Audionahrávky hry na violoncello jako pomůcka ve výuce akustiky na středních školách



Podobné dokumenty
Mechanické kmitání a vlnění

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie

Zvuk a jeho vlastnosti

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

(test version, not revised) 16. prosince 2009

Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Fyzika_9_zápis_6.notebook June 08, Akustika = část fyziky, která se zabývá ZVUKEM (vznikem zvuku, vlastnostmi zv., šířením zv., lid.

Fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho šířením a vnímáním zvuku sluchem se zabývá akustika.

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Taje lidského sluchu

Zvuk. 1. základní kmitání. 2. šíření zvuku

Akustika. Teorie - slyšení. 5. Přednáška

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Druh učebního materiálu Anotace (metodický pokyn, časová náročnost, další pomůcky )

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

Akustika. Teorie - slyšení. 5. Přednáška

Akustika pro posluchače HF JAMU

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

(test version, not revised) 9. prosince 2009

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno, FYZIKA. Kapitola 8.: Kmitání Vlnění Akustika. Mgr. Lenka Hejduková Ph.D.

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ

mel jednotka subjektivní výšky tónu. Výška tónu o frekvenci 1000 Hz a hladině akustického tlaku 40 db se rovná 1000 melům.

4.1.5 Jedna a jedna může být nula

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

Akustika pro posluchače HF JAMU

Interference vlnění

VY_32_INOVACE_FY.18 ZVUKOVÉ JEVY

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m

Elektromagnetický oscilátor

Fyzika - Sexta, 2. ročník

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Akustické vlnění

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Fyzikální podstata zvuku

Název: Studium kmitů hudebních nástrojů, barva zvuku

KMITÁNÍ A VLNĚNÍ. Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé).

Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění

AKUSTIKA. Tón a jeho vlastnosti

Měření hlasitosti zvuku. Tematický celek: Zvuk. Úkol:

Zvukové jevy ZVUKOVÉ JEVY. Kmitání a vlnění. VY_32_INOVACE_117.notebook. June 07, 2012

25 - Základy sdělovací techniky

Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z.

Akustika. 3.1 Teorie - spektrum

Akustika. Tónové systémy a ladění

AKUSTIKA. Barva tónu

2. Vlnění. π T. t T. x λ. Machův vlnostroj

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

1.8. Mechanické vlnění

3.1.5 Složené kmitání

Fyzika II, FMMI. 1. Elektrostatické pole

Fyziologická akustika. fyziologická akustika: jak to funguje psychologická akustika: jak to na nás působí

Akustika. Hudební nástroje. 7. Přednáška

Václav Syrový: Hudební akustika, Praha 2003, s. 7

ČÍSLO PROJEKTU: OPVK 1.4

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Akustika. Teorie - slyšení

08 - Optika a Akustika

Registrační číslo projektu: CZ.1.07/1.4.00/

Prováděcí plán Školní rok 2013/2014

Akustika a hudební nástroje

Elektrický signál - základní elektrické veličiny

Zvukové jevy. Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

Měření hlasitosti zvuku. Tematický celek: Světelné a zvukové jevy. Úkol:

Klasické a inovované měření rychlosti zvuku

Akustika a optika. Fyzika 1. ročník. Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie. Mgr.

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

Šíření a vlastnosti zvuku

Izolaní materiály. Šastník Stanislav. 2. týden

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa

Kmity a mechanické vlnění. neperiodický periodický

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz.

Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

Skládání kmitů

Úvod do praxe stínového řečníka. Proces vytváření řeči

Akustika. Hudební nástroje. 7. Přednáška

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš

Problematika hluku z větrných elektráren. ČEZ Obnovitelné zdroje s.r.o.

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Registrační číslo projektu: CZ.1.07/1.4.00/

Tedy: Zdrojem zvuku je libovolné kmitající nebo chvějící se pružné těleso.

Vybrané oblasti hudební akustiky

KMITÁNÍ A VLNĚNÍ. Kmitavý pohyb je pravidelně se opakující pohyb tělesa kolem rovnovážné polohy (stálé).

Hlavní parametry rádiových přijímačů

Inovace výuky prostřednictvím šablon pro SŠ

Transkript:

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST 2014/2015 Obor SOČ: č. 12 - Tvorba učebních pomůcek, didaktická technologie Audionahrávky hry na violoncello jako pomůcka ve výuce akustiky na středních školách Autor: Anna Korytářová Škola: Wichterlovo gymnázium Čs. exilu 669 Ostrava Poruba 708 00 Kraj: Moravskoslezský Konzultant: Jan Škrdlík Frýdek-Místek, 2015

Prohlašuji, že jsem svou práci SOČ vypracovala samostatně a použila jsem pouze podklady uvedené v seznamu vloženém v práci SOČ. Prohlašuji, že tištěná verze a elektronická verze soutěžní práce SOČ jsou shodné. Nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) v platném znění. Ve Frýdku-Místku dne Podpis:

Děkuji svému konzultantu Janu Škrdlíkovi za podnětné rady zejména v začátcích práce. Dále bych chtěla vyjádřit své díky Ing. Michalu Smolánovi, majiteli Asi studia, v němž vznikly nahrávky nezbytné pro tuto práci. Děkuji rovněž Mgr. Janě Gajduškové, která mi umožnila provést v hodině hudební výchovy anketu, a také studentům tříd 5. A, 1. C a 1. D Wichterlova gymnázia, kteří hodiny hudební výchovy navštěvují a stali se respondenty v této anketě.

Anotace Cílem této práce je to, aby měli studenti středních škol k dispozici přehledně zpracovaný výukový materiál vztahující se k učivu akustiky, proto je učivo shrnuto takovou formou, aby se dalo co nejsnadněji pochopit, a směřuje k aplikaci poznatků z akustiky v praxi u hudebních nástrojů, které mohou dotyční dobře znát. Právě na konkrétním příkladu si studenti probírané jevy zapamatují nejlépe, tudíž byly jako součást práce vytvořeny audionahrávky konkrétních jevů předvedených na violoncellu. V práci jsou také patřičně okomentovány a je vysvětlena jejich fyzikální podstata. Klíčová slova akustika; kmitání; violoncello; vlnění; zvuk

Obsah 1 Úvod... 6 2 Postup práce... 7 3 Výstupy práce... 9 4 Závěr... 11

1 Úvod Akustika bývá ve školní výuce obvykle zařazena do učiva pojednávajícího o mechanickém kmitání a vlnění. Studenti by se s touto látkou měli setkat v hodinách fyziky na střední škole. Fyzika se však mezi nimi obvykle netěší velké oblibě, většinou proto, že učivu většina pořádně nerozumí. A to může souviset s tím, že jim je někdy podáváno nepříliš záživnou, pasivní formou. Zrovna fyzika je předmětem, v němž jsou mnohdy názorné ukázky klíčem k pochopení a řeknou více nežli nepříliš atraktivní učebnicové definice. Můžeme prohlásit, že zvuk obecně úzce souvisí s matematikou, což ale může některé také odradit. Probírání akustiky se však rozhodně nemusí stát nudným učivem. Pokud je pojato zajímavější formou než prostým předčítáním z učebnice, nepochybně akustika nebude tak nudnou, jak se na první pohled může zdát. Stačí studentům toto odvětví tolik obávané fyziky přiblížit pomocí něčeho, s čím se mohou poměrně často setkat nebo co dokonce důvěrně znají, tedy hudebním nástrojem. Autorce připadá ideální využít k tomuto účelu violoncello. Zejména proto, že se jedná o smyčcový strunný nástroj, který se k pedagogickým účelům svými vlastnostmi (rozsahem či různorodostí tónů) dobře hodí a zároveň by veřejnosti nemělo být úplně cizí. Struny a tělo nástroje jsou vhodným objektem pro pozorování kmitání a vlnění. Díky smyčci je možno demonstrovat, jaký dopad mají různé druhy smyků na barvu či hlasitost daného tónu a jak se zvukově liší použití smyčce od brnkání neboli pizzicata. Herní vlastnosti cella zkrátka poskytují celou řadu možností. Autorka navíc hru na violoncello ovládá, o to zasvěceněji se tedy k tématu může vyjádřit. Tato práce byla vypracována za účelem nalezení co nejnázornější formy výuky základních akustických jevů. Dále si autorka dala za cíl tyto jevy rozebrat z fyzikálního hlediska a zdokumentovat tak, aby si je kdokoli mohl poslechnout. Součástí práce jsou tedy jednak audionahrávky doprovázené komentáři a v některých případech fotografiemi, ale také studijní text shrnující základy akustiky. Tento text byl napsán tak, aby dané jevy vyložil co nejpřístupnější a nepříliš náročnou formou, ale zároveň kvalitně, aby se na nabytých základech dalo stavět při získávání dalších znalostí o akustice. Výstupy této práce jsou určeny k využití pedagogy, kteří by ve fyzice chtěli studentům středních škol či gymnázií poskytnout výuku akustiky zábavnější formou, ale mohou ji využít také samouci, kteří by se o akustice sami chtěli něco dozvědět. Práce může pomoci i jako souhrnné opakování probraného učiva v tomto odvětví. 6

2 Postup práce Na úplném začátku byl stanoven záměr práce. Autorka si zhruba určila, čeho chce svou prací dosáhnout a jaký bude mít zpracování takové práce význam. Celková vize byla tato: Cílem práce je zpracovat přehledný studijní materiál týkající se akustiky na úrovni středních škol a doplnit jej o netradiční multimediální pomůcku v podobě nahrávek akustických jevů demonstrovaných na vhodném hudebním nástroji, za který bylo zvoleno violoncello. Následovala důkladná rešerše nejrůznějších literárních i internetových zdrojů. Tím se autorka informovala o tom, jak již bylo vybrané téma zpracováno, jaké pomůcky k tomuto učivu jsou dostupné a zda by tedy měl její příspěvek smysl. Bylo zjištěno, že na internetu není moc možností, jak si v českém jazyce nastudovat základy akustiky. Autorka objevila jen několik využitelných webových stránek, které poskytují bližší informace o akustických jevech ve formě přijatelné pro studenta SŠ: Encyklopedie fyziky. Dostupné z: http://fyzika.jreichl.com/main.article/view/150- mechanicke-kmitani-a-vlneni Akustika, vznik a šíření zvuku, frekvenční analýza a syntéza, sluchový vjem zvukového signálu. Dostupné z: http://homen.vsb.cz/~ber30/texty/varhany/anatomie/pistaly_akustika.htm Akustika. Dostupné z: http://www.steiner.cz/david/akustika/ Edutorium. Dostupné z: http://www.techmania.cz/edutorium/art_exponaty.php?mn1=100&mn2=431&xkat=fy zika&xser=416b757374696b61h V literatuře jsou k dispozici hlavně složitější vysokoškolská skripta, na úrovni SŠ je zpravidla problematice věnováno několik stručných kapitol v učebnici fyziky. V místní knihovně také nebyla nalezena vyhovující publikace. Z toho vyplývá, že tvorba studijního materiálu může být přínosem, zejména pak pro ty, co se v akustice chtějí vzdělávat samostudiem. Poté byl postupně, za využití internetových (i cizojazyčných) a knižních zdrojů, zpracováván důležitý výstup práce, tedy studijní materiál. Při jeho tvorbě autorka dbala na to, aby akustiku pojímal co nejkomplexněji, a přesto jasnou formou, s velkým množstvím doplňujících názorných obrázků. Nedílnou až klíčovou součástí práce byla tvorba zvukové učební pomůcky a jejích doplňků. V nahrávacím studiu byly vytvořeny nahrávky vybraných akustických jevů. Dále byly pořízeny fotografie zachycující situaci na nástroji u některých jevů. Následně 7

byly doplněny komentáři osvětlujícími dění v příslušných nahrávkách z fyzikálního hlediska a obohaceny dalšími postřehy z hudebně interpretační praxe. Aby nebyla rozebírána jen objektivní stránka hudby a její posuzování fyzikálními metodami, rozhodla se autorka zjistit, jaké fyzikální faktory ovlivňují subjektivní líbivost zvuku. Byla tedy provedena anketa mezi autorčinými spolužáky účastníky hodin hudební výchovy. Účelem bylo na základě výsledků stanovit hypotézy o vlivu vibrata, alikvótních tónů či rozsahu nástroje na líbivost hudby. Výsledky této ankety malého rozsahu jsou ve výsledném studijním materiálu rovněž zahrnuty. Byly formulovány určité domněnky s tím, že je možné je potvrdit či vyvrátit dotazováním širšího souboru respondentů. 8

