TECHNICKÉ PODKLADY pro projektanty

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "TECHNICKÉ PODKLADY pro projektanty"

Transkript

1 TECHNICKÉ PODKLADY pro projektanty Díl 4, ãást j Odplynění topných a chladicích systémů Teoretické základy a praktická řešení

2 Vážení obchodní přátelé, kdo by neznal tak zvané problémy se vzduchem studené radiátory, poruchy cirkulace, šelest při proudění, vznik jemného kalu, koroze. a žádné řešení na dohled. Proto se od roku 1995 firma OTTO HEAT, od listopadu 2000 spojená s firmou REFLEX, ve spolupráci s Technickou univerzitou v Drážďanech, Institutem pro energetiku, zabývá problematikou Odplynění průtočných systémů. Již v roce 1997 jsme uveřejnili první výsledky ve zprávě nazvané Plyny v otopných soustavách, Díl 1. V tomto dílu bylo teoreticky pojednáno o tématu Vzduch v otopných soustavách. V dílu Odplynění topných a chladicích systémů vás seznámíme s praktickými poznatky získanými z bezmála 300 měření obsahu plynu v soustavách. Tato měření byla provedena Technickou univerzitou v Drážďanech na různých topných, chladicích a horkovodních soustavách. 2 Výsledek : Přes 50% zkoumaných zařízení mělo problémy s nadměrným množstvím rozpuštěných plynů. Chceme vám vysvětlit příčiny a na dvou konkrétních případech ukázat možnosti řešení. Náš materiál se mimo jiné opírá o závěrečnou zprávu, týkající se výzkumného úkolu Plyny v malých a středních teplovodních soustavách. Prosíme vás o shovívavost, pokud se vám některé části jeví příliš vědecké, nebo obsáhlé. Bylo pro nás obtížné zvolit z velkého množství informací ty nejdůležitější. Rádi vám poskytneme veškeré informace a zodpovíme vaše dotazy. Samozřejmě nás velmi zajímají vaše názory na toto téma a vaše zkušenosti z praxe. Dietrich Uhlmann Leiter Produktmarketing Ing. Vladimír Vaněk Reflex CZ, s.r.o.

3 Obsah Plyn není to samé jako vzduch 4-5 pohled z různých úhlů na toto téma Jak se plyny do uzavřených soustav dostávají Jsou rozpuštěné v plnící a doplňovací vodě 6 Zbytkové plyny zůstanou v systému uzavřeny 6 při novém nebo částečném plnění po opravě Vzduch se do soustavy dostává přes jednotlivé části difusí 6-7 Plyny vznikají chemickými reakcemi při korozi 7-8 Při neodborném provedení expanzního zařízení 8-10 může dojít k přímému nasávání vzduchu do soustavy Problematika plynů bude v dalším vývoji instalační techniky 11 hrát stále větší roli Technické možnosti pro fyzikální odplynění 12 Odplynění za provozního tlaku Odplynění za atmosférického tlaku 13 Odplynění ve vakuu 14 Srovnání různých systémů odplyňování 15 Odplynění jen na papíře nesprávná interpretace HENRY zákona Řešení problémů na dvou případech 17 REFLEX systémy na udržování tlaku a odplyňování 18 Kapitola, která vše shrne 19 3 Použitá literatura /1/ Gase in Wasserheizungsanlagen Teil 1, Juli 1997 /2/ TU Dresden, Inst. f. Energietechnik: Gase in kleinen und mittleren Wasserheiznetzen, koordinierter Schlussbericht, AiF Forschungsthema Nr B, November 1998 /3/ VDI 2035 Bl. 2: Vermeidung von Schäden in Warmwasserheizungsanlagen, wasserseitige Korrosion, Beuth Verlag GmbH, Sept /4/ DIN 4726: Rohrleitungen aus Kunststoff für Warmwasser-Fußbodenheizungen, Allgemeine Anforderungen /5/ Rühling, Preußer: Gase in Warmwasser-Heizungssystemen, unveröffentlichter Forschungsbericht, Technische Universität Dresden, Institut für Energietechnik, Professur für Energiewirtschaft, /6/ DIN 4807 T 2: Ausdehungsgefäße, offene und geschlossene Ausdehnungsgefäße für wärmetechnische Anlagen, Ausführung, Anforderungen und Prüfung, Mai 1999 /7/ AGFW-Seminar Wassertechnologie der Fernwärmeversorgung, September 1998, Rostock/Warnemünde Dr. Kruse: Korrosion und Korrosionsschutz /8/ AGFW-Seminar Wassertechnologie der Fernwärmeversorgung, September 1998, Rostock/Warnemünde Hopp: Fernwärmenetze mit unterschiedlicher Wasserqualität

4 Kapitola 1 1. Plyn není to samé jako vzduch pohled na toto téma z různých úhlů Diskuse na toto téma jsou v praxi silně zjednodušovány, tím, že se nesprávně mluví o problémech se vzduchem a nezřídka se vzduch nepřípustně dává do stejné roviny s kyslíkem. Tak se problémy se vzduchem degradují na problémy s kyslíkem a každý problém se vzduchem je povýšen na problém s korozí. Tak jednoduché to bohužel není! Problematika s plyny se projevuje prakticky ve dvou formách. Realizovat jen uzavřené soustavy Některé plyny mohou ve volné nebo rozpuštěné formě způsobovat korozi materiálu. Nejznámějším zástupcem je kyslík, rozhodujícím dílem zodpovědný za korozi železných materiálů. Obrázek 1 ukazuje naměřené hodnoty v zařízení s vysokým podílem ocele. Téměř všechny naměřené hodnoty (i v případě otevřených systémů!) jsou pod kritickou hodnotou 0,1 mg/litr (to je pod hodnotou, definovanou VDI 2035 Bl. 2/3, kdy kyslík ještě působí škody) a to je méně než 1 % jeho koncentrace v pitné vodě. Tato skutečnost ukazuje, že kyslík velice ochotně reaguje. V systému se velmi rychle chemickou reakcí odbourá a způsobí korozi. Nejvyšším přikázáním tedy je, zamezit přístupu kyslíku, projektovat a realizovat důsledně jen vůči atmosféře uzavřené soustavy. Výstupní větev Zpáteční větev Kritická hodnota 0,1 mg/litr VDI Naměřené hodnoty množství kyslíku jsou ve většině případů pod 0,1 mg/litr, skutečný obsah v povrchové vodě při atmosférickém tlaku je 11 mg/litr! Obsah kyslíku ve vodě v mg/litr Obr. 1: Naměřené hodnoty obsahu kyslíku v cirkulační vodě různých soustav Dusík je hlavní příčinou poruch cirkulace a eroze Obr. 2: Dusíkem přesycená topná voda po odebrání vzorku Plyny se mohou ve vodě vyskytovat rozpuštěné, a pokud jejich koncentrace přesáhne hranici rozpustnosti, vylučují se ve formě bublinek. Nejznámější zástupce je dusík, jedna z hlavních součástí vzduchu. Dusík je inertní plyn a nespotřebovává se jako kyslík chemickou reakcí. Proto se může v topné a chladicí vodě vyskytovat ve větším množství (obr. 3). Byly naměřeny hodnoty až 50 mg/litr. To je asi 280 % koncentrace pitné vody v přírodě (18 mg/litr). V této koncentraci již nemůže zůstat dusík zcela rozpuštěn ve vodě a vylučuje se ve volných bublinkách (obr. 2). Bublinky se soustřeďují v místech relativního klidu a vede to k poruchám a přerušení cirkulace. Volné bublinky v proudu kapaliny zesilují erozi a postupně odstraní korozi odolné vrstvy, rovněž tak způsobují opotřebení čerpadel a ventilů. Rozpustnost plynů ve vodě je popsána HENRY zákonem (obr. 4). Rozpustnost klesá se stoupající teplotou a klesajícím tlakem.

