Paměťová hierarchie. INP 2008 FIT VUT v Brně

Rozměr: px
Začít zobrazení ze stránky:

Download "Paměťová hierarchie. INP 2008 FIT VUT v Brně"

Transkript

1 Paměťová hierarchie INP 2008 FIT VUT v Brně

2 000 Výkonová mezera mezi CPU a pamětí Moorův zákon CPU CPU 60% za rok (2X/.5roku) výkonnost DRAM Rozdíl ve výkonnosti roste o 50% za rok! Programátoři spotřebují jakkoliv velkou kapacitu paměti! DRAM 9%/rok (2X/0let) 2

3 Vznik paměťové hierarchie Na základě časové a prostorové lokality odkazů k paměťovým místům a na základě cenových a výkonových kategorií pamětí (viz tabulky) byl vytvořen hierarchický paměťový systém. CPU :980 processor Pentium P-III P-4 clock rate(mhz) cycle time(ns) SRAM :980 $/MB access (ns) DRAM :980 $/MB access (ns) typical size(mb) Disk :980 $/MB access (ms) typical size(mb)

4 Základní vlastnosti v hierarchickém paměťovém systému RYCHLOST KAPACITA CENA/BIT nejnižší M 3 nejvyšší nejnižší. M 2.. nejvyšší M RVP nejnižší nejvyšší CPU informační blok 4

5 Účinnost RVP V tomto uspořádání je M 3 vnější paměť (např. disk), M 2 je hlavní paměť M, a M je rychlá vyrovnávací paměť RVP mezi hlavní pamětí M 2 a procesorem. Jistý datový nebo instrukční blok (blok I/D) pak může v systému existovat až ve třech kopiích. Problémy práce s blokem I/D v paměťové hierarchii: Umístění bloku kam? Identifikace bloku je to on? Náhrada bloku výběr oběti Strategie zápisu problém koherence dat Základní údaj o účinnosti RVP je pravděpodobnost úspěchu (hit rate), resp. pravděpodobnost neúspěchu (miss rate), neboli pravděpodobnost výpadku bloku. Tyto parametry mohou být definovány zvlášť pro čtení a zápis, pro data i instrukce (data hit/miss rate, instruction hit/miss rate, atd.) Doba nalezení je v případě úspěchu přístupová doba RVP, v případě neúspěchu se přičítá ztrátová doba (miss penalty), což je doba potřebná na přisunutí bloku; je daná dobou potřebnou k uvolnění místa v RVP, přístupovou dobou k prvnímu slovu požadovaného bloku ve vzdálenější paměti plus doba přenosu celého bloku. Počet čekacích cyklů paměti = Počet Instr. x Počet paměťových přístupů na jednu Instr. x Miss rate x Miss penalty (na řešení výpadku) 5

6 RVP s přímým mapováním adresa v RVP RVP 0000 adresa bloku RVP má 8 blokových rámců s adresami 000 až, adresa bloku je pětibitová. Adresa polohy bloku v RVP se určí podle nejnižších tří bitů. adresa v RVP = adresa bloku mod počet bloků v RVP 6

7 Činnost RVP s přímým mapováním U RVP se dále musí poskytnout informace, zda je požadovaný blok přítomen, příp. zda je informace v bloku platná. K tomu slouží adresový příznak (tag), což jsou zbývající horní bity adresy, a příznak platnosti (valid bit). Činnost RVP je pro zadanou posloupnost adres bloků ilustrována v tabulce. 7

8 RVP s přímým mapováním s 32-bitovou adresou pole příznaku Adresa tag 20 b n = 0 index offset bytu 0 V Tag b 32 b = data & hit 8

9 Komentář k RVP s 32-bitovou adresou Leváčást RVP je adresová, pravá je datová. Celkový počet bloků (o velikostí jednoho slova) je 2 30, ve vyrovnávací paměti je umístěno 2 0 bloků. Dolní odhad pravděpodobnosti úspěchu je p hit = 2 0 /2 30 = 2-20 Díky lokalitě odkazů se v praxi dosahuje hodnot 0,9 až 0,98. Uvažujme 32-bitovou adresu bytu s obecným počtem bitů indexu n, délka bloku je opět 4 Byty. Ve vyrovnávací paměti je tedy 2 n slov, pole příznaku má 32 - (n+2) bitů. Kapacita RVP pracující s bloky je obecně rovna 2 n. (délka bloku + délka příznaku + délka pole V). Podle našeho zadání je to tedy 2 n. ( n ) = 2 n.(63 - n) 9

10 Koherence dat Změní-li se data v bloku zápisem, ztratí bloky na vzdálenějších úrovních platnost a nesmí se již použít. Vznikla tak datová nekonzistence, neboli nekoherence. Pro udržování koherence dat ve všech kopiích bloků je možno použít tyto strategie: přímý zápis (write-through, průpis) Při přímém zápisu do RVP se zapisuje okamžitě i do bloku v M. Má výhodu ve snadné realizaci a rovněž ztráty při R-neúspěchu jsou nízké, protože nový blok se přisune bez dalšího zdržování. Je-li však větší rozdíl mezi rychlostí primární a sekundární (vzdálené) paměti, pak přímý zápis častými opravnými zápisy příliš zdržuje a je tedy nevýhodný zápis s mezipamětí (write buffer) umožňuje odložit opravné zápisy až do okamžiku uvolnění přístupu k vzdálenější paměti, takže nedochází ke zdržování procesoru. Mezipaměť mívá kapacitu pro jeden až deset opravných zápisů. zpětný zápis vždy Při zpětném zápisu se opraví celý blok v sekundární paměti až při jeho odsouvání. Strategie zpětného zápisu vždy je nepraktická, protože blok se zapisuje do sekundární paměti i v případě, že k žádné změně nedošlo. zpětný zápis podle příznaku změny (write-back, copy-back, store on flag) Prakticky použitelný je proto zpětný zápis podle příznaku změny (dirty bit). To je výhodné, protože střední počet zápisů do sekundární paměti je nižší, než u přímého zápisu. Navíc blokový přesun lze zrychlit zvětšením šířky sběrnice mezi vyrovnávací a hlavní pamětí. V současné době začíná zpětný zápis převládat. 0

