NOVÉ TRENDY VE VYUŽITÍ BIOPLYNU

Rozměr: px
Začít zobrazení ze stránky:

Download "NOVÉ TRENDY VE VYUŽITÍ BIOPLYNU"

Transkript

1 NOVÉ TRENDY VE VYUŽITÍ BIOPLYNU Jiřina Čermáková, Daniel Tenkrát Proces anaerobní fermentace je v dnešní době využíván v 30 zemědělských bioplynových stanicích a stovce čistíren odpadních vod v České republice. Veškerá produkce bioplynu je spotřebována pro produkci tepla a elektrické energie v kogeneračních jednotkách, přičemž většina odpadního tepla bývá během roku nevyužita. Alternativní možností využití bioplynu je jeho úprava na kvalitu zemního plynu, tzv. biomethan. Tento příspěvek se zabývá procesem fermentace a srovnáním jednotlivých čistících metod bioplynu na biomethan. Klíčová slova: biomethan, bioplyn ÚVOD Bioplyn vzniká biologickým rozkladem organických látek v anaerobních podmínkách a tento proces se nazývá methanová fermentace, anaerobní digesce, biometanizace nebo biogasifikace. Dle technického předpisu TPG termínem bioplyn je označován surový plyn produkovaný anaerobní fermentací různými druhy bioplynových stanic, a čistíren odpadních vod (ČOV). Za bioplyn není nepovaţován skládkový plyn, který můţe obsahovat širokou škálu škodlivých a jedovatých plynů a proto jej není moţné vtláčet do veřejných plynárenských sítí. Výsledkem methanové fermentace je vţdy směs plynů a fermentovaný zbytek organické hmoty. Plynná směs obsahuje především metan a oxidu uhličitý a v menší míře také další minoritní sloţky organického nebo anorganického charakteru, např. sulfan, dusík, čpavek, vodu, siloxany a jiné. Poměrné zastoupení všech sloţek bioplynu závisí nejen na sloţení výchozího substrátu, ale také na způsobu výroby. Bioplyn vzniká z organické hmoty, která zahrnuje jak rostlinou biomasu (fytomasu) a ţivočišnou biomasu, tak vedlejší organické produkty či organické odpady. Vhodnost materiálu pro anaerobní fermentaci můţe být významně narušena např. stopovým mnoţstvím neţádoucích příměsí (zpravidla potlačují vznik fermentačních bakterií) nebo nevhodnou manipulací či nesprávným předchozím zpracováním. Největší mnoţství methanu vzniká při fermentaci z rozkladu polysacharidů, lipidů a proteinů. Jedna z hlavních stavebních látek fytomasy je lignin, který je z hlediska methanogeneze balastním prvkem a tvorby methanu se téměř neúčastní, pokud není fyzikálně-chemickými procesy předem zpracován. Optimální obsah sušiny pro zpracování tuhých odpadů anaerobní fermentací je 22 aţ 25 %, u kapalných odpadů je v rozmezí 8 aţ 12 %. Dolní hranice obsahu sušiny v substrátu je dána pozitivní ekonomickou a energetickou bilancí procesu a zpravidla dosahuje hodnoty 3 5 %. Horní obsah sušiny je omezen mezí čerpatelnosti materiálu a fermentačním procesem a pohybuje se okolo 50 %. Dalším důleţitým parametrem v procesu fermentace je doba zdrţení materiálu ve fermentoru. Ţivočišná biomasa je snadno rozloţitelným substrátem a její kumulativní produkce bioplynu dosahuje maxima přibliţně ve třiceti dnech, poté je produkce bioplynu nízká a z ekonomického hlediska nevýznamná. Odbouratelnost organické hmoty v ţivočišné biomase činí % a na jeho fermentaci obvykle stačí jeden fermentor s dobou zdrţení do 30 dnů. Jiná situace nastává v případě kukuřičné siláţe, kde vyšší podíl hůře rozloţitelné hemicelulózy prodluţuje hydrolyzní a acidogenní fázi rozkladu a doba zdrţení potřebná pro odbourání organické hmoty se prodlouţí na dnů. V praxi je tato skutečnost řešena dvěma reaktory za sebou s dobou zdrţení dní (celkem dní). Rozloţitelnost organické sušiny u siláţované kukuřice dosahuje %. Různé typy substrátů se také liší v produkci bioplynu jak vyplývá z tabulky 1. V okolí bioplynové stanice obvykle není dostatečné mnoţství jednoho substrátu a je tedy výhodná kofermentace různých substrátů. Při vhodném zvolení substrátů lze zlepšit produkci a výkon bioplynové stanice či zvýšit obsah sušiny nebo naopak. V současné době je většina bioplynových stanic provozována v mezofilním reţimu při teplotě cca 38 C. Aby bylo dosaţeno ţádoucí fermentační teploty, je nutné fermentor otápět. Na 1 m 3 objemu fermentoru je zapotřebí cca kwh/rok energie pro ohřev a vyrovnání tepelné ztráty v závislosti na roční době (průměr 350 kwh/rok), coţ přibliţně odpovídá % z celkově vyrobeného tepla v kogenerační jednotce. Další energie při fermentaci je spotřebovávána na provoz míchadla. Dobré promíchání je dosaţitelné při spotřebě energie 5 aţ 8 W/m 3 reaktoru za hodinu. Spotřeba energie na míchání je silně závislá na vlastnostech reagující suspenze Ing. Jiřina Čermáková, VŠCHT Praha, Technická 5, Praha 6, jirina1.cermakova@vscht.cz / 21 /