5 Obsah dusíku ve vodě v mg/litr Výstupní větev Zpáteční větev Hodnoty nasycení vzduchem N2 1) v nejvyšším místě Hodnoty nasycení 100% N2 2) v nejvyšším místě 1) 2) Při přímém kontaktu voda «vzduch (79 obj. % N2) Při přímém kontaktu voda «100% N2 Obsah dusíku v pitné vodě Kritická koncentrace při 70 C a 0,5 baru Otevřená expanzní nádoba Kompresorový EA + nádoba bez membrány Problémové soustavy Kompresorový EA, doplňování z rozvodu pitné vody, nádoba s membránou Čerpadlový EA, doplňování z rozvodu pitné vody, nádoba s membránou Kompresorový EA, Čerpadlový EA, doplňování doplňování z primáru, z primáru, nádoba nádoba s membránou s membránou Problémové soustavy Možná hodnota nasycení (červený sloupec) < skutečná hodnota (zelený sloupec) Obr. 3: Přehled naměřených hodnot obsahu dusíku v cirkulační vodě při nasazení různých expanzních systémů v porovnání s teoreticky možnými hodnotami nasycení dusíkem v nejvyšším místě při odpovídajících tlacích a teplotách ve zkoumaných soustavách. 5 To vysvětluje například, proč se poruchy cirkulace vyskytují především v topných tělesech ve vyšších podlažích. Pokud bychom tedy vzali pro udržování tlaku za základ minimální přetlak 0,5 baru v nejvyšším místě, potom vychází při teplotě výstupní větve 70 C rozpustnost 15 mg N2/litr vody. Z obr. 3 je zřejmé, že u všech zkoumaných soustav leží skutečná hodnota nasycení (červený sloupec) výrazně nad hodnotou 15 mg/litr. Lze z toho tedy všeobecně předpokládat, že soustavy s koncentrací N2 15 mg/litr, jsou bezproblémové. A toho se právě při odplynění za atmosférického tlaku dosáhne viz str. 15. Vedle dusíku se v některých soustavách objevil ve formě volných bublinek i vodík a metan. Rovněž na tyto plyny se vztahuje HENRY diagram. Obr. 4: Maximální rozpustnost dusíku ze suchého vzduchu podle HENRY zákona. Max. rozpustnost dusíku v mg N2/litr vody Tlak v barech Rozpustnost plynů v kapalinách popisuje HENRY zákon Souhrn kapitoly 1 Kyslík je velmi rychle reagující plyn a je hlavní příčinou koroze systému. Při chemické reakci se spotřebuje. Do systému se dostává téměř výlučně v rozpuštěné formě. Koncentrace kyslíku > 0,1 mg/litr signalizuje zvýšené riziko pro vznik koroze (3). Dusík je jako inertní plyn nejvíce zodpovědný za vytváření proudu smíšeného ze dvou fází (plyn/voda). Koncentruje se permanentně v systému a to vede například ke známým poruchám cirkulace. Hodnoty koncentrace dusíku 15 mg/litr jsou bezproblémové a to je při odplynění za atmosférického tlaku dosažitelné.

6 Kapitola 2 2. Jak plyny do uzavřených systémů vnikají V plnící a doplňovací vodě jsou v ní rozpuštěné Nejčastěji se pro plnění a doplňování soustav používá pitná voda. Ta je zpravidla nasycená vzduchem. Podle HENRY zákona je v ní teoreticky rozpuštěno cca 11 mg kyslíku a 18 mg dusíku na 1litr vody. Kromě toho je v ní rozpuštěný v malém množství kysličník uhličitý. Obrázek 5 ukazuje shodu s naměřenými hodnotami v Drážďanech. Samozřejmě, že zde existují regionální odchylky. Je samo sebou, že nejvyšší prioritu má těsnost systému, protože s každým litrem doplňovací vody se do systému dostává také 29 mg vzduchu (dusíku a kyslíku). V pitné vodě je rozpuštěných cca 11 mg kyslíku a 18 mg dusíku na 1litr vody. 6 Obr. 5: Zatížení pitné vody plynem Při uvádění do provozu a opravách důkladně odvzdušnit! Při montáži dbát na spád potrubí kvůli odvzdušnění! V systému zůstanou uzavřeny zbytkové plyny při novém nebo částečném plnění po opravě. Jestliže se jednotlivé části systému dokonale neodvzdušní, může se uzavřený zbytkový vzduch díky vysokému tlaku v systému rozpustit v oběhové vodě. Měření při pokusech prokázala téměř dvojnásobný obsah plynu po napuštění, než obsahuje plnící povrchová voda. Pozorováním bylo zjištěno, že poruchy cirkulace, způsobené uvolněným plynem, se ve větším rozsahu vyskytují po provedených opravách a to i v případech, kdy se pro doplňování používá voda neobsahující plyn z primárního okruhu dálkového vedení tepla. Přitom může být místo opravy libovolně vzdáleno od místa soustřeďování uvolněného plynu (ten se soustřeďuje především v nejvyšších místech soustav), protože rozpuštěné plyny jsou dopravovány oběhovou vodou. Tato skutečnost ztěžuje určit příčinu poruch cirkulace vlivem zavzdušnění. Vzduch se může do soustavy dostávat difusí přes různé části systému. V moderních instalacích dochází k vyšší difuzi plynů. Rozdíl koncentrací mezi obsahem plynu ve vzduchu (cca 78 % N2, 21 % O2) a ve vodě je hnací silou pro difusi do soustavy. Protože koncentrace kyslíku v oběhové vodě při provozu je téměř nulová (obr. 1), je zde velmi vysoký difusní potenciál mezi atmosférou a oběhovou vodou v soustavě. Zatímco kovové materiály jako jsou ocel a měď, mají zanedbatelnou permeabilitu (propustnost) vůči plynům, přes nekovové materiály jako jsou plasty, pryž a ostatní materiály těsnění, se pronikání kyslíku do systému daří. Například DIN 4726 /4/ stanovuje nejvyšší hodnotu propustnosti materiálu potrubí pro kyslík na 0,1 mg O2 na jeden litr objemu soustavy a den.

7 Obrázek 6 ukazuje odhad difundovaného množství O2 u různých topných soustav. U podlahového vytápění z plastových trubek je hodnota difundovaného množství kyslíku 10 3 až 10 5 krát vyšší než u klasické instalace z měděných nebo ocelových trubek. Právě u přímého propojení podlahového vytápění z plastových trubek s otopnou soustavou z ocelových trubek to vede k velkým škodám, které způsobí koroze. Difundované množství O2 v mg/den 7 Obr. 6: Odhad difundovaného množství plynu v závislosti na tepelném výkonu soustavy Plyny mohou vznikat chemickou reakcí a korozí. Pod vlivem velkého počtu okrajových podmínek, jako jsou kombinace materiálů, kvalita vody, chemické přísady, obsažené látky, tlak a teplota, mohou ve vodě soustavy vznikat plyny. Při měřeních byla v některých soustavách zjištěna, vedle již zmiňovaného dusíku (ze vzduchu), i přítomnost malého množství vodíku a metanu. Ne všechny mechanismy vzniku plynů při chemických reakcích jsou objasněny, část jsou jen domněnky. Také zde je potřeba vést další výzkum. Vodík H2 může v systému ze železných materiálů vznikat reakcí při korozi a může se kumulovat až do stavu přesycení. Při dávkování siřičitanu sodného NA2SO3 může potom následně vznikat sirovodík H2S (7).Sirovodík může vznikat také prostřednictvím bakterií redukujících sulfáty (8). Vzniklý H2S může v soustavách s měděnými částmi (např. trubkový svazek ve výměníku tepla, mědí pájené nerezové deskové výměníky) reagovat s oxidem mědi CU2O za vzniku sulfidu mědi CU2S. Na rozdíl od CU2O vzniklý CU2S nevytváří žádnou ochrannou vrstvu.koroze a následné škody se objeví již po krátké době provozování. Pozor při dávkování siřičitanu sodného v soustavách s měděnými částmi Jednou z domněnek je, že vodík H2 může rovněž vznikat biologickým procesem při rozkladu tuků. Ty se do potrubního systému dostávají při montáži, opravách a údržbě.