11 Příklad Pracovní stanice DEC Station 300 má mezipaměť pro odložení zápisu pro 4 slova, vyrovnávací paměť má kapacitu 28 KB, střední pravděpodobnost neúspěchu pro datové a instrukční bloky je 4,8 až 5,4%, záleží ovšem na typu sledovaného programu. Pro velikost bloku nebo 4 slova dostáváme pravděpodobnost neúspěchu (program: kompilátor gcc): Velikost bloku ve slovech Pravděpodobnost Pravděpodobnost I-neúspěchu D-neúspěchu 6,% 2,% 4 2,0%,7%

12 Pravděpodobnost výpadku podle velikosti bloku Růst velikosti bloku má však příznivý vliv jen do určité míry. Je-li velikost bloku vzhledem k velikosti RVP příliš značná, je v RVP málo bloků a příliščasto se musí vyměňovat, protože požadovaná data nejsou často k dispozici. pravděpodobnost výpadku 40 [%] 30 velikost RVP KB KB 0 256KB velikost bloku RVP [B] 2

13 Organizace vyrovnávací paměti příznak data (tag) 0 2 číslo bloku a) -cestná (s přímým mapováním) množina (sada) tag data tag data b) 2-cestná 0 stupeň asociativity 2 tag data tag data tag data tag data d) 4-cestná c) 2-cestná s dvojnásobnou kapacitou 4 2 tag data tag data tag data tag data tag data tag data tag data tag data s = 8, resp. e) 8-cestná, resp. plně asociativní 3

14 Implementace 4-cestné RVP 4

15 Vzájemné vytlačování položek Problém vzájemného vytlačování položek se stejným ukazatelem se řeší zvýšením stupně asociativity. U dvoucestné paměti mohou být v paměti uloženy současně dvě položky se stejným ukazatelem. Organizace b) však přináší oproti uspořádání a) jen malé zlepšení, protože kapacita paměti se nezměnila a do jednoho řádku se mapuje dvojnásobné množství adres. Výrazné zlepšení přináší uspořádání c). Stupeň asociativity lze dále zvyšovat, až dospějeme k plně asociativní paměti, kdy již je příznak celá adresa, která může být umístěna v kterékoliv pozici. Příklad: Činnost jednotlivých uspořádání RVP prostudujte na základě zadané posloupnosti adres bloku: 0, 8, 0, 6, 8 atd. Pravidlo pro výpočet čísla bloku RVP je následující: adresa RVP = adresa bloku mod { počet bloků RVP, počet sad RVP } Údaj ve složené závorce je vlastně počet řádků v adresáři RVP. 5

16 Závislost pravděpodobnosti výpadku bloku na stupni asociativity pro různé velikosti bloku 8 pravděpodobnost výpadku 6 [%] 4 2 velikost RVP 8KB 6K 32K 64K 28K stupeň asociativity 6

17 Výběr oběti Jsou-li všechny položky pro daný ukazatel obsazeny, je třeba rozhodnout, kterou položku zrušíme, a uvolníme tak místo pro novou položku. U dvoucestné RVP a obecně pro stupeň asociativity > tak vzniká problém výběru oběti. Tento problém řeší některá ze strategií náhrady: Least Recently Used (LRU), tedy ponechávají se položky používané v poslední době a ruší se nejdéle nepoužitá položka Most Frequently Used (MFU), kdy se ponechávají často používané položky a položka nejméně používaná se ruší RAND - náhodný výběr oběti FIFO - oběť je položka, která je v RVP nejdéle Strategie LRU, MFU i FIFO vyžadují další obvodové doplňky, jako registry pro udržování času použití, resp. jejich úsporné modifikace, nebo čítače četnosti použití. Zde se musířešit např. otázka přeplněníčítačů, a jsou navrženy algoritmy, které zavčas zahájí dekrementaci vybraných čítačů. 7

18 Příklad, typy výpadků U procesoru I je čtyřcestná RVP, používající se modifikované strategie MFU. Pracuje se přitom se změnovým bitem D a bitem S/U - System/User. Tyto dva bity rozdělí položky v RVP do čtyř skupin, jako první oběť se vybírá položka ze skupiny 00. Výpadky rozdělujeme podle příčin na nezbytné, např. po startu systému je RVP prázdná bez ohledu na konstrukci nebo nahrazovací algoritmus kapacitní, způsobené omezenou kapacitou RVP, takže nemohou být k dispozici všechny bloky dat a instrukcí konfliktní (nebo též kolizní), které závisí na stupni asociativity adresáře Závislost pravděpodobnosti výpadku na velikosti bloku pro různé stupně asociativity s vyznačením podílu jednotlivých typů výpadků je na následujícím obrázku. 8

19 Závislost pravděpodobnosti výpadku na velikosti bloku pro různé stupně asociativity 20 pravděpodobnost výpadku 5 [%] 0 konfliktní s = stupeň asociativity 5 0 kapacitní nezbytné velikost RVP [KB] 9

20 Virtuální paměť Problematika virtuální paměti je velmi podobná principu RVP. V zásadě lze říci, že u virtuální paměti pracuje hlavní paměť M jako rychlá vyrovnávací paměť pro disk. Motivace pro výstavbu virtuální paměti je dvojí: vytvořit možnost efektivního sdílení paměti M mnoha programy odstranit omezení fyzikální velikostí paměti M Vychází se přitom z poznatku, že pouze maláčást programů je současně aktivních. Dále se z praktických důvodů došlo k dělení větších programů na menší segmenty, které se pak překrývají (overlay). Pracujeme zde s pojmy fyzického (reálného) adresového prostoru, a logického (virtuálního) adresového prostoru. 20