2 a obsahu sušiny. Celková spotřeba elektrické energie na produkci bioplynu dosahuje cca 5 % z celkově vyrobené elektřiny v kogenerační jednotce. Tab. 1 Produkce bioplynu pro vybrané substráty Substrát Obsah sušiny [%] Organická sušina v sušině [%] Produkce bioplynu Obsah CH 4 m 3 /t org. m 3 /t vlhké v bioplynu sušiny hmoty [%] Hovězí kejda 8, Prasečí kejda ,4 60 Siláţovaná kukuřice ,1 185,3 52,2 Travní siláţ ,8 182,3 54,1 Zbytky z krmení 34 92, Podestýlka pšeničná sláma 86 91, Ţito - zrno Kuchyňské odpady bohaté na tuky ,5 126,5 61,9 Jednou z variant vyuţití bioplynu je jeho spotřeba pro energetické účely v místě vzniku na výrobu tepla a elektrické energie převáţně v kogeneračních jednotkách. Kogenerační jednotky obvykle pracují s účinností 80 %, přičemţ 38 % tvoří elektrická účinnost a 42 % tepelná účinnost. Vyrobené teplo je vyuţíváno pro produkci teplé uţitkové vody, pro ohřev fermentorů či pro otápění provozních budov. I přes značné moţnosti vyuţití odpadního tepla nebývá veškeré mnoţství zuţitkováno a tak dochází po většinu roku ke ztrátám energie. Schématické znázornění vyuţití bioplynu v kogenerační jednotce je zobrazeno v obrázku 1. Po odečtení provozních nákladů na výrobu bioplynu a ztrát způsobných kogenerační jednotkou při přeměně bioplynu na teplo a elektřinu lze vyuţít téměř 65 % energie z bioplynu při plném vyuţití tepla. Pokud není zajištěno vyuţití odpadního tepla lze z bioplynu vyuţít pouze 35 % energie. Fáze Proces Produkt Transport Siláž Produkce bioplynu Ohřev + Anaerobní digesce + míchání Bioplyn Využití bioplynu KJ Teplo Obr. 1 Vyuţití bioplynu v kogenerační jednotce Jinou moţností vyuţití bioplynu je jeho úprava na plyn srovnatelný kvalitou a čistotou se zemním plynem, na tzv. biomethan, který lze srovnatelně vyuţít jako zemní plyn transportovaný z ruských nebo norských nalezišť. Hlavní předností biomethanu je moţnost jeho vyskladnění do stávající plynovodní sítě a následná distribuce aţ k místům lepšího vyuţití, např. k vysoce účinným polygeneračním zařízením či plnícím stanicím na CNG, čímţ dojde k plnému vyuţití odpadního tepla a energetická účinnost vzroste. Schématické znázorněné vyuţití bioplynu jako náhradního zemního plynu je uvedeno v obrázku 2.. / 22 /

3 Fáze Proces Produkt Transport Siláž Produkce bioplynu Ohřev + Anaerobní digesce + míchání Bioplyn Produkce biomethanu Čištění Regulace tlaku Biomethan Vtláčení + distribuce Využití biomethanu Elektrárna Kotel Teplo Komprese Bio CNG Obr. 2 Vyuţití bioplynu jako náhradního zemního plynu ZPŮSOBY ÚPRAVY BIOPLYNU Dříve neţ lze vyrobený bioplyn pouţít jako náhradní zemní plyn, musí být zbaven neţádoucích sloţek, kterými jsou především sulfan, oxid uhličitý a voda. V reálném provozu jsou ověřeny a pouţívány metody zaloţené zejména na absorpčním a na adsorpčním principu. Další perspektivní metodou se jeví membránová separace, která má jiţ první komerční nasazení. Adsorpce Proces adsorpce vyuţívá Van der Walsových sil, které váţou molekuly odlučovaného plynu na povrch vysoce porézní pevné látky. Adsorpce zpravidla probíhá za zvýšeného tlaku a desorpce (regenerace sorbentu) při sníţeném tlaku. PSA - Pressure Swing Adsorption Před pouţitím této metody je nutné surový bioplyn nejprve odsířit a vysušit aţ na poţadované koncentrace, které činí maximálně 500 mg/m 3 sulfanu a 0,2 g/m 3 vody v bioplynu, jinak dochází k trvalému poškození zařízení. Odsířený vlhký plyn je stlačen na potřebný provozní tlak cca 4 7 barů, přičemţ dojde k jeho ohřátí z C na C a který je následně zchlazen na teplotu 10 aţ 20 C, přičemţ se odloučí zkondenzovaná voda a plyn je částečně vysušen. Takto vyčištění plyn se přivádí zespodu do adsorbéru, který obsahuje molekulové síto tvořené velmi jemně rozemletým uhlíkem v extrudované podobě. Na tomto adsorbentu se zachycuje CO 2 a zbytkové koncentrace H 2O, H 2S a NH 3 a rovněţ malé mnoţství methanu. Z horní části adsorbéru vychází upravený bioplyn s koncentrací methanu %. Po nasycení adsorpčního materiálu je bioplyn veden do druhé sady adsorbérů a dochází k regeneraci sorbentu. Absorpce Absorpce je zaloţena na rozdílné rozpustnosti methanu a neţádoucích plynů (CO 2, H 2S a NH 3 v pracích kapalinách. Podle způsobu pohlcení plynů se jedná buď o fyzikální nebo chemickou absorpci. / 23 /

4 Vodní tlaková vypírka Pressure Water Absorption (PWA) Surový bioplyn je dvoustupňově stlačen na pracovní tlak 4 7 barů a ochlazen na 15 C a poté přiveden na dno absorpční kolony. Plyn je v koloně protiproudně skrápěn vodou o teplotě 5 nebo 25 C. V absorpční koloně se do vody rozpouští kyselé a basické sloţky, přičemţ při niţší teplotě je absorbováno jejich větší mnoţství. Stejný účinek má také zvýšený tlak. Vyčištěný plyn obsahuje aţ 96 % methanu, 1 2 % CO 2 a zbytek tvoří kyslík a dusík. Plyn je zcela nasycen vodní párou, a proto musí být před dalším pouţitím vysušen, případně musí být odstraněny zbytkové koncentrace síry na aktivním uhlí. Proces tlakové vypírky neodstraní z bioplynu N 2 a O 2, které mohou být dále odstraněny na aktivním uhlí nebo pomocí membránových procesů. Odpadní voda je přiváděna do regenerační kolony, kde dochází v prvním stupni k uvolnění zbytkového mnoţství methanu, které se přimíchává k surovému bioplynu před druhým kompresním stupněm. Tím klesnou ztráty methanu pod 2 %. Do desorpční kolony je přiváděn vzduch, který po průchodu kolonou obsahuje asi 30 % CO 2 a 0,1 % H 2S. Odpadní plyn je odsiřován např. pouţitím biofiltru a vypouštěn do atmosféry. Chemická vypírka Narozdíl od vodní tlakové vypírky jsou neţádoucí plyny odstraňovány chemickou reakcí. Výhodou tohoto procesu je vyšší selektivita a rozpustnost plynů i při atmosférickém tlaku. Nejčastěji pouţívaným sorbentem je monoetanolamin (MEA), který je naředěn vodou na maximální koncentraci 50 %. Vstupní surový bioplyn je stlačován pouze na cca 50 kpa, aby byl překonán odpor skrápěcí kolony, a protiproudně skrápěn prací kapalinou (MEA). Obohacený bioplyn s koncentrací methanu % odchází hlavou kolony. Regenerace sorbentu probíhá v desorpční koloně za zvýšené teploty, při které se část vody odpaří. Základní parametry jednotlivých čistících procesů jsou srovnány v následující tabulce 2. Z tabulky je patrné, ţe při procesu vypírky methanolaminem vzniká biomethan s nejvyšším obsahem methanu a dochází k nejmenším ztrátám methanu. Tento proces spotřebovává i nejméně elektřiny na provoz absorbérů, ale je zde nutné další teplo na ohřev kolony na pracovní teplotu a regeneraci sorbentu, coţ je značně energeticky náročné a spotřeba energie dosahuje aţ 0,5 kwh/m 3 surového bioplynu. Na vyčištění bioplynu se spotřebuje 5 8 % energie obsaţené v bioplynu v závislosti na pouţité metodě. Tab. 2 Srovnání parametrů jednotlivých čistících procesů Parametry PSA PWA MEA Absorpční proces - fyzikální chemický Předčištění 1 ano ne ano Pracovní tlak [bar] atmosférický Ztráty methanu 3 10 % < 1 % < 0,1% Obsah methanu v plynu > 96 % > 97 % > 99 % Spotřeba elektřiny [kwh/m 3 ] 0,25 < 0,25 < 0,15 Teplota [ C] Regulovatelnost v % jmenovitého zatíţení +/ % % % 1 Obsah síry v plynu před pouţitím musí být menší neţ 500 mg/m 3. Při vyšším obsahu sulfanu nutno zařadit primární odsíření. Po vyčištění lze upravený bioplyn vtláčet do plynárenské sítě. Vhodně se jeví zejména vtláčení do středotlaké nebo vysokotlaké plynárenské sítě, kde výstupní tlak plynu z čistícího zařízení je dostatečný a není nutná další komprese plynu a náklady spojené s kompresí a distribucí plynu jsou tak minimální. Úprava bioplynu na biomethan má velkou výhodou oproti kogeneračním jednotkám, není zde poţadavek na vyuţití odpadního tepla a energie vyuţitelná z bioplynu vzroste na 74 %. Nespornou výhodou je také moţnost skladování biomethanu oproti elektrické energii a teplu. Jedny z nejvýznamnějších bariér pro vtláčení biomethanu do plynovodní sítě jsou nedostatečné ekonomické a technické podmínky výkupu biomethanu z provozu bioplynových stanic v České republice. V současné době lze biomethan bez větších problémů spotřebovávat jako motorové palivo pro pohon traktorů či automobilů. Před jeho / 24 /

