v mobilních sítích

MPLS MPLS. Label. Switching) Michal Petřík -

Informační a komunikační technologie. 3. Počítačové sítě

Zpracování informací

IČ (je-li přiděleno):

Připojení k rozlehlých sítím

Sledování kvality služeb v prostředí IMS, SS7 a VoIP. Martin Rosický 23. listopad 2010

Název Kapitoly: Přístupové sítě

ZÁKLADY INFORMATIKY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ. Ing. Roman Danel, Ph.D. Ostrava 2013

Komunikační služby v sítích IP pro integrovanou výuku VUT a VŠB-TUO

ZÁKLADY DATOVÝCH KOMUNIKACÍ

Seznámit posluchače se základními principy činnosti lokálních počítačových sítí a způsobu jejich spojování:

Vodafone v6. Ladislav Suk Core Network Strategy Manager Pavel Fryč - One Net Solution Manager Tomáš Darda - Senior OneNet Solution Engineer

SÍTĚ OTÁZKY 1) Přenos signálu a. Vyjmenujte média pro šíření a přenosy signálu? b. Jaké jsou charakteristické atributy analogového signálu?

PB169 Operační systémy a sítě

Průmyslová komunikace přes mobilní telefonní sítě. Michal Kahánek

Informační a komunikační technologie. 1.7 Počítačové sítě

Počítačové sítě Implementace RM OSI. Počítačové sítě - Vrstva datových spojů 1

Komunikace v sítích TCP/IP (1)

íta ové sít TCP/IP Protocol Family de facto Request for Comments

Architektura TCP/IP je v současnosti

5. GSM/UMTS RÁDIOVÉ ROZHRANÍ, DATOVÉ PŘENOSY

Inovace bakalářského studijního oboru Aplikovaná chemie

Identifikátor materiálu: ICT-3-49

Technologie GSM. Telekomunikační systémy. Bc. Petr Luzar

Model ISO - OSI. 5 až 7 - uživatelská část, 1 až 3 - síťová část

Systémy pozemní pohyblivé služby

Rozdíl mezi ISDN a IDSL Ú ústředna K koncentrátor pro agregaci a pro připojení k datové síti. Pozn.: Je možné pomocí IDSL vytvořit přípojku ISDN.

Státnicová otázka 31 PRAXE: Pojem telekomunikační síť:

PB169 Operační systémy a sítě

Aplikace rádiového standardu GSM-R Petr Vítek

Příloha č. 2. Implementace a rozvoj. IP Sec. DEA DRA. S6a Diameter. DNS queries. S8 GTPv2. VF Systems not used by Full-MVNO

37MK Semestrální práce. UMTS Frekvence, rádiové rozhraní a modulace

Obsah. O autorech 9. Předmluva 13. KAPITOLA 1 Počítačové sítě a Internet 23. Jim Kurose 9 Keith Ross 9

InternetovéTechnologie

Wi-Fi aplikace v důlním prostředí. Robert Sztabla

České Radiokomunikace. TINF 2012 Sdílení sítí 4. generace. Marcel Procházka Head of Strategy & Business Development. 27.

VPN - Virtual private networks

Rádiovéprostředky v účastnických telefonních sítích. 3.přednáška

IVT 2. ročník INFORMAČNÍ SÍTĚ

Telekomunikační sítě Protokolové modely

Transkript:

Úvod do mobilních telekomunikačních sítí Jan Jerie Jan Jerie červen 2014

Standardizace

Standardizace 3GPP - The 3rd Generation Partnership Project Sdružení organizací, které vydávají doporučení a standardy pro telekomunikace http://www.3gpp.org např. 3GPP TS 23.237 nebo TR Technical Specification/Request RFC vydává IETF a IESG (Internet Engineering Steering Group) Organizace vydává doporučení a standardy pro Internet Proč Internet? http://www.ietf.org např. RFC 4316 - Request For Comments K čemu standardizace Mnoho výrobců Mnoho operátorů Mnoho systémů