21 Vztah mezi virtuální a fyzickou adresou Virtuální adresy Fyzické adresy Adresy na disku 2

22 Překlad virtuální adresy na fyzickou () Velký virtuální adresový prostor je realizován jednak "rychlou" pamětí M s reálným adresovým prostorem, jednak diskovým prostorem. Bloky, v tomto případě stránky, které nejsou momentálně ve fyzickém adresovém prostoru a jsou požadovány, se musejí do fyzické paměti vložit. Často se zavádí pojem stránkového rámu, což je úsek paměti M velikosti jedné stránky, který slouží pro uložení některé stránky s libovolnou virtuální adresou. Vzhledem k tomu, že program používá k odkazu virtuální adresu, musí se tato přeložit na fyzickou adresu stránkového rámu. Nepřekládá se celá adresa, ale pouze adresa stránky, viz následující obrázek. 22

23 Překlad virtuální adresy na fyzickou (2) číslo virtuální stránky offset ve stránce virtuální adresa překlad číslo fyzické stránky offset ve stránce fyzická adresa Velikost stránky je 2 2 = 4 KB. Číslo virtuální stránky má 20 bitů, takže virtuální adresový prostor je = 4 GB. Číslo fyzické stránky má 8 bitů, takže fyzický adresový prostor je = GB. 23

24 Pravidla pro virtuální paměťové systémy Stránky musí být dost velké, aby se kompenzovaly dlouhé přístupové doby disku, používané velikosti stránky jsou 4 KB, 6 KB až 64 KB. Pro snížení počtu výpadků stránky (page fault) se používají organizační techniky s různými strategiemi rozmisťování stránek. Výpadek stránky se může ošetřit programově, protože ztráty vyhledáváním nové adresy v tabulkách jsou malé ve srovnání s přístupovými dobami disku. Při udržování datové koherence se strategie přímého zápisu (průpisu) nepoužívá, vždy jde o zpětný zápis. 24

25 Jednostupňový překlad virtuální adresy Ukazatel začátku TABULKA bit přítomnosti STRÁNEK virtuální adresa číslo virtuální stránky offset ve stránce P 20 b číslo fyzické stránky. 2 Velikost stránky je 4 KB, virtuální adresový prostor je 4 GB, fyzický adresový prostor je GB. Tabulka stránek má 2 20 položek.. stránka je /není přítomná / číslo fyzické stránky offset ve stránce 0 Bit přítomnosti stránky udává, zda požadovaná stránka je ve fyzické paměti, nebo ne. Pokud není, tak v dané položce není uvedeno číslo fyzické stránky, ale může tam být uvedena adresa umístění stránky na disku (tato adresa bude zřejmě vyžadovat větší počet bitů). Tato adresa pak obsahuje data, která jsou zdvojením informace z úplné tabulky adres stránek na disku. 25

26 Dvoustupňový překlad virtuální adresy U stránkově-segmentované adresy se používá dvoustupňový překlad adresy, rozdělený na překlad čísla segmentu a překlad čísla stránky, viz následující obrázek. Je to adresové schéma mikroprocesoru Intel z roku 985, kde je přímá obvodová podpora pro segmentaci i stránkování. Je zachována kompatibilita s adresací původního mikroprocesoru 8086 z roku 976. Fyzický adresový prostor je 4GB, logický adresový prostor je 64 TB. Jednotka pro řízení paměti MMU (Memory Management Unit) zabudovaná v čipu obsahuje segmentační jednotku, která provádí překlad adresy segmentů, jejichž velikost je od do 2 32 bytů. Stránkovací jednotka překládá adresy stránek o velikosti 4KB. Programátor může obejít některou z těchto jednotek, takže u systému mohou být použity čtyři organizace paměti: nesegmentovaná a nestránkovaná, segmentovaná a nestránkovaná, nesegmentovaná a stránkovaná, a segmentovaná a stránkovaná. 26

27 Dvoustupňový překlad I Bázový registr tabulky segmentů Tabulka segmentů Tabulka stránek L s Jednotka pro efektivní adresu N p Logická adresa L Efektivní adresa Adresář stránek Bázový registr adresáře stránek 4 Adresa segmentu L s 32 N d Lineární adresa Segmentový registr Adresář stránek N d Tabulka stránek N p Stránkový rám Posunutí Fyzická adresa P 27

28 Optimalizace velikosti stránky Předpokládejme, že adresa je stránkově-segmentovaná, segment má velikost S, velikost stránky je p. Tabulka stránek pro jeden segment má S/p položek. Každý program využije jistého počtu stránek, přičemž poslední stránka je v průměru využita z jedné poloviny. Celková ztráta paměťového prostoru je dána velikostí tabulky stránek a jedné poloviny stránky, tedy S/p + p/2 Hledáme minimum tohoto výrazu tak, že jej derivujeme podle p. Dostaneme Odtud - S/p 2 + /2 = 0 p 2 = 2S, tedy p opt = 2S 28

29 Příklad: Formáty adresy IBM System/360, 370 Segment 64 KB x Segm. No. Page No. Byte No. Stránka 2 KB x Segm. No. Page No. Byte No. Stránka 4 KB Segment MB x Segm. No. Page No. Byte No. Stránka 2 KB x Segm. No. Page No. Byte No. Stránka 4 KB 2 x 64 K = 52/256 B 2 x M = /2 KB 29