5 pouţitím je nutné biomethan komprimovat na tlak MPa. Energie potřebná na stlačení biomethanu se pohybuje okolo 0,26 kwh/m 3 upraveného bioplynu a tímto krokem klesne energie vyuţitelná z bioplynu na cca 70 %, která je i tak oproti kogenerační jednotce vyšší. V případě vyuţití biomethanu pro pohon motorových vozidel i zde existují určité překáţky a bariéry, např. nedostatečná infrastruktura plnicích stanic CNG v porovnání s hustou sítí čerpacích stanic na kapalné pohonné hmoty. ZÁVĚR V současné době je v České republice téměř veškerý vyprodukovaný plyn vyuţíván pro energetické účely v kogeneračních jednotkách pro kombinovanou výrobu tepla a elektrické energie. Takovéto vyuţití bioplynu v místě produkce je jiţ osvědčené a nevyţaduje odstraňování CO 2 a dalších neţádoucích sloţek a je silně podporováno dotačními programy či povinným výkupem elektrické energie. Přitom úprava bioplynu na biomethan ať uţ pro účely vtláčení do plynárenské sítě nebo pro pohon motorových vozidel je mnohem efektivnější způsob vyuţití bioplynu, při kterém se získá skladovatelný produkt, neţ výroba tepla a elektřiny v kogeneračních jednotkách. Tento způsob vyuţití je zejména vhodný tam, kde není úplně vyuţito odpadní teplo. Prozatím veškeré snahy upravovat bioplyn na kvalitu zemního plynu naráţejí na nedostatečnou legislativu a nulovou podporu ze strany státu. Vyuţití bioplynu v dopravě závisí ve značné míře na rozvoji zemního plynu v dopravě, především na vybudování sítě čerpacích stanic pro CNG a výrobu a prodej vozidel na CNG. PODĚKOVÁNÍ Příspěvek vznikl za podpory MŠMT ČR, výzkumný záměr MSM POUŽITÁ LITERATURA [1] Straka F. a kol.: Bioplynu druhé rozšířené vydání, Gas s.r.o., Praha, 2006 [2] Šebor G., Pospíšíl M., Ţákovec M.: Technicko-ekonomická analýza vhodných paliv v dopravě, Praha, 2006 [3] Klinski S.: Einspeisung von Biogas in das Erdgasnetz, IE-Leipzig, ISBN , Leipzig, 2006 [4] Tenkrát D., Prokeš O.: Plynná paliva z alternativních (obnovitelných) zdrojů a moţnosti jejich přepravy a distribuce ve stávající plynovodní síti, Chem. Listy, 2008 [5] Tentscher W.: Anforderung und Aufbereitung von Biomas zur Einspeisung n Erdgasnetze, Gas Erdgas, 2007 [6] Persson M.: Evaluation of Upgrading Techniques for Biogas, October 2003 [7] Beil M.: Biogasaufbereitung eine Einführung, Biogasaufbereitung zu Biomethan, 6. Hanauer Dialog, 2008 [8] Weidner E.: Technologien und Kosten der Biogasaufbereitung und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung , Institut Umwelt-, Sicherheits-, Energietechnik, 2008 [9] Schulz H., Eder B.: Bioplyn v praxi, Teorie projektování stavba zařízení příklady, HEL, 2004 / 25 /

6 / 26 /

Membránová separace bioplynu v reálných podmínkách bioplynové stanice

Membránová separace bioplynu v reálných podmínkách bioplynové stanice Membránová separace bioplynu v reálných podmínkách bioplynové stanice Pavel MILČÁK 1,*, Marek BOBÁK 2 1 VÍTKOVICE ÚAM a.s., Ruská 2887/101, 703 00 Ostrava, Česká republika 2 MemBrain s.r.o., Pod Vinicí

Více

VYUŽITÍ BIOPLYNU A BIOMETHANU

VYUŽITÍ BIOPLYNU A BIOMETHANU Počet provozoven Instalovaný výkon [MWe] PALIVA 2 (2010), 36-41 VYUŽITÍ BIOPLYNU A BIOMETHANU Jiřina Čermáková, Daniel Tenkrát VŠCHT Praha, Ústav plynárenství, koksochemie a ochrany ovzduší, Technická

Více

PROGRAM BIOPLYNOVÉ STANICE

PROGRAM BIOPLYNOVÉ STANICE PROGRAM BIOPLYNOVÉ STANICE Obsah 1 Co je a jak vzniká bioplyn...2 2 Varianty řešení...3 3 Kritéria pro výběr projektů...3 4 Přínosy...4 4.1. Přínosy energetické...4 4.2 Přínosy environmentální...4 4.3

Více

ÚPRAVA BIOPLYNU MEMBRÁNOVOU SEPARACÍ

ÚPRAVA BIOPLYNU MEMBRÁNOVOU SEPARACÍ ÚPRAVA BIOPLYNU MEMBRÁNOVOU SEPARACÍ Kristýna Hádková VŠCHT Praha, TOP, Ústav plynárenství, koksochemie a ochrany ovzduší, Technická 5, 66 28 Praha 6 e-mail: kristyna.hadkova@vscht.cz Příspěvek se věnuje