3 Výstupy práce V rámci práce byl vytvořen studijní materiál shrnující podstatné skutečnosti z učiva akustiky na úrovni středních škol, jež byl rozšířen o další zajímavosti. Popsáno bylo kmitání a vlnění obecně, ale také v kontextu produkce hudby. Účelem byla názornost a výstižné formulace, klíčové vlastnosti výukového materiálu. Ke konci textu jsou navíc uvedeny knihy a webové stránky, které umožňují získávání dalších poznatků o akustice. Obrázek 1 Ukázka z vytvořeného výukového materiálu Studijní materiál byl ovšem doplněn o další komponenty, tentokrát méně typické. Právě ony by měly nejvíce navýšit zábavnost a interaktivnost výuky akustiky. Vznikly tak zvukové nahrávky akustických jevů, jež byly předvedeny pomocí violoncella. Ve studijním materiálu byly náležitě popsány a okomentovány. Některé z nich byly doplněny také fotografiemi. Mezi tyto jevy náleží například vibrato, spiccato či hra struny při zatlumení ostatních strun. Nechybělo ani stanovení nejvyššího tónu, jenž je možno na nástroji zahrát. 9

Obrázek 2 Ukázka vysvětlení určitého jevu Méně podstatnou částí, která však do celého textu také zapadá, je vyhodnocení ankety týkající se libozvučnosti tónů s různými vlastnostmi a jejich vnímání člověkem. Byly vytvořeny grafy a komentáře k nim. V této oblasti byl víceméně ponechán prostor pro další šetření, která mohou přinést komplexnější výsledky. Přesto bylo vytvořeno několik hypotéz, které mají určitý potenciál, jež je možno dále rozvíjet. Alikvótní tóny a vibrato přitlumená s vibratem 22% bez vibrata 17% s vibratem 37% přitlumená bez vibrata 24% Obrázek 3 Ukázka jednoho z vytvořených grafů 10

4 Závěr V rámci této práce byl vytvořen rozsáhlý studijní materiál, jenž zahrnuje přehledně zpracované poznatky o kmitání, vlnění a akustice. Navíc směřuje k akustickým jevům v interpretaci hudby se zaměřením na smyčcové nástroje, konkrétně violoncello. Podstatnou součástí materiálu jsou komentáře k pořízeným audionahrávkám, kde jsou vysvětleny akustické souvislosti v různých typech hry na violoncello. Dalším doplňkem jsou výsledky malé ankety související s vnímáním hudby či odkazy na doporučené zdroje vhodné pro další studium akustické tematiky. Výsledný materiál má sloužit jako shrnutí akustiky a souvisejících témat přibližně na úrovni středoškolského vzdělání. Je možné jej využít jako doplněk ve školní výuce, zejména pak jeho část týkající se vysvětlení nahrávek. Zmíněné nahrávky mohou sloužit jako zpestření hodin fyziky, zejména z toho důvodu, že ukazují akustické jevy v praxi, a tímto tedy mohou jejich podstatu studentům lépe přiblížit. Autorka však hodlá najít způsob, jak svou práci poskytnout širší veřejnosti a dát tak šanci dozvědět se netradiční formou o akustických jevech praxi také například samoukům. 11

Základy akustiky Studijní materiál pro studenty středních škol Anna Korytářová

Obsah 1 Úvod... 3 2 Kmitavý pohyb... 4 3 Harmonické řady... 9 4 Mechanické vlnění... 10 5 Zvukové vlnění a akustika... 18 6 Violoncello... 31 7 Praktické vysvětlení konkrétních akustických jevů... 34 8 Srovnání libozvučnosti tónů... 45 9 Závěr... 50 10 Rozšiřující odkazy a literatura... 51 11 Použitá literatura, zdroje obrázků... 52 12 Přílohy... 56 2

1 Úvod Akustika bývá ve školní výuce obvykle zařazena do učiva pojednávajícího o mechanickém kmitání a vlnění. Studenti by se s touto látkou měli setkat v hodinách fyziky na střední škole. Fyzika je předmětem, v němž jsou mnohdy názorné ukázky klíčem k pochopení a řeknou více nežli suché učebnicové definice, a právě proto byl vytvořen tento studijní materiál. Tato práce byla vypracována za účelem nalezení co nejnázornější formy výuky základních akustických jevů. Proto je učivo shrnuto takovým způsobem, aby se dalo co nejsnadněji pochopit, a směřuje k aplikaci poznatků z akustiky v praxi u hudebních nástrojů, které mohou být mnohým lidem blízké. Právě z praktických ukázek si studenti probírané jevy zapamatují nejlépe, proto jsou součástí práce audionahrávky konkrétních jevů demonstrovaných na violoncellu. Jsou zde i patřičně okomentovány a rovněž je vysvětlena jejich fyzikální podstata. Text je určen jednak k využití pedagogy, kteří by ve fyzice chtěli studentům středních škol či gymnázií poskytnout výuku akustiky zábavnější formou, ale mohou ji využít i studenti samouci, kteří se o akustice chtějí něco dozvědět. Práce může pomoci také jako souhrnné opakování probraného učiva akustiky. Autorce připadá ideální využít k názornému předvedení akustických jevů violoncello. Struny a tělo nástroje jsou vhodným objektem pro pozorování kmitání a vlnění. Díky smyčci je možno ukázat, jaký dopad mají různé druhy smyků na barvu či hlasitost daného tónu a jak se zvukově liší použití smyčce od brnkání neboli pizzicata. Herní vlastnosti cella zkrátka poskytují řadu možností. K práci jsou tedy připojeny zvukové nahrávky akustických jevů, jež jsou předváděny právě na violoncellu, a jejich fyzikální vysvětlení. Malým bonusem jsou rovněž výsledky ankety týkající se vnímání tónů. Celá tato práce byla napsána tak, aby dané jevy vyložila co nejpřístupnější a nepříliš náročnou formou, ale zároveň i kvalitně, protože na nabytých základech by mělo být možné dále stavět a získávat další znalosti o akustice. 3

2 Kmitavý pohyb Pohyb obecně dělíme na tři základní části: přímočarý křivočarý kmitavý (jinak také mechanické kmitání neboli oscilace) V akustice je podstatný hlavně pohyb kmitavý, neboť jej v případě, že vyvolává sluchový vjem, označujeme jako zvuk. Ten vzniká při kmitání jak v pevných, tak i v kapalných a plynných látkách. Kmitající těleso můžeme nazvat též mechanický oscilátor. O kmitání mluvíme v případě, že kmitá hmota či soustava hmotných bodů. Přítomny jsou zde tzv. pružné síly. Příkladem soustavy hmotných bodů jsou různé součásti hudebních nástrojů jako struna (třeba v případě kytary) nebo membrána (u bubnu). Kmitající těleso se pohybuje kolem určitého bodu, který nazýváme rovnovážná poloha. Těleso se pohybuje jak pod úroveň rovnovážné polohy, tak nad ní (křivka jeho pohybu tedy zasahuje do kladných i záporných hodnot). Vlivem setrvačnosti je vždy znova vychýlen na opačnou stranu. Pokud se toto těleso do daného bodu vrací pravidelně, jedná se o periodický kmitavý pohyb neboli harmonické kmitání. To je i případ strun na strunných hudebních nástrojích. Jedná se však o nerovnoměrný pohyb, jelikož rychlost tělesa se v průběhu děje mění. Harmonický pohyb hmotného bodu zavěšeného např. na pružině nazýváme volné kmitání (též vlastní kmitání), ke kterému nepřispívá žádná vnější síla. V přírodě se zde ovšem uplatňuje tření, které postupně mění pohybovou energii na teplo, tudíž volné kmitání je tlumeno a nakonec zcela ustane. Obrázek 1 Periodický kmitavý pohyb (T označuje periodu, A amplitudu, t je čas, x výchylka bodu) Obrázek 2 Tlumené kmitání 4

Harmonické kmitání můžeme charakterizovat těmito základními veličinami: doba periody T (také perioda, doba kmitu) časový úsek zahrnující jeden kmit amplituda A (případně výchylka amplitudy y m ) maximální kladná výchylka pohybujícího se bodu od rovnovážné polohy okamžitá amplituda y(t) vertikální výchylka pohybujícího se bodu v časovém okamžiku t uplynulém od počátku pohybu, s časem se mění v závislosti na funkci sinus (jak je zřetelné také na obrázku 1 na předešlé straně) Kmitání může představovat fyzikální děj, jenž střídavě mění velikost dané veličiny (např. elektrického napětí, proudu ) v závislosti na čase. Pokud kmitání zakreslíme do grafu, jeho časovým diagramem je sinusoida. Kmit je ovlivněn dvěma veličinami již zmíněnou dobou kmitu T a frekvencí (kmitočtem) f, jež reprezentuje počet kmitů za sekundu. Její jednotkou je hertz Hz (podle německého fyzika Heinricha Hertze), ale můžeme použít i zápis s 1, význam je stejný. Například v běžné elektrické zásuvce je frekvence střídavého proudu 50 hertzů, tj. perioda se zopakuje 50krát za sekundu. Kmitočet je roven převrácené hodnotě periody (jinak řečeno je nepřímo úměrný této veličině): f = 1 T Pro výpočet výchylky harmonického pohybu tělesa, které se v počátečním okamžiku nachází v rovnovážné poloze, platí tento vztah: kde y m maximální výchylka amplitudy y = y m sin ωt ωt fáze kmitavého pohybu, přičemž t je čas a ω je úhlová frekvence, kterou vypočítáme takto: ω = 2π T = 2πf kde f frekvence (kmitočet) 5