30 Zrychlení překladu virtuální adresy Pro zrychlení překladu virtuálních adres se často implementuje podmnožina adres tabulky stránek, umístěných ve fyzické paměti pomocí asociativní paměti, zvané Tabulka přeložených adres (Translation Look-Aside Buffer - TLB). Dostáváme tak uspořádání, které je na následujícím obrázku. Hledání v TLB je např. index-asociativní, může se však použít jakékoliv z organizací, uvedených v kap. o RVP. Bit platnosti V v TLB udává, zda se položka TLB pro nalezenou vstupní adresu může použít. Pokud ne, hledá se v úplné tabulce stránek. Zde bit platnosti V říká, zda je stránka k dispozici ve fyzické paměti, nebo zda se musí hledat na disku. Strategie pro umisťování překladů virtuálních adres do TLB jsou obdobné strategiím pro obsazování položek adresáře RVP, tedy LRU, MFU, FIFO a RAND. Typické velikosti paměti přeložených adres jsou 32 až 024 položek, dosahuje se pravděpodobnosti výpadku stránky 0,0 až %. 30

31 Podpora překladu pomocí TLB Číslo virtuální stránky V 0 0 TLB Tag Fyzická adresa str. Fyzická paměť Úplná tabulka stránek V Fyz. adr. nebo disk Disk 3

32 Virtuální adresa 3 0 číslo virtuální stránky offset ve stránce 20 b 2 V D Tag číslo fyzické stránky Obvodový překlad virtuální adresy pomocí TLB a RVP s index-asociativním adresářem v DecStation 300 TLB TLB hit & = 20 číslo fyzické stránky Fyzická adresa Tag Index Offset bytu V Tag Data RVP Cache hit & = Data 32 32

33 Analýza hierarchické paměti z hlediska ceny a výkonu Máme dvě konfigurace počítače podle obrázku s parametry podle tabulky, kde m i je kapacita paměti, t i je doba přístupu a c i je cena v hal/kbit. a) CPU m /t /c m 2 /t 2 /c 2 b) CPU /t /c m i mi [B] ti [ns] ci [hal/[kbit] 5K M M

34 Výpočet Máme vypočítat průměrnou cenu na KB v obou konfiguracích a máme určit, kdy bude výhodnější varianta a). Střední ceny paměti v obou konfiguracích jsou (B = 9b) C a = 9(m c + m 2 c 2 )/00(m + m 2 ) Kč/KB C b = 9c 3 /00 Kč/KB V konfiguraci a) máme pravděpodobnost úspěchu při čtení z M danou p h. Zjednodušeně můžeme napsat výraz pro střední dobu přístupu t a = t p h + t 2 ( - p h ) Má-li být konfigurace a) výhodnější než b) z hlediska výkonu, musí platit t 3, tedy t a t 3 t p h + t 2 - t 2 p h Odtud dostáváme podmínku pro pravděpodobnost úspěchu p h (t 3 - t 2 )/(t - t 2 ) Po dosazení hodnot podle tabulky dostáváme p h 0,5, což je velmi mírný požadavek. 34

Paměťový podsystém počítače

Paměťový podsystém počítače Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...

Více

Struktura a architektura počítačů (BI-SAP) 11

Struktura a architektura počítačů (BI-SAP) 11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Systém adresace paměti

Systém adresace paměti Systém adresace paměti Základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces k adresaci přiděleného

Více

Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit

Operační systémy. Jednoduché stránkování. Virtuální paměť. Příklad: jednoduché stránkování. Virtuální paměť se stránkování. Memory Management Unit Jednoduché stránkování Operační systémy Přednáška 8: Správa paměti II Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné velikosti

Více

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Správa paměti II. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

Principy operačních systémů. Lekce 3: Virtualizace paměti

Principy operačních systémů. Lekce 3: Virtualizace paměti Principy operačních systémů Lekce 3: Virtualizace paměti Virtuální paměť Adresní prostor paměti je uspořádán logicky jinak, nebo je dokonce větší než je fyzická operační paměť RAM Rozšíření vnitřní paměti

Více

Mezipaměti počítače. L2 cache. L3 cache

Mezipaměti počítače. L2 cache. L3 cache Mezipaměti počítače Cache paměť - mezipaměť Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá vyrovnávací (cache) paměť SRAM. Rychlost

Více

Pamět ová hierarchie, virtuální pamět. doc. Ing. Róbert Lórencz, CSc.

Pamět ová hierarchie, virtuální pamět. doc. Ing. Róbert Lórencz, CSc. Architektura počítačových systémů Pamět ová hierarchie, virtuální pamět doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů Architektura paměťového a periferního podsystému České vysoké učení technické, Fakulta elektrotechnická A4M36PAP Pokročílé architektury počítačů Ver.1.00 2010 1 Motivace

Více

Operační systémy. Přednáška 8: Správa paměti II

Operační systémy. Přednáška 8: Správa paměti II Operační systémy Přednáška 8: Správa paměti II 1 Jednoduché stránkování Hlavní paměť rozdělená na malé úseky stejné velikosti (např. 4kB) nazývané rámce (frames). Program rozdělen na malé úseky stejné

Více

Pamět ová hierarchie, návrh skryté paměti 2. doc. Ing. Róbert Lórencz, CSc.

Pamět ová hierarchie, návrh skryté paměti 2. doc. Ing. Róbert Lórencz, CSc. Architektura počítačových systémů Pamět ová hierarchie, návrh skryté paměti 2 doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů

Více

ÚVOD DO OPERAČNÍCH SYSTÉMŮ. Správa paměti. Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace

ÚVOD DO OPERAČNÍCH SYSTÉMŮ. Správa paměti. Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace ÚVOD DO OPERAČNÍCH SYSTÉMŮ Správa paměti Přímý přístup k fyzické paměti, abstrakce: adresový prostor, virtualizace, segmentace České vysoké učení technické Fakulta elektrotechnická Y38ÚOS Úvod do operačních

Více

2010/2011 ZS P i r i nc č py po ít č čů a PAMĚŤOVÝ ĚŤ SUBSYSTÉM z pohledu OS OS

2010/2011 ZS P i r i nc č py po ít č čů a PAMĚŤOVÝ ĚŤ SUBSYSTÉM z pohledu OS OS Pi Principy i počítačů čů PAMĚŤOVÝ SUBSYSTÉM z pohledu OS Správa paměti OS je správcem prostředků, tedy i paměti přidělování procesům zajištění ochrany systému i procesů zajištění požadavků aniž by došlo

Více

Paměti cache. Cache může být realizována softwarově nebo hardwarově.

