8. ZÁKLADNÍ ZAPOJENÍ SPÍNANÝCH ZDROJŮ



Podobné dokumenty
9. Harmonické proudy pulzních usměrňovačů

než je cca 5 [cm] od obvodu LT1070, doporučuje se blokovat napětí U IN

Integrovaná střední škola, Kumburská 846, Nová Paka Elektronika - Zdroje SPÍNANÉ ZDROJE

Flyback converter (Blokující měnič)

Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí

Zvyšování kvality výuky technických oborů

11 Elektrické specifikace Mezní parametry* Okolní teplota pøi zapojeném napájení 40 C až +125 C Skladovací teplota 65 C až +150 C Napájecí napìtí na V

Zdroje napětí - usměrňovače

Stejnosměrné měniče. přednášky výkonová elektronika


Základy elektrotechniky

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.

VY_32_INOVACE_ENI_2.MA_02_Jednofázové, třífázové a řízené usměrňovače Střední odborná škola a Střední odborné učiliště, Dubno Ing.

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek

VLASTNOSTI PLOŠNÝCH SPOJÙ

Spínaèe jsou elektrické pøístroje, které slouží k zapínání, pøepínání a vypínání elektrických obvodù a spotøebièù. Podle funkce, kterou vykonávají, je

Dioda jako usměrňovač

Zesilovače. Ing. M. Bešta

Zvyšování kvality výuky technických oborů

[Otázky Autoelektrikář + Mechanik elektronických zařízení 1.část] Na rezistoru je napětí 25 V a teče jím proud 50 ma. Rezistor má hodnotu.

Zdroje napětí /Vlček/

Statické měniče v elektrických pohonech Pulsní měniče Jsou to stejnosměrné měniče, mění stejnosměrné napětí. Účel: změna velikosti střední hodnoty

Usměrňovač. Milan Horkel

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

Polovodičové usměrňovače a zdroje

Jednofázové a třífázové polovodičové spínací přístroje

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

PASIVNÍ PFC FILTRY PRO SPÍNANÉ NAPÁJECÍ ZDROJE


9. Kompenzace účiníku u spínaných zdrojů malých výkonů

LC oscilátory s transformátorovou vazbou

5. POLOVODIČOVÉ MĚNIČE

Základní pojmy z oboru výkonová elektronika

Unipolární tranzistor aplikace

MODELY SPÍNANÝCH ZDROJŮ V PROGRAMU MATLAB-SIMULINK


Obvodové prvky a jejich

LABORATORNÍ PROTOKOL Z PŘEDMĚTU SILNOPROUDÁ ELEKTROTECHNIKA

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NÁVRH SPÍNANÉHO LABORATORNÍHO ZDROJE SWITCHING POWER SOURCE FOR LABORATORY PURPOSES

MS - polovodičové měniče POLOVODIČOVÉ MĚNIČE

A8B32IES Úvod do elektronických systémů

LC oscilátory s transformátorovou vazbou II

Rezonanční řízení s regulací proudu

MĚŘENÍ JALOVÉHO VÝKONU

Zvyšování kvality výuky technických oborů

Neřízené diodové usměrňovače

Bezpohybový elektrický generátor s mezerou uprostřed

Praktikum II Elektřina a magnetismus

1.1 Usměrňovací dioda

Zvyšující DC-DC měnič

ŘÍZENÝ ZDROJ NAPĚTÍ. Michael Pokorný. Střední průmyslová škola technická. Belgická 4852, Jablonec nad Nisou

Základy elektrotechniky

8,1 [9] [9] ± ± ± ± ± ± ± ± ±

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Test. Kategorie M. 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí signálu?

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Stejnosměrné generátory dynama. 1. Princip činnosti

Měření na unipolárním tranzistoru

Cvičení 12. Příklad výkonové aplikace. Výkonový MOSFET spínání induktivní zátěže: Měření,

Transformátor trojfázový

Základy elektrotechniky

Výpočet základních analogových obvodů a návrh realizačních schémat

Integrovaná střední škola, Sokolnice 496

Mechatronické systémy se spínanými reluktančními motory

VÝVOJOVÁ DESKA PRO JEDNOČIPOVÝ MIKROPOČÍTAČ PIC 16F88 A. ZADÁNÍ FUNKCE A ELEKTRICKÉ PARAMETRY: vstupní napětí: U IN AC = 12 V (např.