Více

AKCE: Přednáška Technologie výroby a zpracování bioplynu Stanislav Bureš. Datum: 27. 11. 2014

AKCE: Přednáška Technologie výroby a zpracování bioplynu Stanislav Bureš. Datum: 27. 11. 2014 AKCE: Přednáška Technologie výroby a zpracování bioplynu Stanislav Bureš. Datum: 27. 11. 2014 Inovace studijních programů AF a ZF MENDELU směřující k vytvoření mezioborové integrace CZ.1.07/2.2.00/28.0302

Více

Využití bio(plynu)metanu v dopravě Ing. Jan Ţákovec

Využití bio(plynu)metanu v dopravě Ing. Jan Ţákovec Využití bio(plynu)metanu v dopravě Ing. Jan Ţákovec Základní pojmy Zemní plyn /Natural Gas, Erdgas, Gaz naturel, Природный газ/ = přírodní směs plynných uhlovodíků s převaţ ujícím podílem metanu CH 4 a

Více

Odstraňování Absorption minoritních nečistot z bioplynu

Odstraňování Absorption minoritních nečistot z bioplynu www.vscht.cz Ústav plynárenství, koksochemie a ochrany ovzduší Laboruntersuchungen der Karel Ciahotný Gastrocknung e-mail:karel.ciahotny@vscht.cz mit Hilfe von Adsorption und Odstraňování Absorption minoritních

Více

Bioplyn - hořlavý a energeticky bohatý plyn

Bioplyn - hořlavý a energeticky bohatý plyn Bioplyn - hořlavý a energeticky bohatý plyn je použitelný ke kogenerační výrobě elektrické energie a tepla je skladovatelný a po úpravě na biomethan může být použit jako zemní plyn biomethan je použitelný

Více

Bioplynová stanice. Úvod. Immobio-Energie s.r.o. Jiráskovo nám. 4 Tel.: 377 429 799 326 00 Plzeň Fax: 377 429 921 contact@immobio-energie.

Bioplynová stanice. Úvod. Immobio-Energie s.r.o. Jiráskovo nám. 4 Tel.: 377 429 799 326 00 Plzeň Fax: 377 429 921 contact@immobio-energie. Ing. Diana Sedláčková Mobil: 728 019 076 Bioplynová stanice Úvod Vznik bioplynu z organických látek i využití methanu k energetickým účelům je známo již dlouho. Bioplyn je směs methanu, oxidu uhličitého

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA EKONOMIKY, MANAŽERSTVÍ A HUMANITNÍCH VĚD BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA EKONOMIKY, MANAŽERSTVÍ A HUMANITNÍCH VĚD BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA EKONOMIKY, MANAŽERSTVÍ A HUMANITNÍCH VĚD BAKALÁŘSKÁ PRÁCE Efektivnost výroby biometanu Effectiveness of biomethane production Vedoucí

Více

CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME

CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME PLYNOVOD CO JE TO PLYN - ČÍM TOPÍME, NA ČEM VAŘÍME Co je zemní plyn Zemní plyn je přírodní směs plynných uhlovodíků s převaţujícím podílem metanu CH 4 a proměnlivým mnoţstvím neuhlovodíkových plynů (zejména

Více

Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe

Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe Ing. Jan Štambaský NovaEnergo Ing. Jan Štambaský, Na Horánku 673, CZ-384 11 Netolice, stambasky@novaenergo.cz Nakládání s

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

13. Netradiční topné plyny bioplyn, skládkový plyn, využití vodíku jako topného plynu. Ing. Tomáš Hlinčík, Ph.D.

13. Netradiční topné plyny bioplyn, skládkový plyn, využití vodíku jako topného plynu. Ing. Tomáš Hlinčík, Ph.D. 13. Netradiční topné plyny bioplyn, skládkový plyn, využití vodíku jako topného plynu Ing. Tomáš Hlinčík, Ph.D. Bioplyny a plyny z biomasy Skládkový plyn Bioplyn z ČOV Zemědělské bioplynové stanice Plyn

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ)

TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) TECHNOLOGIE KE SNIŽOVÁNÍ EMISÍ (SEKUNDÁRNÍ OPATŘENÍ K OMEZOVÁNÍ EMISÍ) 5. část TĚKAVÉ ORGANICKÉ SLOUČENINY A PACHOVÉ LÁTKY Zpracoval: Tým autorů EVECO Brno, s.r.o. TĚKAVÉ ORGANICKÉ SLOUČENINY Těkavé organické

Více

Elektrárny. Energetické využití bioplynu z odpadních vod

Elektrárny. Energetické využití bioplynu z odpadních vod Elektrárny Energetické využití bioplynu z odpadních vod Úvod Výroba a využití bioplynu jsou spojeny s anaerobní stabilizací čistírenských kalů, vznikajících při aerobním čištění komunálních odpadních vod.

Více

Úprava bioplynu na biomethan pomocí zakotvené kapalné membrány. M. Kárászová, J. Vejražka, V. Veselý, P. Izák

Úprava bioplynu na biomethan pomocí zakotvené kapalné membrány. M. Kárászová, J. Vejražka, V. Veselý, P. Izák Úprava bioplynu na biomethan pomocí zakotvené kapalné membrány Ústav chemických procesů AV ČR, Rozvojová 135, 165 02 Praha 6 M. Kárászová, J. Vejražka, V. Veselý, P. Izák Původ bioplynu Anaerobní digesce

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013

Omezování plynných emisí. Ochrana ovzduší ZS 2012/2013 Omezování plynných emisí Ochrana ovzduší ZS 2012/2013 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

Plyn vznikající anaerobní degradací organických látek

Plyn vznikající anaerobní degradací organických látek Bioplyn Plyn vznikající anaerobní degradací organických látek Hlavní složky: methan CH 4 oxid uhličitý CO 2 koncentrace závisí na druhu substrátu a podmínkách procesu Vedlejší složky: vodní pára bioplyn

Více

BIOLOGICKÁ ÚPRAVA ZEMĚDĚLSKÝCH ODPADŮ A STATKOVÝCH HNOJIV

BIOLOGICKÁ ÚPRAVA ZEMĚDĚLSKÝCH ODPADŮ A STATKOVÝCH HNOJIV BIOLOGICKÁ ÚPRAVA ZEMĚDĚLSKÝCH ODPADŮ A STATKOVÝCH HNOJIV VÍT MATĚJŮ, ENVISAN-GEM, a.s., Biotechnologická divize, Budova VÚPP, Radiová 7, 102 31 Praha 10 envisan@grbox.cz ZEMĚDĚLSKÉ ODPADY Pod pojmem zemědělské

Více

Výroba a využití biometanu

Výroba a využití biometanu 171 Výroba a využití biometanu Ing. Ji ina ermáková, Ing. Daniel Tenkrát, Ph.D., Ing. Ond ej Prokeš, Ph.D. VŠCHT Praha,Ústav plynárenství, koksochemie a ochrany ovzduší; Technická 5, 166 28 Praha 5 cermakoi@vscht.cz

Více

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická

Více

Biologické čištění odpadních vod - anaerobní procesy

Biologické čištění odpadních vod - anaerobní procesy Biologické čištění odpadních vod - anaerobní procesy Martin Pivokonský, Jana Načeradská 7. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v.