Fáze kmitavého pohybu se za sebou opožďují o určitý úhel φ a znázornění potom může vypadat tak jako na obrázku 3. Obrázek 3 Fáze kmitavého pohybu Předměty, které mohou kmitat (souhrnně oscilátory), vydávají při úderu či jiném rozpohybování daného tělesa kmitání o tzv. přirozené frekvenci, jenž je při úderu vždy stejná. Díky tomu můžeme používat ladičky (nejčastěji s frekvencí 440 Hz, tedy tzv. komorní a, jež je často využíváno k ladění nástrojů), u nichž známe frekvenci jejich kmitání, tedy víme i jaký tón vydávají, a můžeme tak podle nich ladit nástroje. Jestliže mluvíme o strunách hudebního nástroje, můžeme říci, že mezi délkou struny (ta se mění, když hráč na nástroj zmáčkne strunu v určitém bodě) a frekvencí vzniklého zvuku panuje nepřímá úměra čím kratší struna, tím vyšší frekvence. V praxi to můžeme snadno pozorovat. Čím postupuje hráč po hmatníku nástroje blíže ke kobylce a čím více tak zkracuje kmitající část struny, tím vyšší tón slyšíme. Kmitající hmotný bod disponuje celkovou energií E, která se skládá ze dvou složek, energie kinetické E k a energie potenciální E p. Kinetická energie značí energii pohybujícího se hmotného bodu, kdežto energie potenciální je rovna práci potřebné k vytlačení bodu na danou výchylku. V případě, že na hmotné body působí vnější síla (nekmitají na své přirozené frekvenci, ta je měněna vnějšími vlivy), vykonávají tzv. nucené kmity. Pokud je frekvence vnější budicí síly shodná s frekvencí soustavy, způsobí tím rezonanci této soustavy. Rezonance značí dosažení maximální možné výchylky hmoty, případně rychlost kmitání při rezonanční frekvenci. Maximum výchylky je nepřímo úměrné tlumení soustavy. Jestliže soustava koná několik nucených kmitů zároveň, dochází ke skládání kmitů. V tomto případě jsou kromě obvyklých podmínek výsledné kmity soustavy závislé také na směru, ve kterém vnější síly působí. Pomocí existence skládaných kmitů je možno vysvětlit, jak vzniká periodické a neperiodické kmitání za situace, že jsou doby period či frekvence skládaných kmitů v racionálním poměru malých přirozených čísel, vzniká periodické kmitání. Naopak poměr iracionální je příčinou neperiodického kmitání. Skládání kmitů ovšem složitějším způsobem ovlivňují také fáze kmitání. 6

Obrázek 4 Součet dvou kmitání stejné frekvence Obrázek 5 Součet (x) dvou kmitání (x 1, x 2 ) různé frekvence Za předpokladu, že dojde ke skládání dvou harmonických kmitání působících ve stejném směru a mající blízké frekvence, vznikají tzv. rázy neboli zázněje. Někdy bývá akustickou terminologií označován ráz jako kmitání o frekvenci menší než 20 hertzů a zázněj jako rozdílový tón o frekvenci větší než 20 hertzů. Výsledný ráz má také harmonický průběh a jeho frekvenci je možno zjistit pomocí výpočtu aritmetického průměru frekvencí skládaných kmitání. Jestliže se skládají dvě kmitání, vypočítáme tedy výslednou frekvenci následujícím způsobem: f = f 1+ f2 2 Rázy fungují jako určitý indikátor rovnosti frekvencí. Ovšem je nutné vědět, že při skládání kmitání se shodnými frekvencemi žádný ráz nevzniká. Lidé rázy velice dobře slyší, což výrazně pomáhá při ladění hudebních nástrojů. Kmity se však mohou skládat v různých směrech. V grafu kmitání tohoto druhu je výsledkem křivka, která patří do skupiny drah kmitání známých jako Lissajousovy obrazce. Na obrázku na další straně je uvedeno několik těchto obrazců. 7

Obrázek 6 Lissajousovy obrazce Soustav hmotných bodů je více druhů. Jednak známe soustavy se soustředěnými prvky jako je např. Helmholtzův rezonátor. Opakem jsou soustavy s rozprostřenými prvky (struna, vzdušný sloupec ). Obrázek 7 Helmholtzův rezonátor 8

3 Harmonické řady Pokud je skládáno několik sinusových kmitání, jejichž frekvence se rovnají, vznikne vždy jednotné kmitání o této frekvenci. Jestliže ale skládáme kmitání o různých frekvencích, vzniká složené kmitání, kde je nejdůležitější součet řady kmitů, jejichž frekvence jsou celistvým násobkem určité základní frekvence f. Zmiňovanou skutečnost můžeme stručně vyjádřit takto: f 1 = f, f 2 = 2f, f 3 = 3f, Výsledné kmitání je periodické a jeho frekvence odpovídá základní frekvenci. Jedná se o harmonickou řadu. Její části jsou základní (první) harmonická složka f 1 a vyšší harmonické složky f 2, f 3 atd., označované někdy jako alikvótní tóny. Tyto složky, případně konkrétní tóny, představují různé intervaly. Intervaly mezi: 1. a 2. harmonickou - oktáva 2. a 3. harmonickou - kvinta 3. a 4. harmonickou - kvarta 4. a 5. harmonickou - velká tercie Skládání harmonických tónů je označováno harmonická syntéza nebo také superpozice. Opačný postup, rozklad harmonických tónů, je znám pod pojmem harmonická analýza. Pokud je některá z harmonických složek výraznější než ostatní (podílí-li se více na výsledném tónu), nazýváme ji formant. Zvláštním jevem je to, že někdy můžeme slyšet tón o určité frekvenci, která se však v reálu mezi složkami daného tónu nevyskytuje. Představme si tón o frekvenci 110 hertzů, jenž má další alikvóty 220 hertzů, 330 hertzů, 440 hertzů I když některá z těchto alikvót chybí, stále je výsledný tón stejného kmitočtu. To samé však platí i v případě, že chybějící složkou je samotná složka s frekvencí 110 hertzů, neslyšíme 220 hertzů, jak bychom očekávali. Klíč je v tom, že kdyby byla výsledná frekvence 220 hertzů, byly by další harmonické složky jiné a rozhodně by neobsahovaly frekvence 330 hertzů či 550 hertzů. Proto se za absence základního tónu složky zformují do takové podoby, že slyšíme tón mající frekvenci 110 hertzů. Vzájemné uspořádání frekvenčních složek daného signálu nazýváme souhrnně frekvenční struktura. Její numerický či grafický zápis je označován jako frekvenční spektrum. 9

4 Mechanické vlnění V případě, že soustava hmotných bodů nekmitá jako celek a jednotlivé části se různě vychylují, mluvíme o vlnění, případně chvění (od vlnění se liší tak, že při tomto ději část hmotných bodů kmitá a část je úplně v klidu). Kmitající soustava má právě jednu rezonanci, kdežto u vlnění jich nalezneme celou řadu. Jestliže má toto látkové prostředí, v němž se vlnění šíří, ve všech směrech shodné fyzikální vlastnosti, nazýváme jej izotropní prostředí. Vlnění se zde šíří do všech směrů stejnou rychlostí. Nejjednodušší šíření vlnění je pak v bodové řadě. Dále existuje prostorové vlnění neboli šíření vln v různých směrech, které je možno vysvětlit například na situaci, kdy hodíme kámen do vody. Na hladině se vytvářejí kruhy a mohou rozhoupat spadané listy plovoucí na vodě. Šíření vln není šíření látky (zde vody), vlněním je přenášena samotná energie, která pak rozhoupe plovoucí listy. Prostředí se v tomto případě nikam neposouvá. U vlnění se můžeme setkat s pojmem vlnoplocha. Značí geometrické místo bodů v izotropním prostředí, do kterých se vlnění dopravilo za stejný čas z jednotného zdroje, a všechny tyto body kmitají stejně. Rozlišujeme vlnovou a kulovou vlnoplochu. První zmíněná je mnohem častější, zdroj vlnění je zde menší než vlnová délka. U rovinných vln, které jsou využívány hlavně v úvahách, je tomu právě naopak. Obrázek 8 Typy vlnoplochy (vlevo kulová, vpravo rovinná) K vlnoploše se rovněž vztahuje tzv. Huyghensův princip, který říká, že každý z bodů vlnoplochy je zdrojem vlnění, ze kterého se šíří kulová vlna interferující s dalšími vlnami. Tím vzniká poněkud složitější soustava kulových vlnoploch kolem hlavního zdroje. Obrázek 9 Huyghensův princip u rovinné (vlevo) a kulové vlnoplochy (vpravo) 10

Vlnění probíhá v látkách všech skupenství, jelikož pro jeho šíření je nejdůležitější existence vazeb mezi částicemi dané látky. Jedině díky nim se mezi atomy či molekulami přenáší energie kmitavého pohybu. Prostředí, v němž se vlnění šíří, označujeme jako pružné prostředí. Daný jev můžeme demonstrovat i pomocí známého experimentu s kyvadly řada kyvadel (můžeme si je představit jako atomy hmoty) je spojena vazbami (představme si je podobně jako chemické vazby mezi atomy). Pokud první z kyvadel vychýlíme z rovnovážné polohy a necháme kmitat kolmo k ose, postupně se pohyb přenáší na další a další kyvadla vzniká postupné vlnění příčné, které postupuje konstantní rychlostí. Kyvadla v pohybu můžeme vidět na obrázku 10. Největší kladnou výchylku někdy nazýváme vrch a zápornou důl. Obrázek 10 Postupné vlnění Vzdálenost, kterou se vlnění urazilo za periodu T, nazýváme vlnová délka λ. Jinak řečeno, je to vzdálenost dvou bodů kmitajících se stejnou fází (tj. se stejnou výchylkou dobře viditelné na obrázku výše). Definujeme ji vztahem: λ = c. T = c f kde c rychlost šíření (v m/s) T doba periody (v sekundách) f frekvence (v Hz) 11

Na obrázku 11 můžeme vidět vznik postupné vlny. Za povšimnutí stojí, že kmitání všech bodů má stejnou amplitudu a stejnou frekvenci, liší se jen fáze jejich kmitání. Konkrétní bod má také, pokud zaneseme vlnu do grafu, stále stejnou souřadnici x, ale mění se výchylka y. Obrázek 11 Postupné vlnění příčné znázorněné řadou bodů Kromě příčného postupného vlnění však existuje taktéž postupné vlnění podélné (viz obrázek 12). Vzniká v těch látkách, které vykazují pružnost při změně objemu můžeme je stlačovat a rozpínat. Právě tímto typem vlnění se v pružných látkách šíří zvuk. Zůstaneme-li u analogie s řadou kyvadel, tentokrát budou kmitat ve směru osy (takže ke svým sousedům a zase od sebe). Jedná se o zhušťování a zřeďování bodů poblíž míst s nulovou výchylkou. Obrázek 12 Postupné vlnění podélné 12

Obrázek 13 Částice vzduchu jsou vlněním posunovány tak, že vznikají místa s hustší i řidší koncentrací těchto částic Důležité je, že v pevných látkách se šíří vlnění příčné i podélné, v kapalinách a plynech má tuto možnost pouze vlnění podélné. Když se vrátíme k příměru s kamenem dopadajícím do vody, můžeme si položit otázku co se stane, pokud ve stejnou chvíli dopadnou na hladinu dva kameny? Jaký vliv to bude mít na šíření vlnění? Dojde tady ke skládání dvou vlnění nebo také interferenci. Amplituda výsledného vlnění je největší tam, kde se setkávají stejné fáze vlnění a nejmenší tam, kde jsou fáze opačné. Tento jev se často týká elektromagnetického vlnění. Obrázek 14 Interference vlnění Když se dvě podobné vlny setkají a interferují, je výsledná amplituda v průběhu jejich setkání dvakrát větší než u jedné vlny. Tento děj je patrný z obrázku 15. Obrázek 15 Dvě vlny vlevo před, během a po interferenci 13