Studium tranzistorového zesilovače

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, transformátory a jejich vlastnosti

ZÁKLADY POLOVODIČOVÉ TECHNIKY. Doc.Ing.Václav Vrána,CSc. 03/2008

Název: Téma: Autor: Číslo: Prosinec Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

200W ATX PC POWER SUPPLY

Digitální učební materiál

Modul výkonových spínačů s tranzistory N-FET

ÚVOD. Výhoda spínaného stabilizátoru oproti lineárnímu

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

Elektrotechnická zapojení

Mgr. Ladislav Blahuta

Elektronický halogenový transformátor

Spínaný zdroj, Push-pull, Buck, Boost PFC, Účiník, DC-DC měnič, transformátor

Témata profilové maturitní zkoušky

Zvyšování kvality výuky technických oborů

Napájení krokových motorů

Zvyšování kvality výuky technických oborů

1.2 Realizace èekání pomocí jednoduché programové smyèky Pøíklad 3: Chceme-li, aby dítì blikalo baterkou v co nejpøesnìjším intervalu, øekneme mu: Roz

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

LC oscilátory s nesymetrickým můstkem II

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů operačních zesilovačů část Teoretický rozbor

Střídavé měniče. Přednášky výkonová elektronika

Tranzistory. tranzistor z agnl. slova transistor, tj. transfer resisitor. Bipolární NPN PNP Unipolární (řízené polem) JFET MOS FET

VÝKONOVÉ TRANZISTORY MOS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ NÁVRH LABORATORNÍHO ZDROJE BAKALÁŘSKÁ PRÁCE FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

Napájení mikroprocesorů

Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů

VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky DIPLOMOVÁ PRÁCE

Obr. 2 Blokové schéma zdroje

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru část Teoretický rozbor

Transkript:

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího (aby ètenáø vidìl, jakým zpùsobem je titul zpracován a mohl se také podle tohoto, jako jednoho z parametrù, rozhodnout, zda titul koupí èi ne). Z toho vyplývá, že není dovoleno tuto ukázku jakýmkoliv zpùsobem dále šíøit, veøejnì èi neveøejnì napø. umis ováním na datová média, na jiné internetové stránky (ani prostøednictvím odkazù) apod. redakce nakladatelství BEN technická literatura redakce@ben.cz

8. ZÁKLADNÍ ZAPOJENÍ SPÍNANÝCH ZDROJŮ Zapojení spínaných zdrojů jsou všeobecně komplikovaná a pro jejich znalost je nutno znát i vnitřní zapojení specializovaných integrovaných obvodů, které jsou v těchto zdrojích užívány. Nicméně odhlédneme-li od oblasti obvodů zpětnovazebních stabilizací, lze spínané zdroje rozdělit podle jejich zapojení a funkce do několika základních skupin. Jednotlivá zapojení se obvykle rozlišují podle způsobu přenosu energie z primárních obvodů do obvodů sekundárních: a) Propustné zapojení (v anglických publikacích ozanačováno jako FORWARD): je charakterizováno přímým přenosem energie přes transformátor, tj. teče-li proud primárním vinutím (v okamžiku sepnutí spínače), teče současně i sekundárním vinutím. Je to určeno vzájemnou polaritou primárního a sekundárního vinutí a polaritou výstupní diody. Obr.8.1 Propustné zapojení tranzistor sepnut Obr.8.2 Propustné zapojení rozepnutý tranzistor