Více

(CH4, CO2, H2, N, 2, H2S)

(CH4, CO2, H2, N, 2, H2S) VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav technologie vody a prostředí Anaerobní postupy úpravy odpadů Prof. Ing. Jana Zábranská,, CSc. Anaerobní fermentace organických materiálů je souborem procesů

Více

Biologické odsiřování bioplynu. Ing. Dana Pokorná, CSc.

Biologické odsiřování bioplynu. Ing. Dana Pokorná, CSc. Biologické odsiřování bioplynu Ing. Dana Pokorná, CSc. Sulfan problematická složka bioplynu Odkud se sulfan v bioplynu bere? Organická síra proteiny s inkorporovanou sírou Odpady a odpadní vody z průmyslu

Více

Odstraňování CO 2 z bioplynu adsorpcí za vyšších tlaků

Odstraňování CO 2 z bioplynu adsorpcí za vyšších tlaků ODSTRAŇOVÁNÍ CO 2 Z BIOPLYNU ADSORPCÍ ZA VYŠŠÍCH TLAKŮ Veronika Vrbová, Alice Procházková, Karel Ciahotný VŠCHT Praha, Ústav plynárenství, koksochemie a ochrany ovzduší, Technická 5, 166 28 Praha 6 e-mail:

Více

je použitelný ke kogenerační výrobě elektrické je skladovatelný a po úpravě může být použit i v rozvodech pro zemní plyn

je použitelný ke kogenerační výrobě elektrické je skladovatelný a po úpravě může být použit i v rozvodech pro zemní plyn Využití bioplynu Bioplyn - hořlavý a energeticky bohatý plyn je použitelný ke kogenerační výrobě elektrické energie a tepla, je skladovatelný a po úpravě může být použit i v rozvodech pro zemní plyn je

Více

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013 Kogenerační jednotky a zařízení na úpravu plynu Dreyer & Bosse Kraftwerke GmbH, Streßelfeld 1, 29475

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011

Omezování plynných emisí. Ochrana ovzduší ZS 2010/2011 Omezování plynných emisí Ochrana ovzduší ZS 2010/2011 1 Úvod Různé fyzikální a chemické principy + biotechnologie Principy: absorpce adsorpce oxidace a redukce katalytická oxidace a redukce kondenzační

Více

DÍLČÍ ZPRÁVA Aktivita -Feasibility study for gas membrane separation focused on biogas upgrading(dv003)

DÍLČÍ ZPRÁVA Aktivita -Feasibility study for gas membrane separation focused on biogas upgrading(dv003) DÍLČÍ ZPRÁVA Aktivita -Feasibility study for gas membrane separation focused on biogas upgrading(dv003) Název projektu: Ev. č. projektu: Smart Regions - Buildings and Settlements Information Modelling,

Více

Efektivní využití kogeneračních jednotek v sítích SMART HEATING AND COOLING NETWORKS

Efektivní využití kogeneračních jednotek v sítích SMART HEATING AND COOLING NETWORKS Efektivní využití kogeneračních jednotek v sítích SMART HEATING AND COOLING NETWORKS Pavel MILČÁK 1,2, Patrik UHRÍK 2 1 VÍTKOVICE ÚAM a.s., Ruská 2887/101, 703 00 Ostrava, Česká republika 2 VUT v Brně,

Více

Úvod... 4. Bioplynová stanice... 5. Provoz bioplynové stanice... 6. Produkty anaerobní digesce... 7. Bioplynová stanice Načeradec...

Úvod... 4. Bioplynová stanice... 5. Provoz bioplynové stanice... 6. Produkty anaerobní digesce... 7. Bioplynová stanice Načeradec... Obsah Úvod... 4 Bioplynová stanice... 5 Provoz bioplynové stanice... 6 Produkty anaerobní digesce... 7 Bioplynová stanice Načeradec... 8 Technické informace... 9 Složení plynu... 10 Postup krmení... 11

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/

Více

Palivová soustava Steyr 6195 CVT

Palivová soustava Steyr 6195 CVT Tisková zpráva Pro více informací kontaktujte: AGRI CS a.s. Výhradní dovozce CASE IH pro ČR email: info@agrics.cz Palivová soustava Steyr 6195 CVT Provoz spalovacího motoru lze řešit mimo používání standardního

Více

PATRES Školící program. Bioplynové technologie

PATRES Školící program. Bioplynové technologie využití obnovitelných zdrojů energie v budovách Bioplynové technologie Ing. Jiří Klicpera CSc. Ing.Evžen Přibyl ENVIROS, s.r.o. 1 Motto "Já elektřinu ke svému životu nepotřebuji, televizi klidně mohu sledovat

Více

Technika a technologie bioplynového hospodářství

Technika a technologie bioplynového hospodářství Technika a technologie bioplynového hospodářství Praha 2006 Hlavní komponenty zařízení: Přípravná část Zpravidla se jedná o soustavu nádrží, kde dochází k úpravě sušiny kejdy na požadovanou hodnotu. Současně

Více

REKONSTRUKCE KALOVÉHO HOSPODÁŘSTVÍ ČOV S CÍLEM ZVÝŠENÍ ENERGETICKÉ SOBĚSTAČNOSTI

REKONSTRUKCE KALOVÉHO HOSPODÁŘSTVÍ ČOV S CÍLEM ZVÝŠENÍ ENERGETICKÉ SOBĚSTAČNOSTI REKONSTRUKCE KALOVÉHO HOSPODÁŘSTVÍ ČOV S CÍLEM ZVÝŠENÍ ENERGETICKÉ SOBĚSTAČNOSTI Zhruba 100 komunálních čistíren s produkcí bioplynu ( >25 000 EO ) Celková produkce bioplynu v nich je ca 60 mil. m3/rok

Více

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn Anaerobní proces Bez přístupu vzduchu C x H y O z + a H 2 O b CH 4 + c CO 2 + biomasa (S) H 2 S / S 2- (N) NH 3 / NH + 4 Počátky konec 19.stol. (septik, využívání bioplynu) Stabilizace kalů od poloviny

Více

Úprava bioplynu na biomethan

Úprava bioplynu na biomethan Úprava bioplynu na biomethan Odstranění nežádoucích složek a zvýšení koncentrace CH4 na 95 98 % Nežádoucí složky: hlavně CO2, H2S Dosažení kvality paliva pro pohon motorových vozidel Dosažení kvality zemního

Více

MĚSTSKÁ BIORAFINERIE. koncept čisté mobility a udržitelného rozvoje pro SMART CITY. Jan Káňa AIVOTEC s.r.o., CZ