3GPP Phases and Releases Phase/release Description Freeze year Phase 1 GSM 1992 Phase 2 GSM 1995 Release 96 14.4kb/s, HSCSD 1997 Release 97 GPRS 1998 Release 98 AMR 1999 Release 99 EDGE, UTRAN 2000 Release 4 Split architecture 2001 Release 5 IMS with GERAN/UTRAN access, HSDPA 2002 Release 6 IMS with IP-CAN access, HSUSPA 2005 Release 7 IMS for NGN, Evolved HSPA 2007 Release 8 E-UTRAN, epc 2008 Release 9 E-UTRAN and epc improvement 2009 Release 10 LTE advanced 2011 Release 11 LTE, IMS improvements, M2M support 2013

Typy sítí a jejich vývoj

Základní typy sítí výhody, nevýhody Typ sítě nedefinuje použitou technologii, jde o princip fungování Přepínané okruhy Circuit Swiched (CS) Použito v prvních sítích až po GSM Neefektivní čerpání prostředků Omezená kapacita vzhledem k PS sítím Jednodušší na implementaci Přepínané pakety - Packet Switched(PS) Efektivnější využití prostředků V současné době založené na internetových protokolech Nižší pořizovací a provozní cena

Vývoj mobilních sítí a jejich služeb První sítě byly zaměřeny jen na hlasové služby, byly analogové a výhradně CS sítě 1910 Magnus Ericsson, 1924 První buňkové systémy se zónovým principem - 1947 AT&T Buňkový systém s opakovaným využitím frekvencí 1969 Bell system První přenosný mobilní telefon - 1973

Vývoj mobilních sítí a jejich služeb První generace mobilní sítě (1G) byla ještě analogová AMPS, NMT, TACS Postupný přechod na digitální sítě (2G)-1991 stále však CS sítě GSM, CDMA, D-AMPS, PDC Díky digitalizaci bylo možné nabízet doplňkové služby pro hlas (přesměrování, call barring) Sítě nabízí další služby kromě hlasu datové spojení, zatím přes vytáčené okruhy Dalším krokem je nativní podpora datových paketových přenosů GPRS, první implementace PS sítí v CS sítích a jejich vzájemný souběh -2000 Další zrychlování datových přenosů data nabývají na významu a hlas není jedinou významnou službou, invaze smartphones první 3G síť 2007 Čistě datové sítě pouze packetswitchedsítě, hlas je již nabízen jen přes data a zákazník může používat mnoho dalších služeb nabízených na Internetu LTE 2011

Vývoj sítí z pohledu dat a datové rychlosti První buňkové sítě 1947, pouze hlas První mobil v roce 1973 NMT pouze hlas, analogová síť v USA AMPS GSM pouze hlas, první digitální síť GSM CSD první data v mobilní síti (9.6 nebo 14.4kbps) GSM GPRS první paketová data (až 52kbps) GSM EDGE -(až 384kbps) UMTS -3G síť až 384kbps UMTS HSPA (HSDPA, HSUPA) 14Mbps, HSDPA 84.4Mbps E-UMTS LTE 150Mbps, LTE advancedaž 326Mbps

Stavební bloky mobilní telekomunikační sítě

Hlavní funkční bloky telekomunikační sítě PLMN Public Land Mobile Network PSTN Public Switched Tephony Network ISDN Integrated Services Digital Network Corporate Customers korporátní zákazníci, velké firmy Nejsou zobrazeny všechny podpůrné systémy zajišťující billing, zákaznickou podporu atd.

Princip buňkových sítí Požadavkem je pokrýt téměř neomezený prostor omezeným počtem frekvencí Každá sousední buňka vysílá na jiné frekvenci, frekvence se opakují - viz barvy na obrázku Telefon přijímá více buněk najednou a vybírá si tu nejsilnější Pokrytí signálem se musí plánovat podle lokálních podmínek, signál se šíří různě terénem Hustota resp. velikost buněk se liší podle množství uživatelů v dané lokalitě, kapacita buňky je omezená Každá buňka má své ID CellIDa je rozdělena na 3 sektory

RAN Radio Access Network Rádiová síť má omezenou kapacitu a požadavky na přenosovou rychlost rostou, tak se hledají prostředky a algoritmy, jak co nejlépe využít frekvenční pásmo Metody rozdělení frekvenčního pásma pro vícenásobný přístup: Frekvenční dělení pásma FDMA Časové rozdělení frekvenčního pásma- TDMA