V takovém případě mluvíme o konstruktivní interferenci. Známe ještě další typ, se kterým se setkáme v případě, že vlna není orientována nahoru, jako u předchozího obrázku, ale dolů. Jedná se vlastně o to samé, jen obrácené opačným směrem. Vlny však nejsou obráceny vždy na stejnou stranu. Jedna může mířit nahoru a druhá dolů. Nyní je to destruktivní interference. Tentokrát se výsledná vlna nesčítá, ale naopak vyruší, tak jako je to na obrázku 16. Obrázek 16 Průběh destruktivní interference Obrázek 17 Interferogramy na desce Když položíme prst přesně do středu struny (tzn. ve stejné vzdálenosti od obou úchytů struny), je to právě na uzlu stojatého vlnění, což je místo, které je během kmitání struny stále v klidu. Stojaté vlnění je důsledkem postupného vlnění vzniká při interferenci dvou postupných vlnění se stejnými vlastnostmi proti sobě. Na struně se tak ve stejný moment nacházejí místa, která nekmitají vůbec, což jsou zmíněné uzly. Místa naopak kmitající s největší amplitudou nazýváme kmitny stojatého vlnění. Uzly jsou od sebe na struně vždy ve vzdálenosti λ/2 a kmitny jsou vzdáleny λ/4 od uzlu. Tím, že položíme prst doprostřed struny (hrajeme takzvaný flažolet) a strunu rozezníme, získáme tón dvojnásobné frekvence struna totiž kmitá ve dvou samostatných částech a tento tón je o oktávu vyšší než prázdná struna. Jedná se také o první alikvótní tón (jinak první vyšší harmonický). 14

Existují rovněž kmitny tlaku, které se nacházejí v uzlech výchylky. Uzly tlaku jsou naopak umístěny v kmitnách výchylky. Průběh akustické rychlosti je vzhledem k tlaku posunut o čtvrtinu vlnové délky. Touto rychlostí kmitají částice prostředí, avšak pozor, nejedná se o rychlost šíření vlnění. Jestliže vlna doputuje na konec předmětu (označujeme jako rozhraní s jiným prostředím), kterým se pohybuje, známe několik možností jejího dalšího chování, konkrétně čtyři odraz (také reflexe, vlna se odrazí a míří zase zpátky), ohyb (jinak difrakce, jedná se o jakési ohnutí kolem překážky), transmise (vlna projde dále do nového prostředí) a lom (neboli refrakce, probíhá obvykle společně s transmisí, dochází ke změnám rychlosti a směru vlny). Obrázek 18 Odraz vlny Obrázek 19 Příklady ohybu (vlevo můžeme pozorovat akustický stín za překážkou, kam se vlnění nedostalo) Obrázek 20 Průběh transmise zároveň s lomem 15

U odrazu navíc rozlišujeme dva jeho druhy. Setkat se můžeme s reflexí s uzavřeným koncem (obrázek 21) či naopak s koncem otevřeným (obrázek 22). Z obrázků je velmi dobře patrný rozdíl v odražené vlně u pevného konce se vlna obrátí dolů. Za poznámku také stojí, že tyč na obrázku, od které se vlnění odráží, by měla při odrazu mírně vibrovat. Vlny na uzavřeném konci jí totiž postupně předávají svou energii (z praxe víme, že vlny třeba když rozpohybujeme vodu v umyvadle jsou stále menší a menší, až nakonec přestanou být patrné). V případě otevřeného konce bývá energie předána vzduchu. Chceme-li uvést příklad odrazu v konkrétním případě, může to být u některého z dechových nástrojů dochází k částečnému odrazu a transmisi. Někdy vlnění dorazí k parabolicky zakřivené ploše, kde dochází k zaměření téměř veškerého vlnění do jednoho bodu a tím se tzv. amplifikuje. Takže nasloucháme-li u fokálního bodu, uslyšíme i zvuky, které bychom za normálních okolností nevnímali (šepot v dálce apod.). Obrázek 21 Odraz s uzavřeným koncem Obrázek 22 Odraz s otevřeným koncem U difrakce zase platí, že čím má vlna větší vlnovou délku, tím výraznější ohyb způsobí. Proto si u zvuků můžeme říci jednoduché pravidlo hluboké zvuky (mající větší vlnovou délku) jsou schopny se odrazit dále než vysoké zvuky (s kratší vlnovou délkou). V živočišné říši tuto výhodu využívají sloni. Tím, že vydávají zvuky spadající do infrazvuku (tedy pro člověka neslyšitelné), spolu komunikují na velké vzdálenosti. Netopýři naopak vydávají ultrazvuk, neboť je to výhodné pro provádění echolokace (detekování jiných živočichů podle odražených vln). Tím, že je u těchto vln malá vlnová délka, je zaručeno, že vlny se budou spíše odrážet než ohýbat. Stojaté vlnění se však od postupného významně liší tím, že body díky němu kmitají s různou amplitudou a nepřenáší se jím energie, jen se u částic mění polohová energie na pohybovou a zase zpátky. Je to typický jev u hudebních nástrojů. Konkrétně u smyčcových nástrojů se jedná o příčné stojaté vlnění struny, které také označujeme jako chvění. 16

Obrázek 23 Flažolety, uzly, kmitny a frekvence Uzly a kmitny však nalezneme nejen na strunách, ale i na deskách (jako třeba na těle smyčcového nástroje) či blánách (např. buben). Pokud daný objekt rozkmitáme a posypeme jej sypkou látkou (písek, nadrcený korek, prášek), tak se tato látka uspořádá do určitého obrazce. Zvolená látka se totiž shromažďuje na uzlech. Vzniknuvším obrazcům se obecně říká Chladniho obrazce. Znát vlastnosti různých materiálů je důležité především pro elektroakustiku, hlavně co se týče membrán reproduktorů. Obrázek 24 Chladniho obrazce 17

5 Zvukové vlnění a akustika Zvukové vlnění je součástí vlnění mechanického. Je předmětem zkoumání vědy zvané akustika. Ta má různé podobory: fyzikální akustika - zabývá se zvukem, šířením, pohlcováním zvuku hudební akustika - studuje zvuk v kontextu s hudbou a jejími potřebami fyziologická akustika - zkoumá přijímání zvuků lidským sluchovým orgánem a jeho produkcí v hlasovém orgánu stavební akustika - řeší akustické podmínky v místnostech a sálech elektroakustika - zabývá se záznamem zvuku či jeho reprodukcí pomocí elektřiny psychoakustika - zkoumá procesy, jež se odehrávají v našem vědomí díky působení zvuku geometrická akustika - řeší putování zvukových paprsků, jež se odrážejí od rozličných druhů ploch Hudební signály mohou být přirozené (hudební nástroj, lidský hlas) i umělé (generované elektrickým obvodem). Pokud v akustice mluvíme o organickém celku, myslíme tím hráče a nástroj dohromady, neboť propojení nástroje s hráčem se velmi značně promítá do výsledku. Hudební nástroje můžeme rozdělit na: chordofony strunné nástroje aerofony dechové nástroje membranofony blanozvučné nástroje (buben) idiofony samozvučné nástroje (tyč, trubice, deska) Každý akustický systém by měl mít tři části: excitátor (někdy také generátor, budicí mechanismus systému) oscilátor (kmitající část) rezonátor (zesiluje a slouží k vyzařování zvuku) 18

Tabulka 1 Hudební nástroje a jejich akustický systém NÁSTROJ EXCITÁTOR OSCILÁTOR REZONÁTOR housle smyčec struna ozvučná skříňka kytara prst struna ozvučná skříňka harfa prst struna ozvučná skříň klavír kladívko struna ozvučná deska cembalo brk struna ozvučná deska flétna proud vzduchu vzdušný jazýček vzdušný sloupec hoboj proud vzduchu třtinový strojek vzdušný sloupec trubka proud vzduchu rty hudebníka vzdušný sloupec tympán palička membrána vzdušná dutina vibrafon palička kámen vzdušný sloupec brumle prst kovový jazýček dutina úst zpěvák proud vzduchu hlasivky soustava dutin Obrázek 25 Příklad oscilogramu zachycujícího průběh zvuku Termínem zvuk označujeme mechanické vlnění, jež jsme schopni vnímat sluchem. Vlnění pod touto škálou nazýváme infrazvuk, naopak nad ní je ultrazvuk. U člověka je vnímání zvuku možné v intervalu asi od 16 do 16 000 hertzů (je to velice individuální, každý člověk může mít jiné rozpětí frekvence slyšitelných zvuků). Psi mají větší rozsah, a to cca 50 až 45 000 hertzů. A delfíni jsou schopni zachytit i zvuky o kmitočtu 200 000 hertzů. To sloni zase mají tento rozsah nezvykle nízko, slyší zvuky o frekvenci 5 až 10 000 hertzů. 19

Infrazvuk je dobře šiřitelný hlavně ve vodě a někteří mořští živočichové jsou schopni jej zachytit. I když člověk infrazvuk neslyší, může pro něj být nebezpečný, jelikož při frekvenci podobné kmitočtu tlukotu srdce rozhodně není pro lidské tělo prospěšný. Ovšem nevnímání tohoto druhu zvuku má rovněž výhodu jinak bychom slyšeli nepřetržitý hluk vydávaný prostředím, dokonce i šumění naší vlastní krve. Ultrazvuk na rozdíl od nás vnímají různá zvířata včetně psů. Je velmi přínosný pro potřeby medicínské diagnostiky (i v mnohých dalších oblastech) nejznámější využití je u kontroly vnitřních orgánů. Do těla se vysílá ultrazvukový signál o vysoké frekvenci, který se následně odrazí od vnitřností. Jedním z důvodů jeho hojného užívání je také to, že není škodlivý jako rentgenové paprsky. Přesto u něj hrozí různé druhy poškození vyšetřovaného organismu, ať už mechanické (potrhání buněk při určitých frekvencích) či kupříkladu chemické (změny ve struktuře některých důležitých chemických látek, znehodnocení enzymů). Při trvalém vlivu ultrazvuku na organismus může nastat smrt. Zvuk se šíří výhradně pružným látkovým prostředím, ale nezáleží na skupenství. Nejčastěji se jedná o vzduch, ovšem není vyloučeno ani šíření vodou (na velmi velké vzdálenosti, což je využíváno některými vodními živočichy) i pevnými tělesy. Rychlost vlny na struně je možno vypočítat pomocí vzorce: v = ( T μ ) 0,5 kde T síla vychylující strunu v newtonech μ lineární hustota struny, kterou je možno zjistit díky vzorci: μ = m L kde m hmotnost v kilogramech L délka v metrech 20

Vlnění můžeme také charakterizovat jako přenos energie. Jednotlivé částice hmoty získávají určitou energii, kterou předávají svým sousedním částicím. Existuje několik druhů přenosu této energie. Může se jednat o příčné vlnění částice se zvedají ve vlně kolmo ke směru jejího pohybu. Vzniká při šíření zvuku v pevných látkách. Obrázek 26 Příčné vlnění Dalším typem je podélné vlnění, kdy se částice pohybují ve stejném směru jako vlna; nejlépe to lze vidět na obrázku 27. Jako podélné postupné vlnění se šíří zvuk ve vzduchu, jenž se střídavě stlačuje a rozpíná. Obrázek 27 Podélné vlnění Také známe povrchové vlnění, během jeho průběhu se částice pohybují po kružnici. Tento typ vlnění můžeme zaznamenat na pružině. Obrázek 28 Povrchové vlnění 21