MĚSTSKÁ BIORAFINERIE. koncept čisté mobility a udržitelného rozvoje pro SMART CITY. Jan Káňa AIVOTEC s.r.o., CZ MĚSTSKÁ BIORAFINERIE koncept čisté mobility a udržitelného rozvoje pro SMART CITY Jan Káňa AIVOTEC s.r.o., CZ Chráněno patenty PV 2015-433 Intenzifikované kalové hospodářství čistírny odpadních vod, P

Více

SUCHÁ FERMENTACE V MALOOBJEMOVÉM

SUCHÁ FERMENTACE V MALOOBJEMOVÉM SUCHÁ FERMENTACE V MALOOBJEMOVÉM FERMENTAČNÍM M REAKTORU Marian Mikulík Žilinská univerzita v Žilině seminář Energetické využití biomasy 2011 Trojanovice 18. 19. 5. 2011 Anaerobní fermentace Mikrobiální

Více

Základní údaje o čistírně odpadních vod

Základní údaje o čistírně odpadních vod Lanškroun Základní údaje o čistírně odpadních vod V případě čistírny odpadních vod Lanškroun se jedná o mechanicko-biologickou čistírnu s mezofilní anaerobní stabilizací kalu s nitrifikací, s biologickým

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného

Více

BIOPLYNOVÉ STANICE Metodický pokyn MŢP K podmínkám schvalování bioplynových stanic do provozu

BIOPLYNOVÉ STANICE Metodický pokyn MŢP K podmínkám schvalování bioplynových stanic do provozu BIOPLYNOVÉ STANICE Metodický pokyn MŢP K podmínkám schvalování bioplynových stanic do provozu Ing. Petra Auterská, CSc. Ministerstvo ţivotního prostředí Vršovická 65 Praha 10, 100 10 Ústředna: ++420-2-6712-1111

Více

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn Anaerobní proces Bez přístupu vzduchu C x H y O z + a H 2 O b CH 4 + c CO 2 + biomasa (S) H 2 S / S 2- (N) NH 3 / NH + 4 Počátky konec 19.stol. (septik, využívání bioplynu) Stabilizace kalů od poloviny

Více

NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY

NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY Prof. Ing. Jana Zábranská, CSc Ústav technologie vody a prostředí, Vysoká škola chemicko-technologická Praha,

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

Organickou hmotu tvoří obvykle (biomasa): ČZU/FAPPZ

Organickou hmotu tvoří obvykle (biomasa): ČZU/FAPPZ BIOPLYN - bioplyn je směs plynů, z nichž hlavní jsou methan CH 4 a oxid uhličitý CO 2 dále (H 2, N 2, H 2 S), který vzniká při mikrobiálním rozkladu organické hmoty za nepřítomnosti kyslíku (anaerobní

Více

ENERGIE Z ODPADNÍCH VOD

ENERGIE Z ODPADNÍCH VOD ENERGIE Z ODPADNÍCH VOD Pavel Jeníček VŠCHT Praha, Ústav technologie vody a prostředí Cesty k produkci energie z OV Kinetická energie (mikroturbiny) Tepelná energie (tepelná čerpadla, tepelné výměníky)

Více

VYUŢITÍ ODPADŮ A SUROVIN ZE ZEMĚDĚLSKÉHO PROVOZU K VÝROBĚ BIOPLYNU. Ing Jaroslav Váňa CSc

VYUŢITÍ ODPADŮ A SUROVIN ZE ZEMĚDĚLSKÉHO PROVOZU K VÝROBĚ BIOPLYNU. Ing Jaroslav Váňa CSc VYUŢITÍ ODPADŮ A SUROVIN ZE ZEMĚDĚLSKÉHO PROVOZU K VÝROBĚ BIOPLYNU Ing Jaroslav Váňa CSc Použitelné druhy biologických odpadů zemědělské odpady o z rostlinné výroby, o z živočišné výroby, odpady z potravinářského

Více

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS Trávníček P., Vítěz T., Dundálková P., Karafiát Z. Department of Agriculture, Food and Environmental Engineering, Faculty

Více

BIOMETAN hospodárné užití obnovitelných zdrojů energie

BIOMETAN hospodárné užití obnovitelných zdrojů energie BIOMETAN hospodárné užití obnovitelných zdrojů energie Ing. Jan Žákovec GAS s. r. o. Publikace byla zpracována za finanční podpory Státního programu na podporu úspor energie a využití obnovitelných zdrojů

Více

ZEMNÍ PLYN. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

ZEMNÍ PLYN. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková ZEMNÍ PLYN Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny; chemie a společnost 1 Anotace: Žáci se

Více

BioCNG pro města F AC T S HEET

BioCNG pro města F AC T S HEET F AC T S HEET BioCNG pro města Projekt s názvem BioCNG pro města představuje koncept, ve kterém jsou využity lokálně dostupné odpadní suroviny biologicky rozložitelné odpady a čistírenské kaly k výrobě

Více

Metody separace CO2. L. Veselý, P. Slouka, CTU in Prague 8.4.2015

Metody separace CO2. L. Veselý, P. Slouka, CTU in Prague 8.4.2015 Metody separace CO2 L. Veseý, P. Souka, CTU in Prague 8.4.2015 Separace CO2 Obecné metody Zákadní druhy separace CO2 v pokročié fázi vývoje. Účinnost separace se iší pode zvoené technoogie Obvyke počítáno

Více

Dávkování surovin mokrou cestou. Ing. Miroslav Esterka

Dávkování surovin mokrou cestou. Ing. Miroslav Esterka Dávkování surovin mokrou cestou Ing. Miroslav Esterka Faktory ovlivňující proces tvorby bioplynu Provozní parametry: - typ míchání - způsob dávkování - homogenita substrátu Fyzikálně chemické faktory:

Více

Sorpce oxidu uhličitého na vápence pocházejících z různých lokalit České republiky

Sorpce oxidu uhličitého na vápence pocházejících z různých lokalit České republiky Sorpce oxidu uhličitého na vápence pocházejících z různých lokalit České republiky Lenka JÍLKOVÁ *, Veronika VRBOVÁ, Karel CIAHOTNÝ Vysoká škola chemicko-technologická Praha, Fakulta technologie ochrany

Více

SMART CITY BRNO Inteligentní nakládání s bioodpady ve městě Brně

SMART CITY BRNO Inteligentní nakládání s bioodpady ve městě Brně Inteligentní nakládání s bioodpady ve městě Brně 31. 3. 2016 RENARDS dotační, s.r.o.. www.renards.cz. 2 Zařízení na zpracování biologicky rozložitelných odpadů Fermentační stanice Fakta Funguje na bázi

Více

ANAEROBNÍ FERMENTACE

ANAEROBNÍ FERMENTACE Vysoká škola chemicko technologická v Praze Ústav technologie vody a prostředí TEORETICKÉ ZÁKLADY ANAEROBNÍ FERMENTACE Prof.Ing. Michal Dohányos, CSc 1 Proč Anaerobní fermentace a BPS? Anaerobní fermentace