8 Kapitola 2 Opatrně při smíšených instalacích s hliníkem Koroze + volné bublinky H2 Kritické může být použití hliníku (například hliníkové radiátory). Již při výrobě musí být opatřeny dostačující ochrannou vrstvou, protože přirozená ochranná vrstva je stabilní pouze do hodnoty PH 8,5, zatímco železné soustavy by měly být provozovány s PH > 8,5 (hodnota PH < 7 = voda je kyselá, hodnota PH >7 = voda je zásaditá). V soustavě s hliníkovými radiátory byly zjištěny při koncentraci 3,2 mg vodíku/litr vody jasné známky koroze. Toto množství vede již při teplotě 30 C a přetlaku 1 bar k tvorbě volných bublinek plynu. Vznik metanu způsobují bakterie a je produktem hnilobných procesů. Vzduch může do systému vnikat díky špatné funkci, nebo špatné instalaci expanzního zařízení. Nadále zůstává nejčastějším základem pro vznik problémů se zavzdušňováním, především v malých soustavách s expanzními nádobami, nedostatečné udržování tlaku. Proto uvedeme ty nejdůležitější předpoklady pro správně fungující zařízení pro udržování tlaku (expanzní zařízení). 8 Expanzní zařízení musí zaručit, že ani při klidovém stavu (oběhové čerpadlo je vypnuto), ani při provozu oběhového čerpadla, nevznikne v žádném místě soustavy podtlak, nedojde k odpařování, kavitaci a nebudou se z vody uvolňovat bublinky plynu. Zejména je třeba všímat si nejvyšších míst soustavy, čerpadel a regulačních ventilů. Nejčastější nedostatky: Špatné uvedení do provozu, chybějící údržba Především u expanzních nádob není správně pro danou topnou soustavu nastaven tlak plynu v nádobě p0 a plnící tlak v soustavě pf. Rovněž se v minimálním počtu případů provádí normou DIN 4807 T2 předepsaná pravidelná roční kontrola tlaku plynu v nádobě (z druhé strany membrány nesmí působit tlak vody!). Zpravidla chybí, pro tento účel určený, kulový kohout se zajištěním. Závěry našich průzkumů: přetlaky plynu p0 v nádobách (bez tlaku vody) jsou často příliš vysoké a plnící tlaky pf (vodní předlohy) jsou často příliš nízké. Právě k těmto zkušenostem jsme přihlíželi při návrhu našeho výpočetního programu pro dimenzování tlakových expanzních nádob, ve kterém počítáme s minimálním plnícím tlakem pf o 0,3 baru nad přetlakem plynu v nádobě.

9 Příliš nízký tlak systému - u topných soustav s nepatrným statickým tlakem p (nízká zástavba, střešní kotelny) musí přetlak plynu v nádobě p0, kvůli zamezení vylučování plynu a kavitace, být přizpůsoben nejvíce hydraulicky namáhaným částem (čerpadla a regulační ventily). Poznámka: minimální tlak na sání oběhových čerpadel pz dle údajů výrobce pz p0 EN p0 pz pst - při udržování konečného tlaku musí být při stanovení přetlaku plynu v nádobě, na rozdíl od udržování minimálního provozního tlaku p0 (= přetlak plynu v nádobě), přihlédnuto k podílu tlaku čerpadla (je podle systému %). p0 EN pp p0 pst + (0,6...1,0) pp Nedostatečné doplňování soustavy vodou Žádné expanzní zařízení neumí bez doplňování úbytků vody pracovat (vodní předloha u otopných soustav 0,5 % objemu soustavy). Jestliže nejsou skutečné ztráty vody ze systému odpovídajícím způsobem nahrazeny, následuje podtlak a problémy. Při provozu bez pravidelného dozoru je nutné automatické, kontrolované doplňování ( viz kapitola 5). V soustavách s tlakovými expanzními nádobami by měl být plnící tlak pf minimálně o 0,3 baru nad přetlakem plynu v expanzní nádobě. pf EN pf p0 + 0,3 bar Automatické doplňování S vydáním VDI 2035 Bl (3) se znovu rozproudily diskuse o problematice pohlcování plynů a především kyslíku, prostřednictvím expanzních zařízení. 9 Obrázky 1 a 3 ukazují naměřené hodnoty obsahu kyslíku a dusíku v cirkulační vodě. Soustavy jsou vybaveny různými systémy na udržování tlaku. Na začátku je třeba jednoznačně říci, že obsah plynu v cirkulační vodě ovlivňuje méně druh expanzního zařízení než ostatní okolnosti. Ale především se zřetelem na obsah kyslíku to však nesmíme interpretovat nesprávně! Už v Části 1 jsme upozorňovali, že kyslík se velmi rychle korozí spotřebovává. Kromě toho dochází k silnému ředění díky mísení cirkulační a expanzní vody. Tím dochází k tomu, že kyslík se v našich měřeních vyskytuje jen v malých hodnotách. Prorezavělá expanzní potrubí u otevřených expanzních nádob svědčí ale o jeho existenci. Měření v otevřených expanzních nádobách nám však ukázala hodnoty mezi 4 a 6 mg O2/litr vody (5). Je proto nepopiratelné, že expanzní nádoby s přímým spojením s atmosférou musíme odmítat, protože je to zdroj koroze systému. Současný trend jsou tedy expanzní nádoby s membránou, která odděluje prostor plynu od prostoru vodního. Varující je skutečnost, že OTEVŘENÉ expanzní nádoby s cizím zdrojem tlaku (přepouštěcí ventily, čerpadlo) jsou na našem trhu nabízeny pro odplyňování (viz přehled str. 10). Tyto sice mohou na rozdíl od dřívějších, nahoře umístěných, redukovat koncentraci dusíku v soustavách a zamezit poruchám cirkulace, ale mají velký podíl na korozi systému, protože do soustavy trvale zavlékají 4-6 mg kyslíku s každým litrem vody! (5) To musíme jako škodlivé a jako krok zpátky rozhodně ODMÍTNOUT. Bohužel musíme také konstatovat, že v současné době neexistuje žádná norma, která by stanovila postup pro stanovení propustnosti membrán expanzních nádob vůči plynům, takže nemáme možnost provést fundované porovnání.

10 Kapitola 2 Současný trend technického vývoje jsou uzavřené expanzní nádoby. Ukážeme vám nejrozšířenější formy expanzních nádob. Uzavřené expanzní nádoby se stálým plynovým polštářem (statické udržování tlaku) Membrána Dusík N2 Voda S membránou Nejčastěji používaná expanzní nádoba. Membrána mezi plynovým a vodním prostorem minimalizuje difusi plynů. S ní je soustava bezpečně uzavřená. Bez membrány Dříve časté, dnes většinou jen ve velkých systémech. Jako plyn je používán parní polštář nebo dusík. Nevýhoda: dusík difunduje do vody, způsobuje zavzdušňování a musí být pravidelně doplňován. Inertní plyn Voda Uzavřené membránové expanzní nádoby s cizím zdrojem tlaku (dynamické udržování tlaku) Oddělení vzduchového a vodního prostoru membránou 10 Membrána pb Voda Vzduch Čerpadlový systém, voda v nádobě bez tlaku Vlivem nepatrného rozdílu tlaků mezi plynovým a vodním prostorem nedochází téměř k žádné difusi plynu přes membránu. V beztlaké nádobě dochází také k odplynění oběhové vody. Kompresorový systém, voda v nádobě pod tlakem Kvůli vysokému rozdílu tlaků mezi plynovým a vodním prostorem používá Reflex speciální, vůči difusi obzvlášť odolné butylové membrány. Ty mají podstatně menší propustnost pro plyny než dříve obvykle používané membrány z EPDM. Vzduch Voda p Otevřené expanzní nádoby s cizím zdrojem tlaku s přímým kontaktem voda/vzduch Vzduch Čerpadlový systém, voda v nádobě bez tlaku s přímým kontaktem voda/vzduch Je paradoxní, že jsou také nabízeny s funkcí odplyňování, Překonané technické řešení ve skutečnosti ale zaplyňují systém kyslíkem! Kompresorový systém Způsob ještě používaný u starých soustav, v tlakové nádobě dochází k silné korozi vlivem trvalého přísunu kyslíku. Vzduch

11 Problematika plynů bude ve vývoji instalační techniky hrát stále větší roli Jestliže dříve byly topné soustavy montovány většinou z ocelových trubek vedených horem, s centrálním odvzdušněním, s malým počtem čerpadel a armatur, představuje dnešek už úplně jiný obrázek: Ve spodních rozvodech a vodorovných rozváděcích systémech je mnoho decentralizovaných, těžko přístupných odvzdušňovacích míst. Vodorovná desková topná tělesa a chlazené stropy, vodorovné, do šířky roztažené rozváděcí systémy jsou běžnými metodami těžko odvzdušnitelné. Používání různých materiálů, jako je plastická hmota a pryž, jakož i velký počet těsnících ploch v instalacích dovolí vzduchu difundovat do soustavy. str. 6/7 Instalace provedené z různých kovových materiálů vedou za určitých podmínek k tvorbě plynů. str. 7,8 V tuto chvíli by se mohlo zdát, že máme neřešitelný problém nové topné a chladicí soustavy jsou více zaplyněné, ale přitom tradiční způsoby odvzdušnění na mnoha decentralizovaných odvzdušňovacích místech neúčinné. 11 Souhrn kapitoly 2 Expanznímu zařízení připadá ústřední role v problematice plynů. Tato zařízení musí být vůči atmosféře uzavřená, aby se zamezilo především pohlcování kyslíku oběhovou vodou, a musí bezpečně zabránit vzniku podtlaku a kavitaci. Mnoho expanzních nádob, především v malých soustavách, je jak na straně plynu, tak i na straně vody špatně nastaveno a neplní správně svojí funkci. Tady je třeba provádět trvale osvětu a začít okamžitě jednat. Pronikání a tvorbě plynů se nedá zabránit ani v případě uzavřených soustav (plnění, doplňování, difuse, chemické reakce). Plyny se musí cíleně z uzavřených systémů pomocí vhodných zařízení především centrálně odstranit, aby se zamezilo poruchám cirkulace, erozi a korozi. Odplynění musí být jednosměrné: plyn musí ven ale žádný vzduch dovnitř!