Rychlost zvuku používaná ve výpočtech činí obvykle 340 m/s. Ve skutečnosti však tato hodnota vždy neplatí, neboť záleží na momentálních podmínkách jako je teplota či vlhkost (s tím souvisí i hustota vzduchu, která se na šíření zvuku jistě podepíše). Můžeme si všimnout, že je značný rozdíl v tom, když dva lidé chytnou strunu a je rozeznívána a když ji jedním z jejích konců připevníme k ozvučné skříňce (např. tělo kytary). V druhém případě je výsledný zvuk mnohem hlasitější. Struna totiž přinutí ozvučnou skříňku, aby začala vibrovat na stejné přírodní frekvenci, a tím zvuk umocní. Zvuková vlna představuje periodické rozpínání a stlačování pružného prostředí, ať už se jedná o jakýkoli materiál. Proto můžeme ušima vnímat změny atmosférického tlaku jako určitý zvuk. Čím jsou změny markantnější, tím se více rozkmitá ušní bubínek. Toto je také příčinou známého zaléhání uší. Lidské uši jsou vůbec podivuhodný orgán. Umožňují nám ve spojení s mozkem rozeznávat rozličné vlastnosti zvuku (co to je za zvuk, kdo je jeho původcem, jak je hlasitý). Ucho se skládá ze tří částí vnější, střední a vnitřní. Vnější ucho zvuk zachycuje a vede do dalších částí sluchového ústrojí. Ve středním uchu se přemění energie zvukové vlny na vibrace, které zamíří do vnitřního ucha. Tam se nacházejí nervy přenášející informace o zvuku do mozku, kde jsou vyhodnocovány. Ve vnitřním uchu se již signál šíří na rozdíl od předchozích oblastí kapalinou. Pro úspěšnost tohoto procesu jsou nezbytné tři malé kůstky nacházející se ve středním uchu kladívko, kovadlinka a třmínek, společně s drobnou blánou, bubínkem. Bubínek vibruje, když do něj narážejí zvukové vlny a ty pak přecházejí v podobě zmíněných vibrací do vnitřního ucha. Zdravý člověk má binaurální slyšení tj. zvuky zaznamenává pomocí páru uší. Díky tomu obecně přijímáme zvuky mnohem lépe, než kdybychom měli k dispozici jen jeden přijímač. Formě vjemu hudebních signálů pomocí sluchu říkáme percepce. K dobrému vnímání zvuků stačí jedno zdravé ucho, ale k orientaci odkud zvuk přichází, jak je vzdálen apod. je potřeba dvou přijímačů. Sluchový vjem můžeme definovat jako odraz vlastností kmitání v našem vědomí. To jak daný tón vnímáme, záleží na frekvenci, intenzitě a také délce trvání vjemu. Absolutní výška označuje výšku tónu, jehož frekvence je dána frekvencí čistého tónu, u něhož při našem subjektivním posuzování detekována stejná výška. Má-li někdo absolutní sluch, znamená to, že umí spolehlivě a přesně určit výšku tónu. Relativní výšku zase vnímáme při posuzování vzdálenosti (intervalu) mezi dvěma tóny, relativní sluch tedy znamená, že je člověk schopen určit konkrétní interval. Zvuky posuzujeme subjektivně (výška, hlasitost, barva faktory závislé na ostatních) a objektivně (frekvence, amplituda, intenzita, časový průběh faktory nezávislé na ostatních). To, jakou výšku tónu slyšíme, je určeno vztahy mezi frekvencemi jednotlivých vyšších harmonických složek, nikoli nejnižší ze souboru složek (takto to funguje jedině u ideálního celočíselného uspořádání). 22

Obvykle dokážeme sluchem rozlišit nebo alespoň odhadnout, jaký nástroj slyšíme. Podivné však je, že klíčové jsou pro nás takové faktory jako nasazení tónu (s hluky a šumy vydávanými například smyčcem) a hlasitostí v jeho průběhu (třeba u klavíru je typické, že na začátku zní prudce a pak postupně utichá). Bylo to prokázáno tím, že lidem byly pouštěny nahrávky tónů s tím, že začátek nezazněl. Nástroje pak tito lidé poznávali hůře, než když mohli slyšet také ruch provázející začátek. Obrázek 29 Lidské ucho Lidský hlas vzniká podobně jako zvuk v jazýčkové píšťale. V hrtanu jsou dvě pružné blány hlasivky, které jsou při hovoření a zpívání napnuté tak, že je mezi nimi úzká hlasová štěrbina. Proudem vzduchu z plic se hlasivky rozkmitají, čímž v prostoru na jejich druhé straně vzniká pravidelné kolísání tlaku vzduchu. To se šíří přes ústa do okolí v podobě zvukového vlnění. Výška hlasu závisí na délce hlasivek (u mužů asi 18 milimetrů, u žen asi 12 milimetrů) a jejich napínání, které se působením příslušného svalstva může měnit. Tyto hranice určují výškový rozsah lidského hlasu, který se rovná asi dvěma oktávám, které mohou být u různých osob v různých polohách. Významný podíl má také rezonance. Rezonátor některé frekvence zesiluje, jiné potlačuje. Pomocí artikulace měníme tvar, velikost a vzájemný poměr prostorů, v nichž k rezonanci dochází, a tím i výsledný zvuk. Základní zpěvné hlasy jsou soprán, alt (ženské), tenor, baryton a bas (mužské). 23

Obrázek 30 Hlasové ústrojí Zvuk vzniká chvěním pružných těles, které proniká do okolního prostředí, rozhýbává jeho molekuly a díky tomu se šíří jako podélné postupné vlnění. Například vzduch můžeme označit za nezbytný, neboť ve vakuu (tedy za absence molekul vzduchu) nemá zvuk šanci se šířit. Hudební zvuky nebo tóny bývají periodické, pokud je však zvuk neperiodický, jedná se o hluk. Zajímavé je, že pokud tento poznatek uplatníme při sledování průběhu lidské řeči, zjistíme, že samohlásky (periodické) můžeme označit za tón, ovšem souhlásky (neperiodické), jsou vlastně hlukem. Pojem komplexní tón vyjadřuje sice periodický signál, který však nemá sinusový průběh a vzniká hluk či šum. Hudební nástroje, zejména dechové, pracují při tvorbě zvuku se vzduchovým sloupcem. U flétny můžeme říci, že je tento sloupec celkem přímý, oproti tomu u lesního rohu je kovová trubice tvořící nástroj výrazně zakroucená. Konec dechového nástroje je otevřen, aby mohl volně vibrovat. Jiné je to však v místě, kde hráč nástroj rozeznívá nástroj. Jestliže jsou oba konce nástroje otevřené, mluvíme o tom, že využívají otevřený vzduchový sloupec (jako zmíněná flétna). Proto budou oba konce vibrovat, neboť se zde nacházejí kmitny. Obrázek 31 Kmity v otevřeném vzduchovém sloupci (zleva 1., 2. a 3. harmonická) Ovšem nástroje s uzavřeným vzduchovým sloupcem (žesťové nástroje) mají u uzavřeného konce uzel a u otevřeného konce kmitnu. U takovéhoto typu sloupce se nevyskytují sudé harmonické složky, neboť kvůli uzlu u uzavřeného konce to zkrátka není možné. 24

Obrázek 32 Kmity v uzavřeném vzduchovém sloupci (zleva 1., 3. a 5. harmonická) Někdy se můžeme setkat se známým jevem jménem ozvěna, jenž je způsoben odrazem zvuku od rozsáhlejší překážky. Je způsoben vlastností lidského sluchu, jelikož rozlišíme dva po sobě jdoucí zvuky (interval asi 0,1 s). Vzniká však pouze za určitých podmínek záleží na vzdálenosti od překážky. Někdy ozvěnu provází i dozvuk, který může za delší trvání zvuku. Proto je potřeba velké místnosti, jako třeba sály určené hudební produkci, projektovat s ohledem na tyto faktory, které mohou rušit a zkreslovat zvuky. Opakem dozvuku je názvuk, během kterého dochází k nárůstu hustoty zvukové energie v prostoru do ustálené hodnoty. Někdy se setkáme s pojmem vřelost zvuku. Vzniká tak, že doba dozvuku je mírně delší a pod frekvencí 250 hertzů. Světlost zvuku (neboli brilance) také značí nárůst dozvuku, ale tentokrát nad 2 kilohertze. V koncertních sálech si můžeme povšimnout, že na stěnách bývají spíše hrubší než hladké materiály. Je to kvůli tomu, že od hladkého povrchu se zvuk odráží takovým způsobem, že se nám bude zdát téměř ztracený. Ovšem v případě stěn pokrytých hrubým materiálem je zase šíření zvuku takové, že nám bude naopak připadat, jako by jej místnost byla plná. Výška tónů je vždy určena jejich frekvencí. Vyšší tóny mají tuto veličinu větší zvukové vlny narazí na náš ušní bubínek vícekrát za sekundu. Pokud současně probíhá více harmonických kmitání s rozdílnými frekvencemi, absolutní výška výsledného tónu je určena frekvencí nejnižšího kmitání. Ostatní složky tónů jsou nazývány vyšší harmonické tóny a dotvářejí charakter tónu, barvu neboli témbr. Barva je naše subjektivní představa vnímání zvuku a u smyčcových nástrojů je ovlivněna i šumem. Pokud obsahuje tón jen jednu frekvenci, říkáme, že zní velmi čistě (je to jednoduchý tón, ten s dalšími složkami označujeme jako složený tón). S přibývajícími složkami nám připadá bohatší, musí ale být ve vhodném matematickém poměru. Obrázek 33 Graf průběhu složeného tónu 25