Paměti cache. Cache může být realizována softwarově nebo hardwarově. Paměti cache Cache je označení pro vyrovnávací paměť nacházející se mezi dvěma subsystémy s rozdílnou přenosovou rychlostí, a jak již její název vypovídá, tak tuto rychlost vyrovnává. Cache může být realizována

Více

Přidělování paměti II Mgr. Josef Horálek

Přidělování paměti II Mgr. Josef Horálek Přidělování paměti II Mgr. Josef Horálek Techniky přidělování paměti = Přidělování jediné souvislé oblasti paměti = Přidělování paměti po sekcích = Dynamické přemisťování sekcí = Stránkování = Stránkování

Více

Pamět ová hierarchie, návrh skryté paměti cache 2

Pamět ová hierarchie, návrh skryté paměti cache 2 Architektura počítačových systémů Róbert Lórencz 8. přednáška Pamět ová hierarchie, návrh skryté paměti cache 2 http://service.felk.cvut.cz/courses/36aps lorencz@fel.cvut.cz Róbert Lórencz (ČVUT FEL, 2005)

Více

Paměti a jejich organizace

Paměti a jejich organizace Kapitola 5 Paměti a jejich organizace 5.1 Vnitřní a vnější paměti, vlastnosti jednotlivých typů Vnější paměti Jsou umístěny mimo základní jednotku. Lze je zařadit mezi periferní zařízení. Zápis a čtení

Více

Adresování paměti. Adresní prostor. Adresní módy (v instrukcích) T.Mainzer

Adresování paměti. Adresní prostor. Adresní módy (v instrukcích) T.Mainzer Adresování paměti T.Mainzer Adresní prostor Logický adresní prostor - Adresní prostor se kterým může pracovat/může adresovat daný procesor. Pracuje li procesor s 16-bitovou adresou má log.adresní prostor

Více

Rychlá vyrovnávací paměť v architektuře PC

Rychlá vyrovnávací paměť v architektuře PC Rychlá vyrovnávací paměť v architektuře PC 1 Cíl přednášky Prezentovat důvody, které vedly k zavedení rychlé vyrovnávací paměti (RVP) do architektury počítače. Vysvětlit principy činnosti RVP. Ukázat vývoj

Více

Principy počítačů a operačních systémů

Principy počítačů a operačních systémů Principy počítačů a operačních systémů Operační systémy Správa paměti Zimní semestr 2011/2012 Správa paměti OS jako správce paměti specializovaný subsystém OS spravuje hlavní paměť systému přidělování

Více

Přednáška. Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Správa paměti I. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

Procesor. Procesor FPU ALU. Řadič mikrokód

Procesor. Procesor FPU ALU. Řadič mikrokód Procesor Procesor Integrovaný obvod zajišťující funkce CPU Tvoří srdce a mozek celého počítače a do značné míry ovlivňuje výkon celého počítače (čím rychlejší procesor, tím rychlejší počítač) Provádí jednotlivé

Více

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Operační systémy. Přednáška 7: Správa paměti I

Operační systémy. Přednáška 7: Správa paměti I Operační systémy Přednáška 7: Správa paměti I 1 Správa paměti (SP) Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který

Více

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading)

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading) Správa paměti (SP) Operační systémy Přednáška 7: Správa paměti I Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který

Více

Cache paměť - mezipaměť

Cache paměť - mezipaměť Cache paměť - mezipaměť 10.přednáška Urychlení přenosu mezi procesorem a hlavní pamětí Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá

Více

09. Memory management. ZOS 2006, L.Pešička

09. Memory management. ZOS 2006, L.Pešička 09. Memory management ZOS 2006, L.Pešička Správa paměti paměťová pyramida absolutní adresa relativní adresa počet bytů od absolutní adresy fyzický prostor adres fyzicky k dispozici výpočetnímu systému

Více

Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba.

Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba. Odpovědi jsem hledala v prezentacích a na http://www.nuc.elf.stuba.sk/lit/ldp/index.htm Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Cache paměti (1) Cache paměť: V dnešních počítačích se běžně používají dva, popř. tři druhy cache pamětí:

Cache paměti (1) Cache paměť: V dnešních počítačích se běžně používají dva, popř. tři druhy cache pamětí: Cache paměti (1) Cache paměť: rychlá vyrovnávací paměť mezi rychlým zařízením (např. procesor) a pomalejším zařízením (např. operační paměť) vyrobena z obvodů SRAM s přístupovou dobou 1-20 ns V dnešních

Více

Pokročilé architektury počítačů

Pokročilé architektury počítačů Pokročilé architektury počítačů Přednáška 3 Hierarchické uspořádání pamětí počítače Martin Milata Obsah Paměťový subsystém Obvyklé chování programů při přístupu do paměti Cache paměti princip činnosti

Více

Memory Management vjj 1

Memory Management vjj 1 Memory Management 10.01.2018 vjj 1 10.01.2018 vjj 2 sledování stavu paměti free used správa paměti strategie přidělování paměti techniky přidělování paměti realizace uvolňování paměti 10.01.2018 vjj 3

Více

Adresace paměti. 11.přednáška

Adresace paměti. 11.přednáška Adresace paměti 11.přednáška Adresace paměti základní pojmy Adresa fyzická - adresa, která je přenesena na adresní sběrnici a fyzicky adresuje hlavní paměť logická - adresa, kterou má k dispozici proces

Více

Memory Management vjj 1

Memory Management vjj 1 Memory Management 30.11.2016 vjj 1 30.11.2016 vjj 2 sledování stavu paměti free used správa paměti strategie přidělování paměti techniky přidělování paměti realizace uvolňování paměti 30.11.2016 vjj 3