12 Kapitola 3 3. Technické možnosti pro fyzikální odplynění Jak rozmanité jsou možnosti pro odplynění, zrovna tak rozmanité jsou i výsledky. Nejdražší, ale také bezpečně nejúčinnější metodou je termické odplynění párou, které je používáno např. na teplárnách. Měli bychom ale uvažovat jen o technicky proveditelných, fyzikálních metodách, které jsou realizovatelné také v případech topných soustav a systémů chladicí vody v oblasti teplot < 100 C. Bohužel není pro vyhodnocení odplyňovacích systémů žádný normou stanovený postup. To otevírá dveře pro všeobecná, propagačně účinná, ale nesprávná vyjádření. Tak například čtete o odvzdušňovacích nádobách nebo armaturách, které ze soustavy dostanou všechen vzduch ven. Je vzduchem míněn kyslík i dusík? Znamená všechen vzduch také rozpuštěný vzduch? Nebo v reklamní brožurce jednoho výrobce expanzních zařízení s integrovaným tlakovým uvolněním na atmosférický tlak v otevřené expanzní nádobě se uvádí mimo jiné: Citát: Konkurence nás opakovaně upozorňuje, že se. kyslík z otevřené expanzní nádoby dostává do soustavy. To je sice částečně pravda, ale je to nepodstatné, protože voda, pokud není pod tlakem, může přijmout jen velmi malé množství kyslíku 12 Poslední věta obsahuje tři nesprávné výroky: 1. Skutečnost je, že se do soustavy kyslík dostává (ne jen částečná pravda) 2. Vůbec to není zanedbatelné množství 3. I voda, která není pod tlakem může přijímat velmi mnoho kyslíku, při 10 C cca 11 mg/litr vody, při 70 C ještě přinejmenším víc jak 5 mg/litr. To je 50 krát více než normou VDI 2035 max. doporučených 0,1 mg/litr! Popíšeme zde proto některé běžné, v topných a chladicích soustavách používané fyzikální postupy odplynění se zřetelem na jejich účinnost. Tu v zásadě ovlivňují tři faktory. - teplota média - tlak média - princip činnosti Odplyňování za provozního tlaku 70 C Nejvyšší místo 0,5 bar cca 15 mg/l N2 = nasycený stav nejnižší tlak nejnižší rozpustnost H = 15 m Odvzdušňovací nádoba 2,5 bar cca 30 mg/l N2 = nasycený stav vyšší tlak vyšší rozpustnost Obr. 7: Princip topné soustavy s konvenčními odvzdušňovacími nádobami a tlakovou expanzní nádobou V mnoha topných a chladicích soustavách jsou pro odplynění bohužel instalovány mechanické odvzdušňovací nádoby. Tyto mohou odloučit pouze volné, ale žádné rozpuštěné plyny. Existuje několik principů, ale všechny mají jedno společné. Jsou instalovány jako součást soustavy a voda je v nich pod tlakem (a má tedy vysokou rozpustnost), jejich účinnost ovlivňuje rozhodujícím způsobem místo instalace (nejvyšší bod soustavy, nejnižší bod soustavy, výstupní větev, zpáteční větev, vzdálenost od kotle a čerpadla).

13 Jen při instalaci přímo v nejvyšších místech soustavy dokáže bezpečně zamezit problémům se zavzdušňováním. V současné době v případě projektovaných systémů se spodními rozvody následuje instalace na nepříznivém, nízkoležícím místě. Jejich efektivita je potom silně omezena, ne-li pochybná.v případě podle obr.7, by se v odvzdušňovací nádobě odloučila pouze ta část obsahu dusíku, přesahující 30 mg/litr. Ale určitě se dalších 15 mg plynu z každého litru vody vyloučí ve vyšších místech soustavy. Mechanické odlučováky pracují jen v nejvyšších místech Odplyňování za atmosférického tlaku 70 C Nejvyšší místo 0,5 bar cca 15 mg/l N2 = nasycený stav Voda bohatá na rozpuštěný plyn Voda odplyněná 50 C variomat 0 bar cca 10 mg/l N2 = nasycený stav Obr. 8: Princip topné soustavy s multifunkčním expanzním automatem variomat firmy Reflex s těmito základními funkcemi udržování tlaku, doplňování a odplyňování v trvalém, nebo intervalovém režimu, a uzavřenou expanzní nádobou s vakem. Variomat uskladňuje expanzní vodu v beztlaké nádobě, ve které je pouze atmosférický tlak, a která slouží zároveň jako místo centrálního odpynění. Část proudu cirkulační vody je vedena přes tuto nádobu. Uvolněním na atmosférický tlak může např. koncentrace dusíku celého objemu soustavy klesnout teoreticky až na 10 mg/litr (HENRY diagram 0 bar, 50 C). Tato hodnota leží pod kritickou koncentrací v nejvyšším bodě, takže již nemůže víc docházet k tvorbě volných bublinek Obr. 4. Atmosférické odplyňováky tedy splňují skutečně požadavky, kladené na naše vysněné zařízení na centrální odplynění. Provozem systému bez volných bublinek plynu v cirkulační vodě je zamezeno problémům s cirkulací a minimalizováno nebezpečí eroze soustavy, to znamená narušování ochranných vrstev. Odpadne nákladné dodatečné odvzdušňování na mnoha decentralizovaných místech. 13 Samozřejmě musí být expanzní nádoba provedena jako uzavřená, bez přístupu vzduchu k hladině vody!! Zařízení odplyňující při atmosférickém tlaku mohou obsah rozpuštěných plynů snížit jen omezeně (odpovídající rozpustnost při atmosférickém tlaku podle HENRY). I to je velmi důležité, protože dokážeme zredukovat i obsah rozpuštěného kyslíku v doplňovací vodě. Doplňovací voda je největší zdroj trvalého zavlékání kyslíku do soustavy. Díky ohřevu asi na 40 C a průtoku přes beztlakou nádobu, je jeho obsah zredukován z 11 mg/l na 7 mg/l. Důležité! S naším expanzním automatem variomat je systém uzavřený a nedochází již k dalšímu zavlékání kyslíku do soustavy. Na našem trhu najdete různé typy těchto zařízení. Některé z nich nabízejí i funkci odplyňování v nádobě za atmosférického tlaku, ale POZOR, potom nabídnou vzduchu volnou hladinu ve své nádobě! Voda, ve které se chemickou reakcí kyslík spotřeboval (a měření prokázala, že jeho obsah klesne až pod hranici 0,1 mg/litr vody), se při nahřátí soustavy a zvýšení tlaku přepustí do nádoby. Tady se potom chová velice "hladově" a začne se okamžitě sytit až na hodnotu, danou příslušným tlakem. V tomto případě se za barometrického tlaku rozpustí do každého litru vody 7 až 11 mg kyslíku (záleží na teplotě vody v nádobě). Při nočním útlumu v soustavě poklesne tlak, čerpadlo přečerpá část vody z nádoby do soustavy a toto množství kyslíku si zavlékáte s každým přečerpaným litrem do systému. Kyslík začíná okamžitě reagovat a chemickou reakcí se odborá. Ale za cenu způsobené koroze! Ráno při natápění systému se zvýší tlak a část vody se přepustí do nádoby a tady má celý den na to, aby si ze vzduchu zase doplnila to, co jsme jí vzali. A tak stále dokola, den po dni nám kyslík pomalu likviduje naše zařízení a bohužel se vůbec nevyhýbá tomu, co je investičně nejnákladnější kotli. Odplyňovací zařízení včetně nádoby musí být vůči atmosféře uzavřené. Dobrou schopnost centrálního odplynění mají zařízení odplyňující při atmosférickém tlaku.