O tom, které vyšší harmonické frekvence budou převážně zastoupeny ve výsledném zvuku, rozhoduje velkou měrou to, jak nástroj rozezníváme. Záleží na tom, jestli strunu vybudíme smyčcem, brnknutím nebo třeba úderem kladívka. Při užití tvrdšího budiče struny bývá zvuk velmi ostrý, naopak pokud ji uvedeme do kmitavého pohybu prstem, bude jemnější. Někdy zaznívá více tónů naráz akord. Ten nám může znít příjemně a libozvučně, ale jiný zase vyzní velmi neharmonicky. Záleží na tom, jaké jsou mezi tóny akordů hudební intervaly, které jsou vyjádřeny poměrem mezi frekvencemi dvou tónů. Asi nejznámější příjemný akord je oktáva, kde je poměr frekvencí 2:1 oktáva má dvojnásobnou frekvenci prvního tónu primy. Když si graficky znázorníme rozestupy frekvencí a rozestupy intervalů, zjistíme, že mezi frekvencemi oktáv jsou různé vzdálenosti, ale intervaly jsou shodné jednotky. Proto také intervaly existují, protože shodné vzdálenosti mezi oktávami mnohem přesněji odpovídají tomu, jak tóny slyšíme my. Obrázek 34 Grafické znázornění rozestupů frekvencí oktáv Obrázek 35 Grafické znázornění rozestupů intervalů V tabulce 2 jsou vypsány základní intervaly do oktávy a názorně popsané vzdálenosti mezi tóny. Existují ještě vyšší intervaly (nona, decima, undecima ), ale nejsou příliš časté. V tabulce však ani tak není vyčerpávající výčet. Intervaly dělíme na čisté (prima, kvarta, kvinta, oktáva), malé a velké (do obou patří sekunda, tercie, sexta a septima). Čisté intervaly mohou být zvětšené či zmenšené (s křížkem nebo béčkem), malé intervaly však můžeme pouze zmenšit (béčkem) a velké jedině zvětšit (křížkem). Takové intervaly nazýváme alterované (změněné) intervaly. Tabulka 2 Intervaly do oktávy název intervalu vzdálenost od 1. tónu ve stupnici příklad ve stupnici C dur prima = vzdálenost prvního tónu (c - c) sekunda = vzdálenost druhého tónu (c - d) tercie = vzdálenost třetího tónu (c - e) kvarta = vzdálenost čtvrtého tónu (c - f) kvinta = vzdálenost pátého tónu (c - g) sexta = vzdálenost šestého tónu (c - a) septima = vzdálenost sedmého tónu (c - h) oktáva = vzdálenost osmého tónu = oktáva + prima (c - c) 26

Ještě podrobnější výčet intervalů si můžeme prohlédnout v tabulce 3. Nejlépe nám obvykle zní intervaly čisté, jak napovídá už jejich název. Tabulka 3 Kompletní přehled intervalů tóny intervaly ekvivalentní intervaly his = c zvětšená septima = čistá oktáva h = ces velká septima = zmenšená oktáva ais = hes =b zvětšená sexta = malá septima a = heses velká sexta = zmenšená septima gis = as zvětšená kvinta = malá sexta g = asas čistá kvinta = zmenšená sexta fis = ges zvětšená kvarta = zmenšená kvinta eis = f zvětšená tercie = čistá kvarta e = fes velká tercie = zmenšená kvarta dis = es zvětšená sekunda = malá tercie d = eses velká sekunda = zmenšená tercie cis = des zvětšená prima = malá sekunda c = deses čistá prima = zmenšená sekunda Tabulka 4 Poměry intervalů interval prima malá sekunda velká sekunda malá tercie velká tercie čistá kvarta poměr 1:1 16:15 9:8 6:5 5:4 4:3 interval čistá malá sexta velká sexta malá velká oktáva kvinta septima septima poměr 3:2 8:5 5:3 9:5 15:8 2:1 To, že některé intervaly nám znějí dobře a jiné hůře, má logické opodstatnění. Zakreslíme-li si do grafu časový průběh frekvencí jednotlivých tónů akordu a jejich sinusoidy se vždy v určitém intervalu setkávají, jedná se o velmi libozvučný konsonantní zvuk. Pokud se ale tyto křivky nesetkávají, zní výsledný zvuk až nepříjemně neboli disonantně. Matematika je s tedy s hudbou skutečně provázána. Někteří hudební skladatelé na to při skládání svých děl mysleli a využívali ve svých kompozicích např. Fibonacciho posloupnost 1, 1, 2, 3, 5, 8, 13, 18, 31, atd. To souvisí také s číslem ϕ, známějším pod pojmem zlatý řez, který využívali i jiní umělci, například malíři. U zvuku jsme schopni rozlišit také hlasitost a intenzitu. Lidé hlasitost vnímají subjektivně, protože záleží na citlivosti sluchu konkrétního jedince. Naše ucho je obvykle nejcitlivější na zvuky s frekvencí 700 Hz až 6 khz. Zvuky mimo tento interval obvykle vnímáme málo nebo vůbec. Také kvůli odlišné citlivosti lidského ucha byl 27

pro porovnávání hlasitosti různých zvuků zaveden tzv. referenční kmitočet o hodnotě 1 khz. V hudbě se užívá tzv. komorní a o kmitočtu 440 Hz. Zvuk o této frekvenci můžeme slyšet kupříkladu v podobě signálu hlásícího čas v rozhlasovém vysílání. V případě hlasitosti je nutné si uvědomit zásadní věc dva houslisti hrající identický tón nevyprodukují zvuk o dvakrát větší hlasitosti než jeden houslista. Obvykle se uvádí, že takové hlasitosti dosáhne deset houslistů. Jestliže by chtěli zahrát tón čtyřikrát hlasitější, muselo by jich tedy být sto. Vysvětlení tohoto jevu však není nijak složité, vlastně i docela logické. Když jeden hráč zahraje tón, je to oproti předešlému tichu výrazný rozdíl. S dalšími přibývajícími hráči je sice malý rozdíl znát, ale také se stále zmenšuje. Z praxe nám připadá samozřejmé, že když hraje padesát houslistů stejný tón, nepostřehneme, že se k nim přidal další. Jestliže chceme zvuk objektivně hodnotit, musíme vyjít z toho, že šíření zvukového vlnění úzce souvisí s přenosem energie. K přijímači zvuku, třeba lidskému uchu, se ale nedostane stejné množství energie zvukového vlnění ΔE, jež vyjde z vysílače zvuku. Čím větší část této energie se přenese z vysílače do přijímače za čas ΔT, tím je vyšší akustický výkon P daného zvukového vlnění. Udáváme jej ve wattech (W). P = ΔE ΔT I díky této veličině jsme schopni dále určit intenzitu zvuku I. Určujeme ji pomocí plochy ΔS, kterou projde kolmo energie reprezentující akustický výkon. Jednotkou intenzity je watt na metr čtverečný W/m 2. Za normálních podmínek se s rostoucí vzdáleností od zdroje zmenšuje s druhou mocninou dané vzdálenosti. I = ΔP ΔS Zvuky o určitém akustickém výkonu jsme schopni slyšet, jiné ne a další jsou pro náš sluch nesnesitelné. Práh slyšení (velmi slabý zvuk, který ale naše ucho zaznamená) činí 1 pikowatt, tedy 10 12 W. Nesnesitelné a pro ucho bolestivé zvuky začínají na výkonu 1W, který je nazýván práh bolesti. Poměr mezi těmito dvěma hodnotami je tedy evidentně obrovský. Abychom mohli poměr akustického výkonu zaznačit jednodušeji, je v logaritmické stupnici v jednotkách bel se značkou B. Když se držíme tohoto způsobu, zapíšeme práh bolesti hodnotou 12 B. V praxi je však mnohem častěji využíván decibel db. Touto jednotkou bývá vyjádřena i hladina akustického výkonu L w. V db zde je vyjádřen poměr akustického výkonu P k výkonu P 0 označujícím práh slyšení (0 db, práh bolesti je pak 120 db). L w = 10 log P P 0 28

Je nutné chránit si sluch před příliš velkou intenzitou zvuku, neboť si neopatrností můžeme přivodit poruchu sluchového orgánu. Velmi hlasité zvuky mají negativní vliv na nervovou soustavu, mohou způsobit dokonce prasknutí bubínku a znehodnotit celý sluchový orgán. Právě proto jsou stavěny protihlukové stěny u vytížených dopravních komunikací a také ostatní zdroje většího hluku jsou dnes sráženy pokud možno na minimum. Snadno pozorovatelný je tzv. Dopplerův jev. V praxi často můžeme zaznamenat, že když se k pozorovateli blíží těleso vydávající hluk (může to být rychle jedoucí auto), nejprve slyšíme vysokou frekvenci daného hluku a když objekt pozorovatele mine, najednou frekvence velmi znatelně a prudce klesne. Jev vzniká při vzájemném pohybu zdroje a přijímače zvuku. Při přibližování se frekvence výsledného zvuku zvyšuje. Když se tyto objekty od sebe vzdalují, je naopak nižší. Může nastat i situace, kdy pohybující se těleso překoná rychlost zvuku. Toho jsou schopna nadzvuková letadla, o kterých říkáme, že se pohybují nadzvukovou rychlostí, kterou obvykle označujeme Machovým číslem M. Při takovém pohybu vzniká rázová vlna (prudké stlačení vzduchu), kterou slyšíme v podobě zvuku nazývaného akustický třesk (jinak také supersonický), jenž připomíná abnormálně hlasitý výstřel. Celkem rozlišujeme u Dopplerova efektu 3 základní typy: 1) Zdroj a prostředí v klidu, pozorovatel v pohybu f 1 = c ± v c. f c rychlost šíření vlnění; v rychlost pohybu pozorovatele (znaménko + při pohybu ke zdroji, - od zdroje); f frekvence vlnění vydávaného zdrojem 2) Pozorovatel a prostředí v klidu, zdroj v pohybu f 2 = c c ± v. f v rychlost pohybu zdroje (znaménko + reprezentuje pohyb od pozorovatele, znaménko k pozorovateli) 3) Pozorovatel a zdroj v klidu, prostředí v pohybu (zde nedochází k žádným změnám frekvence) 29

Obrázek 36 Schéma Dopplerova jevu Obrázek 37 Těleso pohybující se rychlostí zvuku (vlevo) a nadzvukovou rychlostí (vpravo) 30

6 Violoncello Violoncello je, stejně jako ostatní hudební nástroje, složeno z několika navzájem spřažených kmitajících soustav spojených tak, aby se rozkmitávaly i mezi sebou navzájem. U tohoto nástroje je mezi soustavami těsná vazba mechanického typu v podobě dřevěné kobylky. Má funkci pojítka mezi strunami a tělem violoncella. Jedná se o smyčcový nástroj se čtyřmi strunami, který vznikl v Itálii kolem roku 1600. Nabízí širokou paletu využití může fungovat jako sólový nástroj, v komorní hře, orchestru či v populární hudbě. Barva zvuku cella bývá často přirovnávána k lidskému hlasu. Struny cella se nazývají C, G, d, a (od nejhlubší a nejhrubší k nejvyšší a nejtenčí). Je tedy laděno v čistých kvintách. Notace pro cello je psána v basovém klíči, ve vyšších pasážích se používá i houslový klíč a méně často tenorový klíč. Struny je sice možno podladit (tzv. scordatura), ale pouze o jeden tón. Materiál na výrobu strun byla dříve střeva dobytka, nyní se setkáme spíše se strunami kovovými. Chvějí se mezi malým pražcem a kobylkou. Pomocí kobylky se chvění přenáší na horní desku a prostřednictvím duše neboli ozvučného kolíku dále na spodní desku. Obě desky jsou spojeny tzv. luby. Rozsah violoncella je poměrně diskutabilní, různé zdroje uvádějí odlišné údaje, například C e 3 ). Nejnižší hratelnou notou je pochopitelně prázdná struna C. Nejvyšší nota se nachází poblíž konce hmatníku na struně a. My ji však můžeme konkrétně detekovat pomocí výpočtů a experimentu. Postup je podrobněji popsán v další kapitole. Výjimečně můžeme narazit na violoncello s pěti strunami (přibývá struna e 1 ), které se už podobá spíše svému předchůdci viole da gamba. Někteří violoncellisté mají ještě jednu strunu připevněnou pod hmatníkem pro lepší rezonanci. Cello je větší než housle a viola; menší než kontrabas. Při hře jej držíme mezi koleny, o zem se opírá vysouvatelným bodcem, často zakončeným gumovou špičkou bránící sklouznutí nástroje. Většina částí violoncella je ze dřeva (smrku, javoru, ebenu, aj.), ovšem některé prvky jsou vyrobené z jiných materiálů (např. bodec může být kovový či plastový). V horní desce si můžeme všimnout dvou otvorů ve tvaru písmene f, které slouží k lepšímu vyzařování zvuku. K stavbě těla bývá často využíván smrk či javor, ale také vrby, hrušně či dalších druhů dřeva. Žíně smyčce bývají pro lepší hraní potírány kalafunou, přírodní nebo umělou pryskyřicí. Violoncello existuje ve více velikostech. Dělí se po osminách - nejmenší hráči hrají obvykle na 2/8 cello (také 1/4), největší je 8/8 neboli celé cello. Můžeme se setkat také se 7/8 dámským cellem. Podrobná stavba violoncella i smyčce je popsána na obrázcích 38 a 39. 31