Více

PAMĚŤOVÝ SUBSYSTÉM. Principy počítačů I. Literatura. Parametry paměti. Parametry paměti. Dělení pamětí podle funkce. Kritéria dělení pamětí

PAMĚŤOVÝ SUBSYSTÉM. Principy počítačů I. Literatura. Parametry paměti. Parametry paměti. Dělení pamětí podle funkce. Kritéria dělení pamětí Principy počítačů I PAMĚŤOVÝ SUBSYSTÉM Literatura http://www.tomshardware.com http://www.play-hookey.com/digital/ 6 kb ought to be enough for anybody. Bill Gates, 98 Parametry paměti kapacita objem informace,

Více

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard

Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, / 41

Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, / 41 Operační systémy Pamět Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci Petr Krajča (UP) KMI/YOS: Přednáška IV. 18. listopad, 2016 1 / 41 Operační pamet zásadní část počítače uložení kódu

Více

Kapitola 10: Diskové a souborové struktury. Klasifikace fyzických médií. Fyzická média

Kapitola 10: Diskové a souborové struktury. Klasifikace fyzických médií. Fyzická média - 10.1 - Kapitola 10: Diskové a souborové struktury Přehled fyzických ukládacích médií Magnetické disky RAID (Redundant Array of Inexpensive Disks) Terciární úložiště Přístup k médiu Souborové organizace

Více

Cache paměti (2) Cache paměti (1) Cache paměti (3) Cache paměti (4) Cache paměti (6) Cache paměti (5) Cache paměť:

Cache paměti (2) Cache paměti (1) Cache paměti (3) Cache paměti (4) Cache paměti (6) Cache paměti (5) Cache paměť: Cache paměti (1) Cache paměť: rychlá vyrovnávací paměť mezi rychlým zařízením (např. procesor) a pomalejším zařízením (např. operační paměť) vyrobena z obvodů SRAM s přístupovou dobou 1 20 ns V dnešních

Více

Petr Krajča. 25. listopad, 2011

Petr Krajča. 25. listopad, 2011 Operační systémy Pamět Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci 25. listopad, 2011 Petr Krajča (UP) KMI/YOS: Přednáška IV. 25. listopad, 2011 1 / 35 Operační pamet zásadní část počítače

Více

I. Dalšívnitřní paměti

I. Dalšívnitřní paměti BI-JPO (Jednotky počítače) I. Dalšívnitřní paměti c doc. Ing. Alois Pluháček, CSc. 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální

Více

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Metody připojování periferií BI-MPP Přednáška 2

Metody připojování periferií BI-MPP Přednáška 2 Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011

Více

požadovan adované velikosti a vlastností Interpretace adresy POT POT

požadovan adované velikosti a vlastností Interpretace adresy POT POT požadovan adované velikosti a vlastností K.D. - přednášky 1 Interpretace adresy Ve kterémkoliv místě lze adresu rozdělit na číslo bloku a offset uvnitř bloku. Velikost bloku je dána délkou příslušné části

Více

Výkonnost počítačů, empirické zákony o výkonnosti. INP 2008 FIT VUT v Brně

Výkonnost počítačů, empirické zákony o výkonnosti. INP 2008 FIT VUT v Brně Výkonnost počítačů, empirické zákony o výkonnosti INP 2008 FIT VUT v Brně 1 Moorův zákon Gordon Moore (Fairchild Semicondutor) si v r. 1965 všiml, že počet tranzistorů na čipu procesoru se vždy za 18 až

Více

Struktura a architektura počítačů (BI-SAP) 10

Struktura a architektura počítačů (BI-SAP) 10 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Úvod do architektur personálních počítačů

Úvod do architektur personálních počítačů Úvod do architektur personálních počítačů 1 Cíl přednášky Popsat principy proudového zpracování informace. Popsat principy zřetězeného zpracování instrukcí. Zabývat se způsoby uplatnění tohoto principu

Více

Architektury počítačů

Architektury počítačů Architektury počítačů Virtuální paměť České vysoké učení technické, Fakulta elektrotechnická B35APO Architektura počítačů Ver.3.5 - odpřednášená 1 * B35APO Architektura počítačů 2 Přímo mapovaná cache

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

Správy cache. Martin Žádník. Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, Brno

Správy cache. Martin Žádník. Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, Brno Správy cache Martin Žádník Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno ant@fit.vutbr.cz Hierarchie Cílem cache je dostat data co nejblíže výpočetnímu

Více

PROCESOR. Typy procesorů

PROCESOR. Typy procesorů PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

Architektury počítačů

Architektury počítačů Architektury počítačů Paměť část druhá 1. virtuální paměť, celkový pohled 2. sekundární paměť České vysoké učení technické, Fakulta elektrotechnická A0B36APO Architektura počítačů Ver.1.00 1 Na minulé

Více

Přidělování zdrojů (prostředků)

Přidělování zdrojů (prostředků) Přidělování zdrojů (prostředků) Proces potřebuje zdroje (prostředky) hardware (I/O zařízení, paměť) software (data, programy) Klasifikace zdrojů (z hlediska multitaskingového režimu) Násobně použitelné

Více

Operační systémy 2. Přednáška číslo 2. Přidělování paměti

Operační systémy 2. Přednáška číslo 2. Přidělování paměti Operační systémy 2 Přednáška číslo 2 Přidělování paměti Základní pojmy Paměť = operační paměť paměť, kterou přímo využívají procesory při zpracování instrukcí a dat Funkce modulu přidělování paměti: Sledování

Více

Principy operačních systémů. Lekce 2: Správa paměti

Principy operačních systémů. Lekce 2: Správa paměti Principy operačních systémů Lekce 2: Správa paměti Funkce správce paměti Správce (operační) paměti je součástí kernelu. Jeho implementace může být různá, ale základní funkce jsou obdobné ve všech OS: Udržovat