14 Kapitola 3 Odplynění ve vakuu 70 C Nejvyšší místo 0,5 bar cca 15 mg/l N2 = nasycený stav Voda bohatá na rozpuštěný plyn Voda odplyněná 50 C servitec -0,9 bar cca 0 mg/l N2 = nasycený stav Obr. 9: Princip topné soustavy s vakuovým dynamickým odplyňovacím automatem servitec firmy Reflex, s integrovaným doplňováním, určeným pro odplynění soustavy a doplňovací vody Servitec odplyňuje vodu ze soustavy ve vakuu. Ve vakuu je rozpustnost plynů ve vodě téměř nulová. Přesto probíhá odplynění ve statickém vakuu pomalu ( Obr. 10). Teprve dynamické odplyňování, například při nástřiku vody do vakua ( Obr. 11) zaručí vysoký odplyňovací výkon. 14 Odplyňovací výkon v klidovém vakuu je nepatrný. Obr. 10: Odplyňování ve statickém vakuu Obr. 11: Dynamické vakuové odplyňování na prototypovém zařízení servitec Vakuové odplyňování může odstranit jak inertní, tak i plyny, které chemicky reagují. Dynamické vakuové odplyňování pracuje velmi efektivně, protože jednak zamezí tvorbě volných bublinek plynu, tak také silně zredukuje obsah rozpuštěných plynů, a to úplně nezávisle na tlakových poměrech v soustavě. Je možné odstranit chemicky reagující plyny (např. vodík, kyslík) a minimalizovat korozi. Jedna z markantních předností vakuového odplyňování ve srovnání s dávkováním chemikálií je nekompromisní vyloučení všech plynů, včetně inertních plynů, které se chemickou cestou odstranit nedají! Měření prokázala, že například obsah dusíku v cirkulační vodě v soustavě s vakuovým odplyňovacím zařízením servitec, které má nastřikovací trubku, se snížil na cca 3 mg/litr. To odpovídá asi hodnotám, které by byly naměřeny po termickém odplynění. Na obsah kyslíku ve vodě celé soustavy má odplynění "dílčím proudem" (při postupném odplyňování malé části) v klasické soustavě z ocelových trubek jen omezený vliv. Díky odplyňování po malých částech a jeho rychlé reakční schopnosti se kyslík nedá centrálně odstranit. Problém všech systémů postupného odstraňování plynů! Velmi důležité ale je, že servitecem můžeme soustavu již plnit a odstranit tak asi 80% obsahu dusíku a kyslíku, obsaženého v povrchové vodě za atmosférického tlaku. Rovněž všechna doplňovací voda projde tímto vakuovým odplyněním.

15 Porovnání rozdílných systémů odplyňování Na obrázku 12 je provedeno porovnání rozdílných odplyňovacích systémů, které jsou fyzikálně a technicky dosažitelné, s ohledem na snižování obsahu dusíku ve vodě soustavy v závislosti na tlaku v místě instalace. Dusík nám slouží jako vzorový plyn proto, že je to plyn inertní a nespotřebovává se ve vedlejších reakcích, a nezkresluje tedy výsledky měření. Dosažitelné koncentrace dusíku po odplynění v mg/litr Volné bublinky ve vodě Bez volných bublinek Konvenční odvzdušňovací nádoby Kritická koncentrace v nejvyšším místě soustavy při přetlaku 0,5 baru a 70 C Odplynění při atmosférickém tlaku Odplynění ve vakuu Tlak v místě instalace odplyňovacího zařízení v barech 15 Obr. 12: Porovnání různých systémů odplyňování při teplotě media do 50 C. Porovnání na obrázku 12 jednoznačně ukazuje, že jenom atmosférické a vakuové odplynění splňuje požadavky kladené na centrální odvzdušnění a odplynění. Účinnost mechanických odlučováků vzduchu prudce klesá se stoupajícím tlakem. Obzvláště při instalaci v nejnižších místech systému nelze zamezit vylučování plynu v místech nejvyšších. Účinnost konvenčních odlučováků vzduchu instalovaných v nižších místech soustav je na základě fyzikálních zákonů zanedbatelná. Pokud nechceme jen odvzdušňovat, ale také aktivně bojovat proti korozi, musíme obsah plynů snížit téměř na nulu. To je možné jen termickým nebo dynamickým vakuovým odplyněním. Odplyňovací výkony pouze na papíře špatné interpretace Henryho zákonů Na tomto místě ještě jednou ukážeme špatnou interpretaci Henryho zákonů, s níž se v praxi velmi často setkáváme. Upozorníme na zdánlivý odplyňovací výkon, který je ale vykázán jen na papíře, a v praxi ve skutečnosti není.

16 Kapitola 3 Stanoviska na základě HENRY diagramu obr. 13 Max. rozpustnost v mg O2/litr vody V topném systému je při teplotě kolem 55 C a tlaku 3 bary rozpuštěno 23 mg kyslíku v každém litru vody. Při tlakovém uvolnění na 0 barů v odplyňovacím zařízení může topná voda rozpustit už jen 5 mg kyslíku na jeden litr. V důsledku toho dojde k vyloučení 23 mg/litr - 5 mg/litr = 18 mg/litr vody. Tato argumentace je chybná! Proč? Přetlak v barech Obr. 13: Max. rozpustnost kyslíku z atmosféry ve vodě HENRY nepopisuje skutečný obsah kyslíku ve vodě, ale co by se maximálně rozpustit mohlo, kdyby kyslík ze vzduchu byl dostatečně dlouho v přímém kontaktu s vodní hladinou. K tomuto kontaktu u zařízení s nádobou, kde je nad hladinou vzduch, na dost dlouhou dobu dochází, ale dojde k okysličení jen obsahu nádoby a následné smísení s objemem systému, tudíž koncentrace v celém systému (až na první napuštění), není oněch 23 mg O2/litr. A okamžitě následuje následuje chemická reakce, způsobující korozi a kyslík je z vody pryč. Ale není to zásluha tohoto odplyňovacího zařízení. To nám do systému kyslík jen dopraví! A to výrobce jako další speciální funkci svého odplyňovacího zařízení určitě neuvádí! 2. Kyslík je reaktivní plyn. To znamená, že díky chemické reakci při korozi, případně při reakci s ostatními plyny, poměrně rychle spotřebovává. Jak ukazuje obrázek 3, jsou naměřené hodnoty obsahu kyslíku skoro ve všech zkoumaných soustavách pod 0,1 mg/litr, a to i bez odplyňovacího zařízení. 3. Rovněž redukování obsahu kyslíku v cirkulační vodě na 5 mg/litr je neuspokojivý výsledek, podle směrnice VDI 2035 str. 2, bychom měli usilovat o hodnoty < 0,1 mg/litr. Tento příklad nám ukazuje, jak je důležité, stanovit pro odplyňovací zařízení jednotná měřítka. Nynější stav je velmi neuspokojivý, denně se setkáváme s teoretickými, málo fundovanými a prakticky neověřenými teoriemi. To neodpovídá rostoucímu významu tohoto tématu a mohlo by se to negativně odrazit v zájmu o tato zařízení. Souhrn kapitoly 3 Mechanické odlučováky vzduchu mohou efektivně pracovat jen při instalaci v nejvyšších místech soustavy. Odplyňovací zařízení za atmosférického tlaku mohou tvorbu volných bublinek plynu v cirkulační vodě zamezit. Hodí se nejlépe pro funkci centrálních odvzdušňovacích zařízení, ale ne pro cílené odstranění kyslíku. Zajistí i zamezení eroze, kterou způsobují uvolněné bublinky plynu, vlečené proudem cirkulační vody. Vakuové odplyňováky mohou celkový obsah plynů v soustavě dostat až téměř k nule. Bojují jak proti korozi (reaktivní plyny), tak i proti erozi a poruchám cirkulace (inertní plyny). Vysoký stupeň odloučení dosáhnou vakuové odplyňováky dynamické. HENRY zákony popisují ne skutečné obsahy, ale maximálně možné obsahy plynů v roztocích.