Tečka u jednotlivých vinutí označuje začátek vinutí. Bud jsou obě vinutí vinuta souhlasně a obě tečky jsou nahoře, pak kladné polaritě vstupního napětí transformátoru odpovídá kladná polarita výstupního napětí, nebo je jedna z teček dole a druhá nahoře tím je označeno, že vinutí jsou vinuta opačně a tedy kladnému napětí na vstupu odpovídá záporné napětí na výstupu. Popis činnosti je dán opět ve dvou časových intervalech t 1 a t 2. Během doby t 1 platí: během doby t 2 platí: U IN. t 1 / L 1 = di C, (U out ). t 2 / (p. L 1 ) = di C a opět porovnáním obou rovnic dostaneme: U out = U IN. p. δ / (1 δ). Převodní poměr transformátoru je dán vztahem: p = N 2 / N 1 = U 2 / U 1. Výsledný vztah pro U out ukazuje, že výstupní napětí může být opět jak vyšší, tak nižší, než napětí vstupní, ale vlivem převodního poměru transformátoru p při jiném rozsahu hodnot δ než u zapojení invertujícího. b) Akumulující zapojení (v anglosaské literatuře označované jako FLYBACK): teče-li vstupním vinutím proud, je sekundární vinutí vzhledem k polaritě výstupní diody polarizováno tak, že proud neteče. Veškerá energie je uložena v magnetickém poli transformátoru a teprve po ukončení proudu primárním vinutím začíná protékat proud vinutím sekundárním, obr.8.3. Primární vinutí, na němž je napětí U 1, je vinuto opačným směrem než vinutí sekundární s napětím U 2 (na obr.8.3 je polarita vstupního napětí U 1 vyznačena pro sepnutý tranzistor T a polarita výstupního napětí U 2 až pro rozepnutý tranzistor T nejsou již rozkreslována dvě zapojení). I akumulující zapojení lze doplnit rekuperační diodou a rekuperačním vinutím, obr.8.4, ale jejich použití není u tohoto zapojení nezbytné, pouze zlepšuje účinnost využitím té části energie, která po rozepnutí tranzistoru je akumulována v magnetickém poli transformátoru a není z nějakých důvodů přenesena do výstupních obvodů (rychlá změna zatěžovacích poměrů).

Proto teče-li proud primárním vinutím při sepnutí tranzistoru T, nemůže současně téci proud vinutím sekundárním dioda je polarizována závěrně. Teprve při rozepnutí proudu I C, se naindukuje napětí U 2 v opačné polaritě, výstupní dioda je propustná a vinutím protéká proud. Obr.8.3 Akumulující zapojení Obr.8.4 Rekuperační vinutí Tak se v sekundárním vinutí indukuje napětí U 2, které již je vhodné polarity pro průchod proudu usměrňovací diodou. c) Dvojčinná zapojení (PUSH-PULL): do primárního vinutí je spínán proud obou polarit pomocí dvou spínacích prvků, které pracují v inverzním zapojení. Obvykle i výstupní usměrňovače jsou dvoucestné, takže se vlastně jedná o dvojčinnou verzi propustného zapojení. V dnešní době je naprostá většina spínaných zdrojů tohoto principu, modifikovaného způsobem buzení primárního vinutí oběma spínači. Oblast použití jednotlivých typů měničů (i jiných než spínaných zdrojů) přibližně vymezuje tabulka 8.1.

8.1 Propustné zapojení Princip tohoto zapojení byl již uveden na obr.8.1, vychází z takové polarizace výstupní usměrňovací diody a vzájemné polarity primárního a sekundárního vinutí transformátoru, kdy při průchodu proudu vinutím primárním může protékat proud vinutím sekundárním. Užití rekuperační diody s pomocným třetím vinutím je tedy nezbytné. Pokud má toto třetí vinutí shodný počet závitů, jako vinutí primární (spínané tranzistorem) to se obvykle zajišt uje bifilárním vinutím, pak je indukované napětí právě dvojnásobné. Přes nevýhodu dalšího vinutí a diody je toto zapojení užívané pro absenci problémů se stejnosměrným sycením jádra transformátoru. Střída spínání však může být maximálně 50 [%] (t 1 < t 2 ). Tabulka 8.1 Oblasti užití jednotlivých typů měničů typ zapojení rozsah výkonů aplikace měniče DC/DC do 5 [W] získání jiné hodnoty napětí, než poskytuje hlavní zdroj přístroje měniče s transformátorem do 10 [W] získání stejnosměrných napětí do 30 [V] jako náhrada za bateriové napájení blokovací oscilátory do 20 [W] získávání střídavých napětí ze stejnosměrného napětí akumulátorů akumulující měniče do 50 [W] jednoduché spínané zdroje ze sít ového napětí propustné měniče do 100 [W] jednoduché spínané zdroje ze sít ového napětí dvojčinné polomosty do 200 [W] většina spínaných zdrojů v PC dvojčinné plné mosty do 500 [W] řízení motorů V okamžiku, kdy je sepnut tranzistor T na obr.8.1, začne lineárně narůstat proud, tekoucí vinutím 1 a na tomto vinutí je napětí U 1 v naznačené polaritě. Protože sekundární vinutí je svým smyslem vinutí polarizováno shodně s vinutím primárním, je indukované napětí takové polarity, že je může dioda D 1 usměrnit teče tedy