Více

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru

Další aspekty architektur CISC a RISC Aktuálnost obsahu registru Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat

Více

Technické prostředky počítačové techniky

Technické prostředky počítačové techniky Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení

Více

Uspořádání cache pamětí procesorů historie a současný stav

Uspořádání cache pamětí procesorů historie a současný stav Uspořádání cache pamětí procesorů historie a současný stav Stránka: 1 / 17 Obsah 1Úvod...3 2Hierarchie pamětí počítače...4 2.1Pracovní registry procesoru...4 2.2L1 cache...4 2.3L2 cache...5 2.4Operační

Více

Systém souborů (file system, FS)

Systém souborů (file system, FS) UNIX systém souborů (file system) 1 Systém souborů (file system, FS)! slouží k uchování dat na vnějším paměťovém médiu a zajišťuje přístup ke struktuře dat! pro uživatele možnost ukládat data a opět je

Více

PA152. Implementace databázových systémů

PA152. Implementace databázových systémů PA152 Implementace databázových systémů RAID level 1 zrcadlení disku výpočet MTTF 2 stejné disky, MTTF 3 roky výměna vadného 3,5 dne výpadek oba disky během 3,5 dne p(výpadku disku za rok) = 1/6 p(výp.

Více

Paměti Josef Horálek

Paměti Josef Horálek Paměti Josef Horálek Paměť = Paměť je pro počítač životní nutností = mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky své práce = Paměti v zásadě můžeme rozdělit na: = Primární

Více

Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry.

Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod Operační paměť

Více

Adresní mody procesoru

Adresní mody procesoru Adresní mody procesoru K.D. - přednášky 1 Obecně o adresování Různé typy procesorů mohou mít v instrukci 1, 2 nebo více adres. Operandy mohou ležet v registrech nebo v paměti. Adresní mechanismus procesoru

Více

DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů

DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů projekt GML Brno Docens DUM č. 10 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 04.12.2013 Ročník: 1A, 1B, 1C Anotace DUMu: jak fungují vnitřní paměti, typy ROM a RAM pamětí,

Více

Architektura počítačů Paměťová hierarchie

Architektura počítačů Paměťová hierarchie Architektura počítačů Paměťová hierarchie http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Paměťová

Více

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů). Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis

Více

Přednáška. Systémy souborů. FAT, NTFS, UFS, ZFS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Systémy souborů. FAT, NTFS, UFS, ZFS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Systémy souborů. FAT, NTFS, UFS, ZFS. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Počítač jako prostředek řízení. Struktura a organizace počítače

Počítač jako prostředek řízení. Struktura a organizace počítače Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský

Více

PRINCIPY OPERAČNÍCH SYSTÉMŮ

PRINCIPY OPERAČNÍCH SYSTÉMŮ Metodický list č. 1 Název tématického celku: Přehled operačních systémů a jejich funkcí Základním cílem tohoto tematického celku je seznámení se s předmětem (vědním oborem) Operační systémy (OS) a se základními

Více

Roman Výtisk, VYT027

Roman Výtisk, VYT027 Roman Výtisk, VYT027 Ohlédnutí za architekturou AMD K8 Představení architektury procesoru AMD K10 Přínos Struktura cache IMC, HyperTransport sběrnice Použitá literatura Ohlášení x86-64 architektury 5.

Více

Technické informace. PA152,Implementace databázových systémů 4 / 25. Projekty. pary/pa152/ Pavel Rychlý

Technické informace. PA152,Implementace databázových systémů 4 / 25. Projekty.   pary/pa152/ Pavel Rychlý Technické informace PA152 Implementace databázových systémů Pavel Rychlý pary@fi.muni.cz Laboratoř zpracování přirozeného jazyka http://www.fi.muni.cz/nlp/ http://www.fi.muni.cz/ pary/pa152/ přednáška

Více

OPS Paralelní systémy, seznam pojmů, klasifikace

OPS Paralelní systémy, seznam pojmů, klasifikace Moorův zákon (polovina 60. let) : Výpočetní výkon a počet tranzistorů na jeden CPU chip integrovaného obvodu mikroprocesoru se každý jeden až dva roky zdvojnásobí; cena se zmenší na polovinu. Paralelismus

Více

Architektura procesoru ARM

Architektura procesoru ARM Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6

Více

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná

Více

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry.

Sběrnicová architektura POT POT. Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Systémov mová sběrnice 1 Sběrnicová architektura Jednotlivé subsystémy počítače jsou propojeny sběrnicí, po které se přenáší data oběma směry. Single master jeden procesor na sběrnici, Multi master více

Více

Základní uspořádání pamětí MCU

Základní uspořádání pamětí MCU Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou

Více

Při překrývání se využívá toho, že ne všechny moduly programu jsou vyžadovány současně. Jakmile skončí využívání jednoho

Při překrývání se využívá toho, že ne všechny moduly programu jsou vyžadovány současně. Jakmile skončí využívání jednoho Operační systémy Tomáš Hudec 9 Správa paměti, metody alokace paměti, virtualizace paměti Obsah: 9.1 Techniky přidělování paměti, 9.1.1 Pevné dělení paměti, 9.1.1.1 Stejně velké oblasti, 9.1.1.2 Různě velké

Více

ORGANIZACE A REALIZACE OPERAČNÍ PAMĚTI

ORGANIZACE A REALIZACE OPERAČNÍ PAMĚTI ORGANIZACE A REALIZACE OPERAČNÍ PAMĚTI 1 Základní rozdělení paměti RAM (takto začalo v PC na bázi 286) 1. konvenční paměť 640 kb, 0h - 9FFFFh (segmenty 0 9) V této oblasti byly spouštěny aplikační programy