17 Kapitola 4 4. Řešení problémů na dvou příkladech Výzkumy, týkající se problematiky plynů, obsáhly od topných systémů v rodinných domcích, přes vytápění trávníků na fotbalových stadionech, až po velké systémy dálkového zásobování teplem. Zahrnuly rovněž chladicí systémy se směsí voda-glykol. Pro provozovatele jsou znalosti o problematice s přesyceností plynů většinou spojené s dusíkem. Studené, zavzdušněné radiátory ve vyšších podlažích a hluk ve ventilech jsou notoricky známé. Analýzy obsahu plynů a chemického složení vody ale ukazují, že v některých soustavách byl zjištěn zvýšený obsah plynů (např. H2, CH4), očividně souvisejících s korozí. Tyto škody ale většinou objevíme až po několika letech. Ve více než 90% zkoumaných problémových soustavách způsoboval problémy s cirkulací dusík. Dva praktické případy pomůžou tuto tématiku ozřejmit a ukázat možnosti řešení. Horkovodní síť zásobování teplem Halle Na sekundární straně sítě dálkového vedení tepla v Halle, s vodním objemem přes 100 m 3 a výkonem kolem 14 MW, je přímo připojeno více obytných bloků, mezi nimi i čtrnáctipodlažní výškové domy. Po oddělení primárního horkovodního systému předávací stanicí tepla, nastaly problémy trvalé zavzdušňování výškových domů, neustálá potřeba opakovaného odvzdušňování na mnoha radiátorech ve vyšších podlažích. Instalace automatických odvzdušňovacích ventilů na vybraných radiátorech nepřineslo žádné rozhodující zlepšení. 17 To byl stav při začátku testu prvního vakuového odplyňovacího zařízení servitec. Již za 40 hodin po uvedení do provozu poklesl obsah rozpuštěného dusíku ze 45 mg/litr na 5 mg/litr. Problémy byly odstraněny, nájemníci spokojeni. Díky silně podsycenému stavu ( 5 mg/litr) bylo zamezeno vylučování plynu i v nejkritičtějších místech ( v nejvyšších bodech, v čerpadlech a regulačních ventilech) a zároveň se minimalizovalo nebezpečí koroze. Obr. 14: Servitec na soustavě zásobování teplem Halle Konrad-Zuse-centrum Berlín V tomto centru v Berlíně docházelo k poruchám cirkulace jak u vytápění budov (7,3 m 3 ) tak i v systému chladicí vody (30 m 3 ) s výpadky jak topných těles, tak i klimatizace. Obě soustavy vykazovaly velmi vysoké hodnoty obsahu dusíku. V topné soustavě byla navíc zjištěna zvýšená hodnota obsahu metanu, vzniklého pravděpodobně po dávkování inhibitorů. Po nasazení standardního vakuového odplyňovacího zařízení s rozstřikovací trubkou servitec, fungují oba systémy bez závad. V topné vodě se již při dalších měřeních přítomnost metanu neprokázala. Obr. 15: Standardní servitec v Konrad-Zuse-centrum Berlín

18 Kapitola 5 5. Expanzní a odplyňovací automaty Reflex magcontrol Kontrola tlaku v soustavě s integrovaným, kontrolovaným doplňováním Příklad: Topná soustava Tlak o.k. Magcontrol nemůže sice odplyňovat, ale automatizuje a kontroluje funkci soustavy s tlakovou expanzní nádobou důležitý předpoklad zamezení možnosti přímého nasátí vzduchu. Kapitola 2 reflex magcontrol fillset Kontrola tlaku, doplňování, plnění Tlak doplňovací vody min. o 1,3 baru vyšší než přetlak plynu v EN Pitná voda variomat Atmosférické odplynění s integrovaným udržováním tlaku a doplňováním Příklad: Soustava s jedním kotlem 18 Tlak o.k. Vzduch je pryč Kombinace udržování tlaku pomocí přepouštěcího ventilu a čerpadla, s odplyňováním za atmosférického tlaku, celý systém dokonale uzavřený. Systém, který se mnohokrát osvědčil. To znamená: tlak v soustavě je v pořádku a problémy se zavzdušňováním jsou minulostí. Odpadá nákladné decentralizované odvzdušňování. Kapitola 3 Pitná voda tr 70 C fillset při doplňování ze sítě pitné vody 500 variomat servitec Dynamické vakuové odplyňování s nastřikovací trubkou, integrovanou kontrolou tlaku a doplňováním Příklad: Soustava s více kotli TIC Tlak o.k. Vzduch je pryč Boj proti korozi Voda v soustavě a doplňovací voda v topných systémech, systémech zásobování teplem nebo systémech chladicí vody je odplyněna ve vakuu. Obsah plynů v cirkulační vodě je redukován téměř na nulu. To znamená už nikdy problémy se zavzdušňováním, k tomu jako přídavek snížení koroze. V soustavě s tlakovou expanzní nádobou kontroluje tlak. Servitec je ideální zařízení pro nasazení v problematických soustavách. Kapitola 4 M Pitná voda TIC TIC M fillset při doplňování ze sítě pitné vody TIC TIC Hydraulická výhybka 500 servitec Plnění, odplyňování, doplňování

19 Kapitola 6 6. Kapitoly v přehledu Souhrn kapitoly 1 Kyslík je velmi rychle reagující plyn a je hlavní příčinou koroze systému. Při chemické reakci se spotřebuje. Do systému se dostává téměř výlučně v rozpuštěné formě. Koncentrace kyslíku > 0,1 mg/litr signalizuje zvýšené riziko pro vznik koroze (3). Dusík je jako inertní plyn nejvíce zodpovědný za vytváření proudu smíšeného ze dvou fází (plyn/voda). Koncentruje se permanentně v systému a to vede například ke známým poruchám cirkulace. Hodnoty koncentrace dusíku 15 mg/litr jsou bezproblémové a to je při odplynění za atmosférického tlaku dosažitelné. Souhrn kapitoly 2 Expanznímu zařízení připadá ústřední role v problematice plynů. Tato zařízení musí být vůči atmosféře uzavřená, aby se zamezilo především pohlcování kyslíku oběhovou vodou, a musí bezpečně zabránit vzniku podtlaku a kavitaci. Mnoho expanzních nádob, především v malých soustavách, je jak na straně plynu, tak i na straně vody špatně nastaveno a neplní správně svojí funkci. Tady je třeba provádět trvale osvětu a začít okamžitě jednat. Pronikání a tvorbě plynů se nedá zabránit ani v případě uzavřených soustav (plnění, doplňování, difuse, chemické reakce). Plyny se musí cíleně z uzavřených systémů pomocí vhodných zařízení především centrálně odstranit, aby se zamezilo poruchám cirkulace, erozi a korozi. Odplynění musí být jednosměrné: plyn musí ven ale žádný vzduch dovnitř! 19 Souhrn kapitoly 3 Mechanické odlučováky vzduchu mohou efektivně pracovat jen při instalaci v nejvyšších místech soustavy. Odplyňovací zařízení za atmosférického tlaku mohou tvorbu volných bublinek plynu v cirkulační vodě zamezit. Hodí se nejlépe pro funkci centrálních odvzdušňovacích zařízení, ale ne pro cílené odstranění kyslíku. Zajistí i zamezení eroze, kterou způsobují uvolněné bublinky plynu, vlečené proudem cirkulační vody. Vakuové odplyňováky mohou celkový obsah plynů v soustavě dostat až téměř k nule. Bojují jak proti korozi (reaktivní plyny), tak i proti erozi a poruchám cirkulace (inertní plyny). Vysoký stupeň odloučení dosáhnou vakuové odplyňováky dynamické. HENRY zákony popisují ne skutečné obsahy, ale maximálně možné obsahy plynů v roztocích. Souhrn kapitoly 4/5 Funkce odplyňovacích systémů firmy Reflex byla prověřena celou řadou měření, prováděných Technickou univerzitou v Drážďanech na topných systémech, systémech zásobování teplem a systémech chladicí vody. Díky funkci centrálního odvzdušňování a odplyňování se ušetří za instalaci decentralizovaných, mechanických odvzdušňováků. Odpadá nákladné opakované odvzdušňování na nesčetných místech.