Obrázek 38 Stavba violoncella Obrázek 39 Stavba smyčce 32

Pro lepší a rovnoměrnější vyzařování zvuku bývá někdy při sólové hře používán stupínek, na kterém hráč sedí. Na přirozené vyzařování zvuku se musí myslet také při rozsazení smyčcového orchestru, aby jedna část příliš nevystupovala a nepřehlušovala ostatní nebo naopak nezanikala. Proto existuje několik druhů rozsazení, která usiluje o co nejlepší výsledné vyzařování orchestru jako celku. Obrázek 40 Tři typy rozsazení smyčcového orchestru 33

7 Praktické vysvětlení konkrétních akustických jevů Kmitavý pohyb Nahrávka: 1 Činnost: Rozeznění struny prstem Vysvětlení: Vybuzením se struna vychyluje z rovnovážné polohy a kmitá. Výchylka se postupně zmenšuje, až pohyb úplně ustane. V průběhu doznívání zvuku je patrné lehké snižování výšky tónu. Je způsobeno tím, že struna kmitá stále pomaleji, a pomalejší kmitání značí nižší frekvenci a tedy i nižší tón. Můžeme zaznamenat také mírnou nerovnoměrnost v síle zvuku, která se zřejmě projevuje díky měnící se míře oscilace struny. Obrázek 41 Rozeznění struny pizzicatem Prázdné struny violoncella Nahrávka: 2 Činnost: Postupná hra prázdných strun C, G, d, a Vysvětlení: Violoncello je laděno po čistých kvintách, což jsou intervaly mezi prázdnými strunami. Při hře se zkušenější hráči snaží vyhýbat hře prázdných strun zahráním daného tónu na jiném místě hmatníku (s výjimkou tónu C, jenž jinde na violoncellu není), neboť zejména struny d a a vydávají nepříjemný, drnčivý zvuk. Původcem tohoto nežádoucího jevu je pravděpodobně malý pražec, kde jsou struny ukotveny; rychle kmitající struny do něj narážejí a vytvářejí hluk. Zbavit se nepříjemného hluku můžeme buď hrou tónu výše na hmatníku na nižší 34

struně (tím se rozumí blíže ke kobylce, k zemi), nebo přiložením prstu na danou strunu na pražci (viz obrázek 42). Obrázek 42 Prst přiložený na malém pražci Nejnižší nota hratelná na violoncellu Nahrávka: 3 Činnost: Zaznění nejnižší struny C (asi 65,5 Hz) Vysvětlení: Čím delší a hrubší je struna, tím hlubší zvuk je vytvořen. Největší průměr ze strun violoncella má struna C a největší délka struny je v tvorbě zvuku zapojena právě tehdy, kdy je hrána prázdná struna. Povšimněme si také dozvuku ostatních strun po ukončení pohybu smyčce. Nejvyšší nota hratelná na violoncellu Nahrávka: 4 Činnost: Postupná hra tónů po oktávách počínaje strunou a, konče nejvyšším hratelným tónem Vysvětlení: Struna a je, stejně jako ostatní struny na užitém nástroji, dlouhá 68 centimetrů. Postupným zkracováním délky struny vždy na polovinu bychom se postupně měli dostat až k onomu nejvyššímu tónu, jenž je možno na nástroji zahrát. Strunu je možno dělit do nekonečna, ovšem je jasné, že nás nyní zajímá maximum, které může v praxi zaznamenat hráč. V následující tabulce je přehled tónů, jež zazněly v nahrávce. 35

Tabulka 5 Frekvence jednotlivých tónů pořadí název frekvence (Hz) část struny délka kmitající části struny (cm) 1 a 220 1 68 2 a 1 440 1/2 34 3 a 2 880 1/4 17 4 a 3 1760 1/8 8,5 5 a 4 3520 1/16 4,25 Vytvořit tón a 5 se nezdařilo, velice problematická byla již tvorba předešlého a 4. Kmitající úsek struny by musel být 2,125 cm dlouhý, což je těžko realizovatelné, jestliže je délka kmitající struny určována umístěním prstu. Kromě toho je šířka užitého smyčce 1,4 cm, což je vzhledem k požadované délce struny poměrně hodně a při jeho větším naklonění není zvuk příliš kvalitní. Výsledkem pokusu o zahrání tak vysokého tónu by byl jen nepříjemný neartikulovaný šum. Obrázek 43 Hra tónů a 1 (vlevo nahoře), a 2 (vpravo nahoře), a 3 (vlevo dole) a a 4 (vpravo dole) 36

Běžný smyk (détaché) Nahrávka: 5 Činnost: Plynulý pohyb smyčce po struně Vysvětlení: Pod tímto pojmem rozumíme druh smyku, který provádíme libovolnou rychlostí, délkou smyčce a na libovolném místě smyku. Pravidlem je jeden tón na jeden smyk. Vzhledem k této plynulosti pohybu zní tón prakticky po celou dobu stejně. Vibrato Nahrávka: 6 Činnost: Ruka na hmatníku se pravidelně pohybuje tam a zpět Vysvětlení: Ruka hráče na hmatníku se při hře mírně pohybuje tam a zpět podélně se strunou. Tím se tón dostává chvíli nad čistou podobu daného tónu a chvíli pod něj. Výsledkem je chvějivý zvuk, který získal méně ostrý charakter, je pro lidské ucho příjemnější, a proto je při hře hojně využíván. Vibrato je založeno na principu pravidelné frekvenční změny. V případě, že rukou nevibrujeme, zní pouze plochý, neměnící se tón; neprobíhají žádné změny frekvence ani oscilace. Obrázek 44 Vychylování levé ruky při vibratu Skákavý smyk (spiccato) Nahrávka: 7 Činnost: Smyčec se odráží od struny, na které setrvává jen krátkou dobu Vysvětlení: Smyčec se odráží od struny do vzduchu. Tímto nárazem vzniká zvláštně nakřáplý, ostrý tón. Spiccato je vytvořeno z velice krátkých úderů smyčce o strunu, jež umožňují další skákání smyčce na základě elastických 37

vlastností smyčce a struny. Pohyby jsou nepatrné a uskutečňují se lehkými krátkými pohyby zápěstí a prstů. Základní problém spiccata spočívá v opravdu rovnoměrných poskocích smyčce. Ruka koná půlkruhovitý pohyb, v jehož nejspodnějším bodě se dotkne smyčec na krátkou chvíli struny. Tento rychlý a prudký náraz způsobí to, že slyšíme spíše hluk (úder smyčce na strunu) než zvuk. Sautillé (zrychlené spiccato) Nahrávka: 8 Činnost: Smyčec se odráží od struny v kratších časových intervalech než je tomu u spiccata Vysvětlení: Sautillé je prováděno stejně jako spiccato, ovšem na nejen na velmi malém úseku, ale také v ještě kratších časových intervalech. Zkrácenou periodou dopadu smyčce na strunu dochází k většímu navrstvení hluku než u klasického spiccata. Výsledkem je tedy ještě o něco mocnější hluk. Rikošé (směs spiccata a staccata) Nahrávka: 9 Činnost: Smyčec je utlumován hráčem a postupně se zkracuje perioda jeho dopadu na strunu Vysvětlení: Hráčem a zároveň i gravitací je postupně snižována perioda dopadu na struny, takže smyčec dopadá stále častěji a zvuk se zhušťuje. Po rikošé vždy v nahrávkách následuje spiccato, kde je hráno několik not na jeden smyk, a následuje další rikošé. Nárazy opět vzniká hluk, který také výsledek ozvláštňuje a vytváří rytmický celek, který může velice zpestřovat některé skladby. Legato (vázaně) Nahrávka: 10 Činnost: Tóny ve stupnici G dur na sebe plynule navazují bez rozdělení smyku Vysvětlení: Změnou délky struny se změní frekvence a tím i výška produkovaného tónu. To, že jednotlivé tóny nejsou rozděleny do více smyků, má za následek plynulý přechod z jednoho tónu do druhého. Staccato (ostře) Nahrávka: 11 Činnost: Smyk je hráčem cíleně zkracován, hraje se na malé délce smyčce 38

Vysvětlení: Smyk je téměř usekáván, čímž tón získává typický ostrý charakter. Ten je způsoben nárazem, jenž vznikl při násilném zastavování smyčce (podobně jako u výše zmíněného spiccata). Výsledkem tak jsou velice průrazné tóny. Martelé (ostře a pevně) Nahrávka: 12 Činnost: Mezi dvěma sousedními notami je na chvíli zastaven smyčec Vysvětlení: Smyk je velice podobný staccatu. Spočívá v okamžitém a úplném zastavení celé ruky při smyku. V pauzách se tlak smyčcem na strunu zeslabí, ale je zachován kontakt smyčce se strunou. Díky pevnému držení smyčce nedochází k doznívání, zvuk je tedy naprosto jasně ohraničen a jednotlivé tóny jsou odděleny pauzami. Tremolo (sekaně) Nahrávka: 13 Činnost: Rychlé krátké pohyby ruky se smyčcem Vysvětlení: Smyčec se pohybuje velice rychle na poměrně krátkém úseku, kromě toho je držen spíše lehce, takže výsledný zvuk je třesavý a neartikulovaný, může působit nerovnoměrně. Také zde může být náznak přechodu ze zvuku do hluku. Trylek Nahrávka: 14 Činnost: Rychlé střídání dvou tónů na jeden smyk Vysvětlení: Dochází k rychlé změně z jedné frekvence na druhou a jednotlivé úseky se periodicky přelévají jeden do druhého. Hra v poloviční vzdálenosti mezi koncem hmatníku a kobylkou, sul ponticello (blíže kobylky) a sul tasto (blíže hmatníku) Nahrávka: 15 Činnost: Smyčec je nejprve ve střední vzdálenosti mezi kobylkou a koncem hmatníku, pak blíže ke kobylce a následně blíže k hmatníku Vysvětlení: Při hře ve střední vzdálenosti mezi zakončením hmatníku a kobylkou je struna vhodně napjatá a slyšíme typ tónu, jenž je běžně užíván. Blíží-li se smyčec ke kobylce, pohybuje se v oblasti většího pnutí a zvuk je ostřejší, skřípavější. Naopak v případě, že je smyčec umístěn poblíž konce hmatníku, zní tón o něco jemněji a vřeleji, neboť struna je zde mírně volnější. Těchto různých 39