Radio Access network Kódové rozdělení pásma CDMA Ortogonálně frekvenční rozdělení pásma OFDM použití velkého množství nosných frekvencí (až tisíce)

RAN - modulace Modulace je proces, kterým dostaneme užitečnou informaci na nosný signál. Např. data na rádiový signál. Typy digitální modulace použité v mobilních sítích: ASK také AM je amplitudová modulace FSK také FM je frekvenční modulace PSK také PM je fázová modulace Pokud modulace umí přenést více stavů (bitů) najednou, tak hovoříme o více stavové modulaci např. QAM, 8PSK, 16PSK

Úvod do telekomunikačních a počítačových sítí Sítě jsou komplikovaný systém, stejně jako komplexní SW systém Je nezbytná dekompozice na jednotlivé funkční bloky V případě sítí obecně se použila dekompozice na jednotlivé hierarchické vrstvy Zbývá jen nadefinovat základní pravidla: Každá vrstva zajišťuje konkrétní funkci, poskytuje služby vyšší vrstvě a využívá služby nižší vrstvy Komunikují spolu vždy jen sousední vrstvy, nikdy nesmí komunikovat nesousední vrstvy spolu Vrstvy spolu komunikují formou žádostí (request) směr shora dolů a notifikací směr zespodu nahoru

Způsob komunikace vrstev Vrstvy spolu komunikují shora dolů nebo odspodu nahoru v rámci uzlu (např. PC, NB), hovoříme o tzv. vertikální komunikaci Účelem sítí je však komunikovat mezi uzly, této komunikaci říkáme, z pohledu vrstev, horizontální komunikace. Jedná se o logické spojení (logicallink). Jde o pomyslné (virtuální) spojení. Jediné skutečné spojení je na nejnižší fyzické úrovni Pravidlům horizontální komunikace jedné vrstvy mezi s sebou říkáme protokol Příkladem vrstevné architektury je klasická pošta

ISO-OSI model Jde o vrstevný model který definovalo standardizační doporučení CCIT pro počítačové sítě. De facto se neuchytil na rozdíl od nejrozšířenější implementace TCP/IP modelu ISO-OSI bylo příliš robustní a nepraktické. Na rozdíl od TCP/IP, které vznikalo od praktických základů TCP/IP je definované standardy IETF (RFC). Pro zjednodušení sloučil funkce některých vrstev ISO/OSI dohromady TCP/IP model je jeden z nejúspěšnějších síťových modelů, který vznikl na základě vojenské zakázky ARPANET (zadavatel DARPA)

TCP/IP, IPv4 versus IPv6 TCP je transportní protokol a používá k adresování číslo portu (asociace s číslem domu) IP je síťový protokol, který používá IP adresu (asociace s ulicí) IPv4 adresa např.: 168.192.22.10 (32 bitů) Maximální počet adres je 4 294 967 296 Adresy dochází a zařízení je stále více Řešením nedostatku IPv4 adres je IPv6 protokol Jedná se o rozšíření adres z 32 bitů na 128 bitů K dispozici je 3,40282366920938463463374607431e+38 adres Zápis IPv6 adresy je: 2001:0db8:85a3:08d3:1319:8a2e:0370:7334 TCP protokol je naprosto nezávislý na IPv4 nebo IPv6 což je důsledkem vrstevného modelu a jeho principů

Komunikace mezi uzly Každý uzel sítě vidí je do té vrstvy, která jej zajímá resp. je pro něj relevatní Koncové uzly musí rozumět všem vrstvám až po aplikační Směrovací uzly rozumí jen prvním třem vrstvám, protože zde probíhá směrování paketů (routování). Těmto prvkům se říká routery nebo L3 switche Časový průběh komunikace mezi uzly Spojově orientovaný (TCP) Nespojově orientovaný (UDP) client server UDP UDP

Přenosová síť Přenosová síť slouží k připojení radiové přístupové sítě ke core network systémům, které nabízí služby v mobilní síti Přenosová síť nejčastěji využívá radiové spoje v kombinaci s optickou sítí Provoz ze všech vysílačů se koncentruje do jedné hlavní síťě, které říkáme páteřní síť nebo také backbone