Více

Biologické čištění odpadních vod - anaerobní procesy

Biologické čištění odpadních vod - anaerobní procesy Biologické čištění odpadních vod - anaerobní procesy Martin Pivokonský 7. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Tel.: 221

Více

Upgrading of biogas by conversion of carbon dioxide in biogas to biomethane with addition of hydrogen

Upgrading of biogas by conversion of carbon dioxide in biogas to biomethane with addition of hydrogen REEF2W Increased renewable energy and energy efficiency by integrating, combining urban wastewater and organic waste management system XVII. ročník konference Výstavba a provoz bioplynových stanic 5. -

Více

Co je BIOMASA? Ekologická definice

Co je BIOMASA? Ekologická definice BIOMASA Co je BIOMASA? Ekologická definice celkový objem všech organismů vyskytujících se v určitém okamžiku na určitém místě všechny organismy v sobě mají chemicky navázanou energii Slunce. Co je BIOMASA?

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 2.6.2013 Anotace a)

Více

VYUŽITÍ BIOMETHANU V EVROPSKÉM REGIONU

VYUŽITÍ BIOMETHANU V EVROPSKÉM REGIONU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL

Více

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí. Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava

Více

POROVNÁNÍ KVALITY PLYNŦ PRODUKOVANÝCH SOUPROUDÝMI GENERÁTORY V ČESKÉ REPUBLICE

POROVNÁNÍ KVALITY PLYNŦ PRODUKOVANÝCH SOUPROUDÝMI GENERÁTORY V ČESKÉ REPUBLICE POROVNÁNÍ KVALITY PLYNŦ PRODUKOVANÝCH SOUPROUDÝMI GENERÁTORY V ČESKÉ REPUBLICE Zdeněk Beňo, Siarhei Skoblia Energetické využití biomasy se vzhledem k růstu cen fosilních paliv dostalo opět do popředí zájmu.

Více

Technika a technologie jako nástroj ochrany životního prostředí

Technika a technologie jako nástroj ochrany životního prostředí Technika a technologie jako nástroj ochrany životního prostředí Ing. Eva Krčálová, Ph.D. (MENDELU Brno) Ing. Tomáš Vítěz, Ph.D. (MENDELU Brno) Ing. Petr Junga, Ph.D. (MENDELU Brno) Ing. Petr Trávníček,

Více

Zpracování bioodpadu metodou suché anaerobní fermentace

Zpracování bioodpadu metodou suché anaerobní fermentace Zpracování bioodpadu metodou suché anaerobní fermentace Anaerobní fermentace Výroba bioplynu v anaerobních podmínkách s jeho energetickým využitím Metoda známá v ČR již desítky let Možnosti zpracování

Více

Kogenerační využití biometanu vtláčeného do plynárenských sítí. Bioplyn a biometán Efektívna alternatíva energie Bratislava, 28.3.

Kogenerační využití biometanu vtláčeného do plynárenských sítí. Bioplyn a biometán Efektívna alternatíva energie Bratislava, 28.3. Kogenerační využití biometanu vtláčeného do plynárenských sítí Bioplyn a biometán Efektívna alternatíva energie Bratislava, 28.3. 2012 Důvody pro vtláčení biometanu do plynárenských sítí 1. Situování bioplynových

Více

Bioplynové stanice ing. Jakub Vrbata za společnost TÜV SÜD Czech s.r.o.

Bioplynové stanice ing. Jakub Vrbata za společnost TÜV SÜD Czech s.r.o. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Bioplynové stanice ing. Jakub Vrbata za společnost TÜV SÜD Czech s.r.o. Technologie bioplynových stanic ČR Vysoký obsah

Více

Úprava bioplynu na biometan membránovou separací. *Bobák M., Hádková K., Křivčík J., Pientka Z., Brožová L., Fíla V.

Úprava bioplynu na biometan membránovou separací. *Bobák M., Hádková K., Křivčík J., Pientka Z., Brožová L., Fíla V. Úprava bioplynu na biometan membránovou separací *Bobák M., Hádková K., Křivčík J., Pientka Z., Brožová L., Fíla V. 1 Obsah Úvod motivace Porovnání technologií Návrh membránového stupně Výběr klíčových

Více

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO

Více

Školení provozování BPS zásady dobré praxe. Ing. Jan Štambaský, Ph.D.

Školení provozování BPS zásady dobré praxe. Ing. Jan Štambaský, Ph.D. zásady dobré praxe Ing. Jan Štambaský, Ph.D. Obsah semináře AD a vznik bioplynu Propad produkce, vznik a následky Možnosti chemické analýzy Vlivy teploty Přetížení procesu Nedostatek minerální výživy 2

Více

Úvod Definice pojmu ropa Významná naleziště Produkce a spotřeba ropy ve světě Toky ropy v Evropě Perspektiva ropy Perspektiva ropných produktů Ropa

Úvod Definice pojmu ropa Významná naleziště Produkce a spotřeba ropy ve světě Toky ropy v Evropě Perspektiva ropy Perspektiva ropných produktů Ropa Úvod Definice pojmu ropa Významná naleziště Produkce a spotřeba ropy ve světě Toky ropy v Evropě Perspektiva ropy Perspektiva ropných produktů Ropa dnes Závěr Seznam pouţité literatury Ropa základní strategická

Více

BIOMETAN A BIO.CNG ÚPRAVA BIOPLYNU DO KVALITY ZEMNÍHO PLYNU

BIOMETAN A BIO.CNG ÚPRAVA BIOPLYNU DO KVALITY ZEMNÍHO PLYNU BIOMETAN A BIO.CNG ÚPRAVA BIOPLYNU DO KVALITY ZEMNÍHO PLYNU Ing. Václav Holovčák Bonett Gas Investment, a.s. Místopředseda představenstva PROČ BIOMETAN A UPGRADING? V současnosti se bioplyn využívá v kogeneračních

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

QUANTI-QUALITATIVE ANALYSIS OF ANAEROBIC FERMENTATION OF FOOD WASTE KVANTI-KVALITATIVNÍ ANALÝZA ANAEROBNÍ FERMENTACE GASTRONOMICKÝCH ODPADŮ

QUANTI-QUALITATIVE ANALYSIS OF ANAEROBIC FERMENTATION OF FOOD WASTE KVANTI-KVALITATIVNÍ ANALÝZA ANAEROBNÍ FERMENTACE GASTRONOMICKÝCH ODPADŮ QUANTI-QUALITATIVE ANALYSIS OF ANAEROBIC FERMENTATION OF FOOD WASTE KVANTI-KVALITATIVNÍ ANALÝZA ANAEROBNÍ FERMENTACE GASTRONOMICKÝCH ODPADŮ Koutný T., Vítěz T., Szabó T. Department of Agriculture, Food