diodou D 1 proud. Současně je indukováno napětí v kladné polaritě i na vinutí 3 o velikosti U 3 obr.8.1. Toto napětí nemůže vyvolat průchod proudu vlivem polarizace diody D R. Teprve v okamžiku, kdy je rozepnut tranzistor T obr.8.2, indukuje pokles proudu vinutím 1 napětí do vinutí jak 2, tak i 3 a to v naznačené polaritě. Napětí U 3 je v tomto okamžiku takové polarity, že dioda D R je vodivá. Dioda D 2 umožňuje průtok výstupního proudu z tlumivky do zátěže během doby t 2, tj. v době rozepnutého tranzistoru T, kdy diodou D 1 proud neteče. Pokud je indukované napětí v pomocném (rekuperačním) vinutí tak velké, že převyšuje napětí (minimálně o úbytek na rekuperační diodě) na kondenzátoru napájecího zdroje, je tento kondenzátor při rozepnutém tranzistoru dobíjen a část energie je tak vracena zpět do napájecího zdroje. Tím je zvyšována účinnost zapojení a je omezováno riziko průrazu tranzistoru indukovaným napětím při vypínání indukční zátěže. 8.2 Akumulační zapojení Akumulační zapojení spínaného zdroje je uvedeno na obr.8.3. Užívá se pro rozsah výkonů přibližně v rozsahu 20 až 50 [W], jeho účinnost bývá okolo 80 [%] a doporučuje se, aby střída spínání spínacího prvku nepřesáhla 40 [%] (střída je poměr s = t 1 / t 2 = doba sepnutí spínače ku době rozepnutí spínače, vyjádřená bud jako např. 0,4 [-] nebo jako uvedených 40 [%]) aby bylo možno dosáhnout uvedené účinnosti. Pracovní kmitočet těchto spínaných zdrojů bývá podle kvality tranzistoru, diod a transformátoru v rozmezí od 50 [khz] do 500 [khz]. Tranzistor T je nutno dimenzovat minimálně na proud: I Cmax > 2. P výst / (ν. s. U INmin. 2) a na napětí: U CEmax > 2. U INmax. 2, kde U IN je vstupní stejnosměrné napětí, P výst je odebíraný výstupní výkon, s je střída t 1 / t 2 a ν je účinnost spínaného zdroje (0,8). V zapojení lze stejně dobře užít tranzistor jak bipolární, tak unipolární. Tento typ obvodu je obvykle nejlevnější, avšak užívá se pouze pro malé výstupní výkony. Obvykle mívá i vyšší přípustnou hodnotu zvlnění výstupního napětí. Pro sít ové vstupní napětí 220 [V] je nutno dostatečně dimenzovat spínací tranzistor napět ově, protože při 220 [V] efektivních je maximální hodnota U INmax = 310 [V] a tranzistor může být namáhán až dvojnásobkem této špičkové hodnoty, tj. napětím 620 [V]. Protože sít ové napětí může kolísat do kladných hodnot až o 20 [%], je nutno reálný tranzistor dimenzovat na napětí okolo U CEmax = 1 [kv]. Přitom jeho spínací a vypínací doby by měly být zanedbatelné oproti opakovací době:

t on = t off << T = t 1 + t 2 = 1 / f opak, tj. při požadovaném knitočtu cca 100 [khz] je doba periody 10 [µs] a zapínací a vypínací doby by se měly pohybovat cca o dva řády níže, tj. okolo 100 [ns]. Obdobné parametry musí platit i pro všechny užité diody. Pro tento typ spínaného zdroje je podstatný režim jeho činnosti, ve kterém se nachází. Pokud zatěžovací proud klesá pod jistou hranici, pak se snižuje úhel otevření tranzistoru a při malé hodnotě indukčnosti primární cívky transformátoru narůstá amplituda proudu. Překročí-li zatěžovací proud uvedenou hodnotu, pak teče proud tranzistorem po celou dobu jeho otevření a výrazně klesá jeho špičkové proudové namáhání. 8.3 Kombinované zapojení Vzhledem k tomu, že nutnost rekuperačního vinutí komplikuje realizaci transformátoru, je vhodné zkombinovat dva tranzistory a dvě rekuperační diody podle obr.8.5. Obr.8.5 Kombinované zapojení sepnuté tranzistory po dobu t 1 Jestliže sepneme oba tranzistory současně. pak protéká proud z kladné stejnosměrné svorky přes tranzistor T 1, primární vinutí transformátoru a druhý tranzistor T 2. Po rozepnutí obou tranzistorů současně má proud primární indukčností snahu pokračovat ve stejné velikosti a stejném směru. Protéká tedy z horní svorky primárního vinutí transformátoru přes diodu D 1, zdroj, diodu D 2 na spodní svorku