pozic se dá využít v praxi, když chceme odlišit charakter výsledného zvuku podle toho, zda požadujeme tón zvonivější či tlumenější. Obrázek 45 Umístění smyčce v různé vzdálenosti od kobylky a hmatníku Glissando (sklouznutí) Nahrávka: 16 Činnost: Prst tisknoucí strunu se během smyku posouvá po struně Vysvětlení: Jedná se o pohyb ruky sjíždějící po hmatníku mezi dvěma tóny bez zastavení smyku, a prst putující po struně tuto strunu plně domačkává mezi dvěma tóny zazní všechny ostatní nacházející se mezi jejich pozicemi. Frekvence tak poměrně konstantní rychlostí stoupá či klesá, pozice mezi tóny se přelévají do sebe. Rozeznění struny G smyčcem Nahrávka: 17 Činnost: Struna G je zahrána pomocí smyčce Vysvětlení: Přestože samotný hlavní tón dozněl, slyšíme po něm dozvuk. Je zde tedy patrný výskyt alikvótních tónů, které vznikají také rezonancí ostatních strun nástroje. Rozeznění struny G smyčcem, zatímco ostatní struny jsou přidušeny Nahrávka: 18 Činnost: Struna G je zahrána pomocí smyčce Vysvětlení: Přidušením ostatních strun bylo zabráněno tvorbě některých alikvótních tónů. Zahraný hlavní tón sice nezní samotný, ovšem není doplňován 40

tolika dalšími tóny jako v předešlé nahrávce. Z této nahrávky je patrné, že alikvótní tóny významně dotvářejí celkový charakter zvuku, který osamoceně zdaleka nezní tak libozvučně. Hra jiného tónu a než prázdná struna Nahrávka: 19 Činnost: Je zahrán tón A na struně G Vysvětlení: V nahrávce je po ukončení hlavního tónu naprosto zřetelný dozvuk, ve kterém dokonce můžeme rozeznat tón a, tedy prázdnou strunu. Vlivem tónu o oktávu níže se prázdná struna přirozeně rozkmitala a přidala se k alikvótním tónům. Tento mechanismus funguje u všech strun. Rozechvívat struny může nejen aktivita na stejném nástroji, ale i zvnějšku. Hraje-li jeden violoncellista a druhý zlehka položí prsty na struny, může cítit jejich chvění. To samé funguje i mezi různými typy nástrojů struny violoncella mohou reagovat i na tóny hrané na klavír. V neposlední řadě může nástroj rozezvučet i silnější hudba z reproduktorů. Citlivý je hlavně na čisté intervaly, mezi nimi je i oktáva, která je hrána k prázdné struně také v této nahrávce. Hra jiného tónu a než prázdná struna s vibratem Nahrávka: 20 Činnost: Je zahrán tón A na struně G, prováděno vibrato Vysvětlení: Nyní je kromě dozvuku prázdné struny v tónu zřejmá mírná oscilace způsobená vibrováním ruky. Jinak se výsledek neliší od předchozí nahrávky. Hra jiného tónu a než prázdná struna s přidušením této prázdné struny Nahrávka: 21 Činnost: Je zahrán tón A na struně G Vysvětlení: V tomto případě slyšíme po doznění hlavního tónu několik alikvótních tónů, avšak přidušené a mezi nimi pochopitelně není. Není zde tedy tolik různých tónů, zvuk je tak chudší a zní méně příjemně. Hra jiného tónu a než prázdná struna s přidušením prázdné struny a s vibratem Nahrávka: 22 Činnost: Je zahrán tón A na struně G, prováděno vibrato Vysvětlení: Zde je sice vlivem vibrata vytvořena oscilace, ovšem tento úkon zdaleka nenapraví absenci alikvótních tónů. Vibrato je sice prostředkem 41

k případnému dotvoření zvuku, ale bez odpovídajících alikvót přesto není dosaženo zvukově plného výsledného tónu. Con sordino (s dusítkem) Nahrávka: 23 Činnost: Na kobylce je při hře umístěno speciální dusítko Vysvětlení: Během hry s dusítkem dochází k potlačení některých harmonických složek, takže výsledný tón obsahuje jen část z nich. Tím se stává slabším a méně plným. Tento efekt je využíván zejména tehdy, když chceme snížit hlasitost hry, případně když má v dané situaci nástroj pouze doprovodný účel. Zvuk je totiž jemnější než v běžné hře bez dusítka. Obrázek 46 Kobylka s dusítkem Tón h Nahrávka: 24 Činnost: Hra tónu h Vysvětlení: Po zahrání tónu h, který se hraje na struně a, lze slyšet podobně jako u prázdných strun bohatý dozvuk. Tón h je navíc v porovnání s ostatními tóny překvapivě zvonivý. Tímto se h odlišuje od ostatních, nutno však podotknout, že pro zmíněnou zvonivost je nutné posunout prst o několik milimetrů blíže k malému pražci, než je normální. Lehkým snížením se frekvence s největší pravděpodobností dostává do lepšího poměru s dalšími frekvencemi, což dává vzniknout jevu slyšitelnému v nahrávce. 42

Obrázek 47 Poloha levé ruky při hře tónu h Flažolet Nahrávka: 25 Činnost: Lehký dotek prstem v polovině a poté v třetině napnuté struny Vysvětlení: Při pouhém doteku na struně dochází k cílenému tlumení lichých harmonických složek frekvence pomocí nedokonalého přitlačení struny k hmatníku. Výsledný tón pak není plný jako při úplném přitisknutí struny na hmatník. V nahrávce jsou první dva tóny zahrány synchronně s přiložením prstu v polovině struny d. Posléze dvakrát zazní ten samý tón, ovšem tentokrát se prst hráče nachází ve třetině struny G. Zde lze jasně vidět, že většina tónů je hratelná na více místech na violoncellu. Konkrétně tento příklad se stejně znějícími flažolety na různých strunách bývá využíván při ladění nástroje. Existuje také tzv. umělý flažolet, kdy je délka struny zkrácena hráčem a ten následně provede dotyk v jejím příslušném zlomku. Klasický flažolet je ale mnohem více využíván. Obrázek 48 Vlevo hra flažoletu v polovině struny (prsteníkem), vpravo ve třetině struny (ukazovákem) 43

Hra mezi kobylkou a struníkem Nahrávka: 26 Činnost: Smyčec se pohybuje na krátkém úseku strun mezi kobylkou a struníkem Vysvětlení: Struny jsou na daném místě výrazně zkrácené a pevně napnuté, což dohromady způsobuje skřípání a vysokou frekvenci tónu (proto je vydávaný zvuk nezvykle vysoký), který ale ve výsledku nezní příliš příjemně. Obrázek 49 Umístění smyčce při hře pod kobylkou 44

8 Srovnání libozvučnosti tónů V interpretaci hudby slouží poznatky akustiky zejména k tomu, aby byly vytvářené zvuky co nejlepší, tedy nejpřijatelnější pro posluchače. Je tedy vhodné vědět, které skutečnosti způsobí to, že zvuk lidskému uchu více vyhovuje. Na tomto místě se již odvracíme od objektivního posuzování hudby, neboť její vnímání je subjektivní. V návaznosti na téma tohoto studijního materiálu byla autorkou provedena anketa mezi spolužáky účastníky hodin hudební výchovy. Respondentů bylo celkem 24, z toho 11 mužského pohlaví a 13 ženského pohlaví. Jedná se o malý vzorek, nicméně i přes tuto skutečnost je možno z výsledků vyvodit určité hypotézy. Anketa měla dvě části: první zaměřenou na důležitost alikvót a vibrata v hudbě, druhou na preference respondentů co se zvuku smyčcových nástrojů týče. Respondentům byly nejprve přehrány 4 nahrávky, ve kterých byl na violoncello pokaždé hrán tón A, ovšem za rozdílných podmínek (bez vibrata, s vibratem, bez vibrata se zatlumením ostatních strun, s vibratem se zatlumením ostatních strun). Jedná se o nahrávky 19, 20, 21 a 22 z předchozí kapitoly. Úkolem bylo očíslovat ukázky postupně od 1 (nejlepší) do 4 (nejhorší), podle toho, jak dobře příslušnému jedinci nahrávky znějí. Stejné číslování bylo užito taktéž ve druhé části, kdy čtyřikrát zazněla skladba Air od Johanna Sebastiana Bacha, pokaždé hrána na jiný nástroj (housle, viola, violoncello, kontrabas). Obrázek 50 Podoba formuláře První část byla koncipována tak, aby se ukázalo, zda posluchači v hudbě poznají absenci alikvótních tónů a jestli jim zní lépe tón s vibratem. Ve druhé části bylo cílem odhadnout, který nástroj je svým rozsahem, barvou apod. nejpříjemnější k poslechu. Výchozím bodem bylo tvrzení, že violoncello je svým položením nejblíže lidskému hlasu nabízela se tak otázka, zda je proto pro člověka hra na violoncello příjemnější v porovnání s ostatními smyčcovými nástroji. Respondenti neměli hodnotit kvality interpreta, jehož nahrávka jim byla přehrána, ale výslovně to, jak se jim líbí rozsah příslušných nástrojů. Použity byly tyto nahrávky: housle https://www.youtube.com/watch?v=9gii2z_puhs viola https://www.youtube.com/watch?v=wy8lci60ugo violoncello https://www.youtube.com/watch?v=ri8hdwrrde0 kontrabas https://www.youtube.com/watch?v=71glxvab7na 45

Odpovědi byly vyhodnoceny tak, že za hodnocení 1 od respondenta byly položce přiděleny 3 body, za hodnocení 2 to byly 2 body, za hodnocení 3 byl přidělen 1 bod a za hodnocení 4 (nejhorší) nebyl přidělen žádný bod. Následně bylo kruhovým grafem určeno, které ukázky respondenti preferovali. Data byla zpracována pro všechny respondenty, ale také zvlášť pro ženy a muže. Muži - alikvótní tóny a vibrato přitlumená s vibratem 27% s vibratem 34% bez vibrata 21% přitlumená bez vibrata 18% Obrázek 51 Graf (muži alikvótní tóny a vibrato) Muži - smyčcové nástroje kontrabas 20% viola 20% housle 30% violoncello 30% Obrázek 52 Graf (muži smyčcové nástroje) 46

Z grafu na obrázku 51 je patrné, že mužská část dotázaných preferovala tóny s vibratem, lépe si vedl tón hraný běžným způsobem, bez jakéhokoli zatlumení. Právě hra s vibratem je mezi pokročilými hráči velice frekventovaná. Nejhůře dopadl tón bez vibrata, který navíc postrádal alikvóty. Druhý graf z obrázku 52 pak značí, že nejlépe byly hodnoceny housle a violoncello. Úspěch violoncella byl předpokládán, ovšem housle získaly stejný počet bodů. Pochopitelně tento výsledek nemůžeme zobecnit, je totiž možné, že přítomní respondenti zkrátka mají tyto nástroje v oblibě z jiných než čistě poslechových důvodů. Ženy - alikvótní tóny a vibrato bez vibrata 14% přitlumená s vibratem 17% s vibratem 40% přitlumená bez vibrata 29% Obrázek 53 Graf (ženy alikvótní tóny a vibrato) Ženy - smyčcové nástroje kontrabas 18% viola 32% housle 22% violoncello 28% Obrázek 54 Graf (ženy smyčcové nástroje) 47