Více

Bioplyn ve skupině ČEZ. ČEZ Obnovitelné zdroje s.r.o. RNDr. Zdeněk Jón

Bioplyn ve skupině ČEZ. ČEZ Obnovitelné zdroje s.r.o. RNDr. Zdeněk Jón Bioplyn ve skupině ČEZ ČEZ Obnovitelné zdroje s.r.o. RNDr. Zdeněk Jón SÍDLO SPOLEČNOSTI ČEZ Obnovitelné zdroje, s.r.o. Křižíkova 788 Hradec Králové 1 SKUPINA ČEZ A ZÁVAZKY V OBLASTI OBNOVITELNÝCH ZDROJŮ

Více

Vysokoteplotní karbonátová smyčka moderní metoda odstraňování CO 2 ze spalin

Vysokoteplotní karbonátová smyčka moderní metoda odstraňování CO 2 ze spalin Vysokoteplotní karbonátová smyčka moderní metoda odstraňování CO 2 ze spalin Karel Ciahotný Marek Staf Tomáš Hlinčík Veronika Vrbová Viktor Tekáč Ivo Jiříček ICCT Mikulov 2015 shrnutí doposud získaných

Více

VYUŢITÍ DRUHOTNÝCH SUROVIN PRO SORPCI HCL

VYUŢITÍ DRUHOTNÝCH SUROVIN PRO SORPCI HCL Energie z biomasy XI. odborný seminář Brno 21 VYUŢITÍ DRUHOTNÝCH SUROVIN PRO SORPCI HCL K.Bradáčová, P.Machač, P.Balíček, P.Pekárek Tento článek se věnuje adsorpci chlorovodíku na pevných materiálech v

Více

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Prof. Ing. Petr Stehlík, CSc. Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Ing.

Více

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY Jan Škvařil Článek se zabývá energetickými trendy v oblasti využívání obnovitelného zdroje s největším potenciálem v České republice. Prezentuje výzkumnou práci prováděnou

Více

KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ MOTTO:

KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ MOTTO: KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ ING. JAN FOLLER, VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a. s. foller@vasgr.cz MOTTO: PŘIJME-LI ODBORNÁ ZEMĚDĚLSKÁ VEŘEJNOST FAKT, ŽE APLIKACE KALŮ Z BIOLOGICKÉHO

Více

7.5.2015. Bionafta. Bionafta. Bioetanol. Bioetanol. Bioetanol. Bioetanol

7.5.2015. Bionafta. Bionafta. Bioetanol. Bioetanol. Bioetanol. Bioetanol Bionafta Bionafta z řepkového semene se lisuje olej působením katalyzátoru a vysoké teploty se mění na metylester řepkového oleje = bionafta první generace mísí se s některými lehkými ropnými produkty,

Více

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ Provoz automobilových PSM je provázen produkcí škodlivin, které jsou emitovány do okolí: škodliviny chemické (výfuk.škodliviny, kontaminace),

Více

Cíle. Seznámit studenta s technickými zařízeními bioplynových stanic.

Cíle. Seznámit studenta s technickými zařízeními bioplynových stanic. Bioplynové stanice Cíle Seznámit studenta s technickými zařízeními bioplynových stanic. Klíčová slova Reaktor, metanogeneze, kogenerační jednotka 1. Úvod Bioplynové stanice (BPS) jsou dnes rozšířenou biotechnologií

Více

Recyklace energie. Jan Bartáček. Ústav technologie vody a prostředí

Recyklace energie. Jan Bartáček. Ústav technologie vody a prostředí Recyklace energie z odpadní vody v procesu čištění odpadních vod Jan Bartáček Ústav technologie vody a prostředí Zdroj Energie Zdroj Nutrientů Zdroj Vody Použitá voda (Used Water) Odpadní voda jako zdroj

Více

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Paliva Paliva nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Dělení paliv podle skupenství pevná uhlí, dřevo kapalná benzín,

Více

Úvod:... 4. Co je bioplyn?... 5. Biologický materiál:... 6. Funkce bioplynové stanice... 8. Bioplynové stanice v ČR:... 9

Úvod:... 4. Co je bioplyn?... 5. Biologický materiál:... 6. Funkce bioplynové stanice... 8. Bioplynové stanice v ČR:... 9 Úvod:... 4 Co je bioplyn?... 5 Biologický materiál:... 6 Funkce bioplynové stanice... 8 Bioplynové stanice v ČR:... 9 BIOPLYNOVÁ STANICE DZV NOVA, a.s., Bystřice u Benešova... 10 Zpracování... 11 Závěr...

Více

Technologické zlepšení výtěžnosti bioplynu. Mechanické usnadnění míchání, čerpání, dávkování. Legislativní nařízená předúprava VŽP:

Technologické zlepšení výtěžnosti bioplynu. Mechanické usnadnění míchání, čerpání, dávkování. Legislativní nařízená předúprava VŽP: Důvody předúpravy: Technologické zlepšení výtěžnosti bioplynu Mechanické usnadnění míchání, čerpání, dávkování Legislativní nařízená předúprava VŽP: hygienizace vstupního materiálu Výsledkem předúpravy

Více

3. České energetické a ekologické fórum 10.11.2011 Praha

3. České energetické a ekologické fórum 10.11.2011 Praha CNG a biometanv bo dopravě ě 3. České energetické a ekologické fórum 10.11.2011 Praha Ing. Zdeněk Prokopec předseda sdružení zprokopec@ngva.cz Definice pojmů teorie Problémy dopravy Bílá kniha dopravní

Více

SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY

SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY SPOTŘEBA ENERGIE okamžitý příkon člověka = přibližně 100 W, tímto energetickým potenciálem nás pro přežití vybavila příroda (100Wx24hod = 2400Wh = spálení 8640 kj = 1,5 kg chleba nebo 300 g jedlého oleje)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL

Více

VYUŽITÍ BIOPLYNU V PLYNÁRENSKÉ SÍTI

VYUŽITÍ BIOPLYNU V PLYNÁRENSKÉ SÍTI VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PROCESS AND ENVIRONMENTAL

Více

Alternativní zdroje energie

Alternativní zdroje energie Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny

Více

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o.

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

Sestava a technologické parametry bioplynové stanice

Sestava a technologické parametry bioplynové stanice Sestava a technologické parametry bioplynové stanice Zadání: Množství, druh a koncentrace vstupních materiálů Cíl: Technologické parametry Produkce bioplynu (toky materiálu, objem, zatížení, doba zdržení)

Více

Hlavní sledované parametry při provozu bioplynové stanice

Hlavní sledované parametry při provozu bioplynové stanice Hlavní sledované parametry při provozu bioplynové stanice Luděk Kamarád Wolfgang Gabauer Rudolf Braun Roland Kirchmayr 2.12.2009 Energyfuture AT-CZ, Brno 2009 / IFA Tulln 1z 21 Obsah Krátké představení

Více