Technologie páteřní sítě Nejčastěji je to SONET nebo SDH technologie, obě fungují v optické síti. Jedná se o synchronní přenos dat a celá síť je synchronizována přesnými hodinami Trend je přenášet Ethernetpřímo v SONET nebo SDH technologii přímo. Trendem je vkládání Ethernetových rámců přímo do optického vlákna Ethernetje založen na asynchronním přenosu, je potřeba použít zapouzdřovací protokol zapouzdřování (encapsulation) je rozšířená technika pro přenos dat skrz sítě zapouzdřování (encapsulation) je rozšířená technika pro přenos dat skrz sítě určené pro přenos jiného obsahu nebo s jinou funkcí (velmi často vytvoření logické IP sítě nad jinou IP přenosovou sítí), často se také hovoří o tunelovacích protokolech

Hlas v mobilní síti, porovnání různých 3GPP verzí Hlas před R4 Hlas po R4

Data v mobilní síti, porovnání různých release 2,5G GPRS, EDGE 3G -UMTS

Bližší pohled na architekturu GSM BSC Base Station Controller MSC- Mobile Switching Centre HLR Home Location Register VLR Visitor Location Register EIR Equipment Identity Register GMSC GatewayMSC AuC Authentication Centre HLRje databáze všech účastníků GSM služeb, ukládá polohu terminálu VLRje dočasná databáze, kam se kopírují informace z HLR a doplňují dočasné informace např. o obsluhující ústředně Identifikace přístrojů a zákazníků v síti IMEI InternationalMobile EquipmentIdentity je číselný unikátní kód zařízení, který je přidělen výrobcem IMSI InternationalMobile SubcriberIdentity je číselný unikátní kód identifikující zákazníka a je uložen na SIM kartě SIM SubscriberIdentity Module je jednoduchý počítač (jednočip) a je v ní uloženo IMSI MSISDN Mobile SubscriberISDN Numberje telefonní číslo účastníka mobilních služeb. Není uloženo na SIM kartě, ale je namapovánona IMEI v HLR MSCje telefonní ústředna, která zajišťuje spojování hovorů mezi účastníky AuCje databáze bezpečnostních klíčů pro authentikaci uživatelů EIRje registr(databáze) identit ukradených přístrojů

Signalizace a uživatelská data v telekomunikačních sítích

Signalizace a uživatelská data Signalizace je soubor protokolů, které slouží k řízení provozu hovorů nebo dat. Logické části, která pracuje se signalizací říkáme Control plane Uživatelská data je soubor protokolů přenášejících uživatelské hovory a data. Logické části sítě přenášející uživatelská data říkáme User plane Až do 3GPP ReleaseR4 v roce 2001 byla signalizace vedena společně s uživatelskými daty. Po R4 došlo k oddělení signalizace a uživatelských dat Výhody oddělení signalizace od uživatelských dat: Snížení nároků na dimenzování systémů (uživatelských dat je výrazně více) Vyšší bezpečnost, signalizace jde jinou signálovou cestou než uživatelská data Centralizace řízení a decentralizace výkonových prvků Jednodušší změna konfigurace sítě pro nové požadavky

Signálové cesty Controlplane a User plane vytváří dvě různé logické sítě v jedné fyzické Datová signalizace v sítích GSM využívá částečně signalizaci hovorovou a částečně datovou Zdrojem signalizace může být terminál, prvek v rádiové síti a také prvek v corenetwork

Rodiny protokolů používaný v telekomunikacích Architektura GSM byla postavena na rodině protokolů SS7 určené pro digitální ústředny, nebyly založeny na základech IP Protokoly MTP1 až 3, SCCP, TCAP, MAP, CAP, INAP a ISUP Rozmach IP sítí způsobil výrazný pokles cen síťových zařízení a operátoři nechtěli provozovat dvě různé sítě (IP a SS7). Začalo se přemýšlet o přizpůsobení SS7 pro podporu IP sítí. Definovaly se nové protokoly SIGTRANpro přenos signalizace přes IP sítě Stále jde o přechodnou fázi. Finální fáze je poskytování telekomunikačních služeb výhradně na síti s přepínáním paketů, tedy IP sítě. Odtud také pojmenování služeb VoIP, MoIPatd.

Otázky a odpovědi Děkuji za pozornost