primárního vinutí transformátoru obr.8.6. Polarita zapojení výstupní usměrňovací diody pak udává, zda se jedná o zapojení propustné, nebo akumulující. Obr.8.6 Kombinované zapojení rozepnuté tranzistory po dobu t 2 Pokud by se jednalo o zdroj, kde je stejnosměrné napětí získáno usměrněním sít ového napětí 220 [V], potom oba tranzistory mohou být namáhány až na špičkové napětí, tj. na hodnotu 220. 2 = 310 [V] a v praxi je volíme s rezervou U CEM vyšší, např. 800 [V] až 1 [kv], tj. např. z nabídky fy Motorola to jsou tranzistory MJE13000 nebo MJE16000. 8.4 Dvoučinné zapojení Princip dvoučinného zapojení spínaného zdroje je stejný jako u dvoučinných zesilovačů (označovaných PUSH-PULL). Základní součástkou je symetrické primární vinutí transformátoru, obr.8.7, kde každá jeho polovina je buzena samostatným tranzistorem. Výhodou je nepřítomnost stejnosměrné složky sycení jádra transformátoru. S výhodou se na sekundární straně užívá dvoucestné zapojení usměrňovače (dvoucestný nebo můstek). Potom výkon je přenášen přímo v každé půlperiodě jednou z diod a akumulovaně druhou. Účinnost takovýchto zapojení je velmi vysoká a pohybuje se nad 80 [%]. Další výhodou je možnost širokého rozsahu regulace. U tohoto zapojení již nelze jednoduše definovat šířku regulace pomocí střídy (tj. poměru dob t 1 / t 2 ). Pro tuto definici je třeba si uvědomit tvar spínání proudů obou tranzistorů obr.8.8. Doba periody T je opět (s výhodou) konstantní, T = 1 / f.

Skládá se však ze dvou symetrických časových okamžiků t A a t B, pro které platí: t A = t B = T / 2. Obr.8.7 Dvoučinné zapojení Teprve u doby t A, resp. doby t B můžeme mluvit o úhlu sepnutí tranzistoru, případně o střídě sepnutí. Tranzistor bývá spínán obvykle okolo středu doby t A, tj. čtvrtiny doby T. Dobu sepnutí tranzistoru t 1 opět v souhlase s předcházejícím označujeme t 1 a doba, po kterou je tranzistor vypnut (kromě doby t B u tranzistoru t 1 ) se skládá ze dvou částí, symetricky okolo doby t 1, tedy z doby t 2a před dobou t 1 a také z doby t 2b po době t 1. V součtu tedy platí: t 1 + t 2a + t 2b = T / 2. Totéž platí i pro tranzistor T 2. Střída sepnutí, definovaná shodně s předcházejícím je tedy dána vztahem: s = t 1 / (t 2a + t 2b ). Tato střída může být u dvoučinného zapojení až okolo 80 [%], tj. je vhodné z hlediska tolerance součástek a buzení ponechat doby t 2a a t 2b jenom asi okolo 10 [%] z doby T / 2 jako bezpečnostní interval, zamezující současnému sepnutí obou tranzistorů. Souvisí to samozřejmě i s vypínací dobou tranzistorů. Uvedené poměry jsou graficky znázorněny na obr.8.8. Horní graf platí pro tranzistor T 1 z obr.8.7, kdy teče-li proud I C1, je tranzistor sepnut a naopak v rozepnutém stavu (po dobu t 2a, t 2b a celou půlperiodu t B tranzistorem teče pouze zbytkový proud I CEo. Spodní graf platí pro tranzistor T 2 a jeho časové poměry jsou shodné, pouze posunuté v čase o dobu T / 2.