Více

Reprezentace dat v informačních systémech. Jaroslav Šmarda

Reprezentace dat v informačních systémech. Jaroslav Šmarda Reprezentace dat v informačních systémech Jaroslav Šmarda Reprezentace dat v informačních systémech Reprezentace dat v počítači Datové typy Proměnná Uživatelské datové typy Datové struktury: pole, zásobník,

Více

Výstavba PC. Vývoj trhu osobních počítačů

Výstavba PC. Vývoj trhu osobních počítačů Výstavba PC Vývoj trhu osobních počítačů Osobní počítač? Sálový počítač (Mainframe) IBM System/370 model 168 (1972) Minipočítač DEC PDP-11/70 (1975) Od 60. let počítač byl buď velký sálový nebo mini, stroj,

Více

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí:

Intel 80486 (2) Intel 80486 (1) Intel 80486 (3) Intel 80486 (4) Intel 80486 (6) Intel 80486 (5) Nezřetězené zpracování instrukcí: Intel 80486 (1) Vyroben v roce 1989 Prodáván pod oficiálním názvem 80486DX Plně 32bitový procesor Na svém čipu má integrován: - zmodernizovaný procesor 80386 - numerický koprocesor 80387 - L1 (interní)

Více

Procesor z pohledu programátora

Procesor z pohledu programátora Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér

Více

Dekódování adres a návrh paměťového systému

Dekódování adres a návrh paměťového systému Dekódování adres a návrh paměťového systému K.D. 2004 Tento text je určen k doplnění přednášek z předmětu POT. Je zaměřen jen na některé body probírané na přednáškách bez snahy o úplné vysvětlení celé

Více

Profilová část maturitní zkoušky 2014/2015

Profilová část maturitní zkoušky 2014/2015 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2)

Procesor Intel Pentium (1) Procesor Intel Pentium (3) Procesor Intel Pentium Pro (1) Procesor Intel Pentium (2) Procesor Intel Pentium (1) 32-bitová vnitřní architektura s 64-bitovou datovou sběrnicí Superskalární procesor: obsahuje více než jednu (dvě) frontu pro zřetězené zpracování instrukcí (značeny u, v) poskytuje

Více

MSP 430F1611. Jiří Kašpar. Charakteristika

MSP 430F1611. Jiří Kašpar. Charakteristika MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže

Více

Operační systémy. Přednáška 9: Správa paměti III

Operační systémy. Přednáška 9: Správa paměti III Operační systémy Přednáška 9: Správa paměti III Strategie nahrání (Fetch policy) Určuje, kdy má být virtuální stránka nahrána do hlavní paměti. Stránkování na žádost (demand paging) Virtuální stránky jsou

Více

9. Pamětí vnitřní a vnější, statické, dynamické, paměťová hierarchie, virtuální paměť.

9. Pamětí vnitřní a vnější, statické, dynamické, paměťová hierarchie, virtuální paměť. 9. Pamětí vnitřní a vnější, statické, dynamické, paměťová hierarchie, virtuální paměť. Obsah 9. Pamětí vnitřní a vnější, statické, dynamické, paměťová hierarchie, virtuální paměť.... 1 9.1 Paměti v počítači...

Více

Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 /

Správa paměti. doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / Správa paměti doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah přednášky Motivace Úrovně správy paměti. Manuální

Více

Disková pole (RAID) 1

Disková pole (RAID) 1 Disková pole (RAID) 1 Architektury RAID Důvod zavedení RAID: reakce na zvyšující se rychlost procesoru. Pozice diskové paměti v klasickém personálním počítači vyhovuje pro aplikace s jedním uživatelem.

Více

Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns ms rychlost toku dat (tj. počet přenesených bitů za sekundu)

Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns ms rychlost toku dat (tj. počet přenesených bitů za sekundu) Paměti Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns...100 ms rychlost toku dat (tj. počet přenesených bitů za sekundu) kapacita paměti (tj. počet bitů, slabik, slov) cena

Více

Z čeho se sběrnice skládá?

Z čeho se sběrnice skládá? Sběrnice Co je to sběrnice? Definovat sběrnici je jednoduché i složité zároveň. Jedná se o předávací místo mezi (typicky) více součástkami počítače. Sběrnicí však může být i předávací místo jen mezi dvěma

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Přednáška. Správa paměti III. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012

Přednáška. Správa paměti III. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Přednáška Správa paměti III. Katedra počítačových systémů FIT, České vysoké učení technické v Praze Jan Trdlička, 2012 Příprava studijního programu Informatika je podporována projektem financovaným z Evropského

Více

Paměti personálních počítačů, vývoj pojmů, technologie, organizace

Paměti personálních počítačů, vývoj pojmů, technologie, organizace Paměti personálních počítačů, vývoj pojmů, technologie, organizace 1 Cíl přednášky Popsat architektury vnitřních pamětí personálních počítačů. Zabývat se vývojem pojmů, technologií, organizací. Vývoj technologie

Více

asociativní paměti Ing. Jakub Št astný, Ph.D. 1 Katedra teorie obvodů FEL ČVUT Technická 2, Praha 6,

asociativní paměti Ing. Jakub Št astný, Ph.D. 1 Katedra teorie obvodů FEL ČVUT Technická 2, Praha 6, Pamět ové obvody, řadiče a implementace, asociativní paměti AČS Ing. Jakub Št astný, Ph.D. 1 1 FPGA Laboratoř Katedra teorie obvodů FEL ČVUT Technická 2, Praha 6, 166 27 http://amber.feld.cvut.cz/fpga

Více

Operace ALU. INP 2008 FIT VUT v Brně

Operace ALU. INP 2008 FIT VUT v Brně Operace ALU INP 2008 FIT VUT v Brně 1 Princip ALU (FX) Požadavky: Logické operace Sčítání (v doplňkovém kódu) Posuvy/rotace Násobení ělení B A not AN OR XOR + Y 1) Implementace logických operací je zřejmá

Více