20 TECHNICKÉ PODKLADY pro projektanty Díl 4, ãást j (0) REFLE (X) volání zdarma Technické podklady pro projektanty, díl 4, obsahuje: část a: Tlakové expanzní nádoby reflex pro topné, solární a chladicí soustavy b: Tlakové expanzní nádoby refix pro systémy pitné a užitkové vody c: Kompresorové expanzní automaty reflexomat d: Čerpadlové expanzní automaty variomat s odplyňováním a doplňováním e: Čerpadlové expanzní automaty gigamat f: Odplyňovací automat servitec s doplňováním g: Doplňovací systémy h: Příslušenství pro expanzní, odplyňovací a doplňovací zařízení i: Pájené deskové výměníky longtherm j: Odplynění topných a chladicích soustav k: Výpočty expanzních systémů FI0119cz REFLEX CZ, s.r.o. Průmyslová 372/1, Praha 10, tel: 02/ , fax: 02/ , REFLEX SK, s.r.o. Rakovo pri Martine, Rakovo, tel: 043/ , fax: 043/ ,

TECHNICKÉ PODKLADY pro projektanty

TECHNICKÉ PODKLADY pro projektanty TECHNICKÉ PODKLADY pro projektanty Díl 4, ãást k V poãet systémû na udrïování tlaku Expanzní nádoby pro topné, chladící a solární systémy Technická kniha Návrh podle âsn V poãet tlakové expanzní nádoby

Více

TECHNICKÉ PODKLADY pro projektanty

TECHNICKÉ PODKLADY pro projektanty TECHNICKÉ PODKLADY pro projektanty Díl 4, část r Elektronické moduly Reflex Příslušenství pro inteligentní spojení k vaší řídící centrále Elektronické moduly Reflex jsou připraveny pro budoucnost Požadavky

Více

TECHNICKÉ PODKLADY pro projektanty

TECHNICKÉ PODKLADY pro projektanty TECHNICKÉ PODKLADY pro projektanty Díl 4, část t Akumulační zásobníky pro akumulaci topné a chladicí vody Investice do budoucnosti Každým rokem ubývá fosilních paliv a ceny energií rostou. Je nutná změna

Více

Instalace Princip činnos Provoz Servis. Všestranná péče o topnou vodu. SorbOx je revoluční zařízení pro energe cky účinné vytápění.

Instalace Princip činnos Provoz Servis. Všestranná péče o topnou vodu. SorbOx je revoluční zařízení pro energe cky účinné vytápění. SWISS MADE Všestranná péče o topnou vodu SorbOx je revoluční zařízení pro energe cky účinné vytápění. Čtyři funkce v jednom Demineralizace topné vody zabraňuje tvorbě vodního kamene. Odstraňuje kyslík

Více

TEPELNÁ ČERPADLA VZDUCH/VODA WPL 20/26 AZ POPIS PŘÍSTROJE, FUNKCE

TEPELNÁ ČERPADLA VZDUCH/VODA WPL 20/26 AZ POPIS PŘÍSTROJE, FUNKCE TEPELNÁ ČERPADLA VZDUCH/VODA WPL 20/26 AZ POPIS PŘÍSTROJE, FUNKCE Popis přístroje Systém tepelného čerpadla vzduch voda s malou potřebou místa pro instalaci tvoří tepelné čerpadlo k venkovní instalaci

Více

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení:

VIESMANN VITOTRANS 100. List technických údajů Obj. č. aceny:vizceník VITOTRANS 100. Deskový výměník tepla. Pokyny pro uložení: VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. č. aceny:vizceník Pokyny pro uložení: Složka Vitotec, registr 17 VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných

Více

Technické údaje SI 75TER+

Technické údaje SI 75TER+ Technické údaje SI 75TER+ Informace o zařízení SI 75TER+ Provedení - Zdroj tepla Solanky - Provedení Univerzální konstrukce reverzibilní - Regulace WPM 2007 integrovaný - Místo instalace Indoor - Výkonnostní

Více

VIESMANN VITOTRANS 100 Deskový výměník tepla

VIESMANN VITOTRANS 100 Deskový výměník tepla VIESMANN VITOTRANS 100 Deskový výměník tepla List technických údajů Obj. čísla a ceny: viz ceník VITOTRANS 100 Typ PWT Pro předávací stanice zásobovacích tepelných sítí, k oddělování systémů v topných

Více

Stanice pro ohřev pitné vody Regumaq X-30 / Regumaq XZ-30

Stanice pro ohřev pitné vody Regumaq X-30 / Regumaq XZ-30 X-30 / XZ-30 Systém øízení jakosti Oventrop je certifikován podle DIN-EN-ISO 9001. Datový list Rozsah pouití: Skupiny armatur Oventrop X-30 a XZ-30 umožňují hygienický ohřev pitné vody na základě principu

Více

TECHNICKÁ ZPRÁVA K 01

TECHNICKÁ ZPRÁVA K 01 ING. JIŘÍ SÍTAŘ ING. JIŘÍ SÍTAŘ TECHNICKÁ ZPRÁVA K 01 TECHNICKÁ ZPRÁVA MATEŘSKÁ ŠKOLKA V ŽELEŠICÍCH ÚSTŘEDNÍ VYTÁPĚNÍ A NUCENÉ VĚTRÁNÍ (VZT) Projektová dokumentace řeší ústřední vytápění objektu Mateřské

Více

Vitocal: využijte naši špičkovou technologii tepelných čerpadel pro vaše úspory.

Vitocal: využijte naši špičkovou technologii tepelných čerpadel pro vaše úspory. Zvýhodněné sestavy tepelných čerpadel Topné systémy skládající se z tepelného čerpadla v kombinaci se zásobníkovým ohřívačem teplé vody a dalším instalačním příslušenstvím. Vitocal: využijte naši špičkovou

Více

Pozor! SolaVentec solární stanice 1. solární stanice s ventilovou technikou! Provozní stav:

Pozor! SolaVentec solární stanice 1. solární stanice s ventilovou technikou! Provozní stav: Pozor! SolaVentec solární stanice 1. solární stanice s ventilovou technikou! Solární stanice SolaVentec má místo jinak obvyklých zpětných ventilů nastavovací ventil. Ten se otvírá a uzavírá termickým nastavovacím

Více

ČESKÁ TECHNICKÁ NORMA

ČESKÁ TECHNICKÁ NORMA ČESKÁ TECHNICKÁ NORMA ICS 91.140.10 Srpen 2014 ČSN 06 0310 Tepelné soustavy v budovách Projektování a montáž Heating systems in buildings Design and installation Nahrazení předchozích norem Touto normou

Více

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.

Více

Průtok [m 3 /h] [l/s] Výkon [kw] ProdukTy Pro aplikace na Pevná Paliva PrůVodCE ESBE

Průtok [m 3 /h] [l/s] Výkon [kw] ProdukTy Pro aplikace na Pevná Paliva PrůVodCE ESBE dimenzování PlNÍCÍ jednotky ŘAdy ltc dimenzování PlNÍCÍ jednotky ŘAdy ltc 1 Začneme v dolní části diagramu s výkonem kotle (například 18 kw), pokračujeme horizontálně k hodnotě Δt (doporučená výrobcem

Více

PŘEHLED VÝROBKŮ www.bacoga.cz

PŘEHLED VÝROBKŮ www.bacoga.cz Zatěsňování a čištění kotlů, rozvodů topení, pitné vody, odpadů a kanalizace chemickou cestou. Zatěsňování plochých střech. Zatěsňování nádrží a bazénů. Ochrana proti korozi a mrazu. Zatěsňování rozvodů

Více

TACOTHERM DUAL PIKO MODULÁRNÍ VYSOCE FLEXIBILNÍ BYTOVÁ PŘEDÁVACÍ STANICE

TACOTHERM DUAL PIKO MODULÁRNÍ VYSOCE FLEXIBILNÍ BYTOVÁ PŘEDÁVACÍ STANICE TACOTHERM DUAL PIKO MODULÁRNÍ VYSOCE FLEXIBILNÍ BYTOVÁ PŘEDÁVACÍ STANICE KOMBINUJTE SVOU INDIVIDUÁLNÍ STANICI Bytová předávací stanice TacoTherm Dual Piko je dokonale přizpůsobená místním podmínkám. Sestavit

Více

Akce: Bytový dům Krále Jiřího 1341/4, Karlovy Vary

Akce: Bytový dům Krále Jiřího 1341/4, Karlovy Vary Dokumentace pro provedení stavby Zařízení vytápění 1. Technická zpráva Obsah: 1. Identifikační údaje stavby 2. Podklady 3. Úvod a základní informace 4. Technický popis 5. Požadavky na jednotlivé profese

Více

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard

NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti. Komfortní bydlení - nový standard NÍZKOENERGETICKÉ BYDLENÍ Snížení energetické náročnosti Snížení energetické závislosti Naše domy mají tak malé ztráty tepla. Využívají energii ze slunce, teplo vydávané domácími spotřebiči a samotnými

Více

www.lg.cz infolinka 810 555 810

www.lg.cz infolinka 810 555 810 Společnost LG Electronics CZ, s.r.o. neručí za tiskové chyby, které se mohou v katalogu vyskytnout. Změna technických parametrů bez předchozího ohlášení je možná. Použití jakékoliv části obsahu katalogu

Více

Plynule nastavitelný regulátor tlakové diference a omezením průtoku

Plynule nastavitelný regulátor tlakové diference a omezením průtoku Regulátory tlakové diference DAL 516 Plynule nastavitelný regulátor tlakové diference a omezením průtoku Udržování tlaku & Kvalita vody Vyvažování & Regulace Termostatická regulace ENGINEERING ADVANTAGE

Více

MAKING MODERN LIVING POSSIBLE. Datový list DHP-AL TEPELNÁ ČERPADLA DANFOSS

MAKING MODERN LIVING POSSIBLE. Datový list DHP-AL TEPELNÁ ČERPADLA DANFOSS MAKING MODERN LIVING POSSIBLE Datový list DHP-AL TEPELNÁ ČERPADLA DANFOSS Datový list Danfoss DHP-AL Tepelné čerpadlo vzduch/voda, které zajišťuje vytápění i ohřev teplé vody Může účinně a spolehlivě pracovat

Více

Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt.

Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt. Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt.cz Obsah: Tepelná čerpadla pro rodinné domy a menší objekty Vzduch /

Více

Přehled produktů Alfa Laval pro přenos tepla

Přehled produktů Alfa Laval pro přenos tepla Díky více než 125 letům věnovaným výzkumu a vývoji a miliónům instalací v oblasti vytápění a chlazení po celém světě pro nás neexistují žádné hranice, žádná omezení. Kompaktní předávací stanice Alfa Laval

Více

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda

Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm

Více

Technická data. Technická data. Technická data

Technická data. Technická data. Technická data Technická data Tepelné čerpadlo vzduch-voda Hydro-box HWS- HWS- 802H-E 802XWH**-E 1102H-E 1402XWH**-E 1402H-E 1402XWH**-E Topný výkon Jmenovitý příkon topení Účinnost topení COP Chladící výkon Jmenovitý

Více

Čištění a servis deskových výměníků tepla

Čištění a servis deskových výměníků tepla Čištění a servis deskových výměníků tepla Alfa Laval spol. s r.o. je v České republice spolu s prodejem aktivní i v oblasti poprodejního servisu a má vlastní servisní centrum. Servisní centrum provádí

Více

Závěsné kondenzační kotle

Závěsné kondenzační kotle Závěsné kondenzační kotle VU, VUW ecotec plus a Zásobník s vrstveným ukládáním teplé vody actostor VIH CL 20 S Výhody kondenzační techniky Snižování spotřeby energie při vytápění a ohřevu teplé vody se

Více

Tepelné čerpadlo vzduch. voda

Tepelné čerpadlo vzduch. voda Tepelné čerpadlo vzduch voda Tepelné čerpadlo Váš krok správným směrem! Budoucnost patří ekologickému vytápění a chlazení! Tepelné čerpadlo získává teplo ze svého okolí v tomto případě ze vzduchu a transportuje

Více

CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ

CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ e-mail: teplozlin@volny.cz www.teplozlin.cz CENTRÁLNÍ ZÁSOBOVÁNÍ TEPLEM VE ZLÍNĚ CZT ve Zlíně má dlouholetou tradici. Zdroj tepla původně jako energetický zdroj Baťových závodů, dnes Alpiq Generation (CZ)

Více

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz

solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz solární systémy Brilon SUNPUR Trubicové solární kolektory www.brilon.cz Proč zvolit vakuové solární kolektory Sunpur? Vakuové kolektory SUNPUR jsou při srovnání s tradičními plochými kolektory mnohem účinnější,

Více

NOVOSTAVBA RODINNÉHO DOMU NA PARCELE Č. 4544/123 V KATASTRÁLNÍM ÚZEMÍ HUSTOPEČE U BRNA

NOVOSTAVBA RODINNÉHO DOMU NA PARCELE Č. 4544/123 V KATASTRÁLNÍM ÚZEMÍ HUSTOPEČE U BRNA INVESTOR: Vladimíra Tučková, Nová Ves 109, 691 23, Pohořelice NOVOSTAVBA RODINNÉHO DOMU NA PARCELE Č. 4544/123 V KATASTRÁLNÍM ÚZEMÍ HUSTOPEČE U BRNA VYTAPĚNÍ Obsah projektu : Technická zpráva Výkresová

Více

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000

Fe AKU TV 300 400 600 750 850 1000 1200 1350 1650 2000 Odvzdušnění nádrže Výstup TUV (teplé užitkové vody) Plastový kryt TUV z oceli 1.4404 Ochranný vnější obal Vstup topné vody do nádrže Teploměr 0-120 C Ocelová nádrž Max. provozní tlak: 0,6MPa Propojovací

Více

TECHNICKÁ ZPRÁVA Vytápění MŠ Čtyřlístek

TECHNICKÁ ZPRÁVA Vytápění MŠ Čtyřlístek Niersberger Instalace, s.r.o. Tyršova 2075 256 01 Benešov Telefon (+420) 317 721 741-2 Fax (+420) 317 721 841 E-mail: instalace@niersberger.cz IČO 64577252 DIČ CZ64577252 TECHNICKÁ ZPRÁVA Vytápění MŠ Čtyřlístek

Více

elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění

elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění elios nová zelená úsporám Solární systémy pro ohřev teplé vody a podporu vytápění Vysoce účinné sluneční ploché kolektory Xelios vyráběné v EU jsou osvědčeným výrobkem nejen v evropských klimatických podmínkách.

Více

Švédská tepelná. čerpadla. pro vytápění, ohřev teplé užitkové vody, větrání a klimatizaci. www.cerpadla-ivt.cz. Přehled sortimentu a ceník 2005

Švédská tepelná. čerpadla. pro vytápění, ohřev teplé užitkové vody, větrání a klimatizaci. www.cerpadla-ivt.cz. Přehled sortimentu a ceník 2005 www.cerpadla-ivt.cz Švédská tepelná čerpadla pro vytápění, ohřev teplé užitkové vody, větrání a klimatizaci 5 5 let garance 5 let záruka na tepelné čerpadlo, včetně nákladů na záruční opravu. Tato záruka

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

& S modulovaným plynovým hořákem MatriX compact pro obzvláště

& S modulovaným plynovým hořákem MatriX compact pro obzvláště Vitocrossal 300. Popis výrobku A Digitální regulace kotlového okruhu Vitotronic B Vodou chlazená spalovací komora z ušlechtilé oceli C Modulovaný plynový kompaktní hořák MatriX pro spalování s velmi nízkým

Více

Akumulační nádrže typ NADO

Akumulační nádrže typ NADO Návod k obsluze a instalaci Akumulační nádrže typ NADO Družstevní závody Dražice strojírna Dražice 69 29471 Benátky nad Jizerou Tel.: 326 370911,370965, fax: 326 370980 www.dzd.cz dzd@dzd.cz CZ - Provozně

Více

MODERNÍ SYSTÉM. Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Výstup.

MODERNÍ SYSTÉM. Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Výstup. MODERNÍ SYSTÉM NOVINKA Inteligentní zařízení pro teplovzdušné vytápění a větrání s rekuperací tepla s tepelným čerpadlem vzduch-voda. Odsávání znečištěného Výstup čerstvého 18 C - 15 C Vstup čerstvého

Více

Nabídka dodávky a instalace švédského tepelného čerpadla

Nabídka dodávky a instalace švédského tepelného čerpadla Nabídka dodávky a instalace švédského tepelného čerpadla Vytápění, ohřev teplé vody a řízené větrání se zpětným ziskem energie v rodinném domě tepelným čerpadlem NIBE SPLIT SET 1 Objednatel: Petr Novák

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Přehled produktů Alfa Laval pro přenos tepla

Přehled produktů Alfa Laval pro přenos tepla Alfa Laval ve zkratce Alfa Laval je významným světovým dodavatelem zařízení jako jsou zejména výměníky tepla, výměníkové stanice, vzduchové chladiče, odstředivky, dekantační odstředivky, membránová fi

Více

NÁVOD K OBSLUZE A INSTALACI

NÁVOD K OBSLUZE A INSTALACI NÁVOD K OBSLUZE A INSTALACI Zásobník teplé vody pro tepelné čerpadlo NIBE SPLIT NADO 500/25 v10 (HEV 500 D) Družstevní závody Dražice - strojírna s.r.o. Dražice 69, 294 71 Benátky nad Jizerou tel.: +420

Více

Popis funkce. Obsluha. Laddomat 21 má za úkol... Provozní fáze. Spuštění. Samovolná cirkulace Technické údaje Laddomat 21-60.

Popis funkce. Obsluha. Laddomat 21 má za úkol... Provozní fáze. Spuštění. Samovolná cirkulace Technické údaje Laddomat 21-60. Popis funkce Laddomat 21 má za úkol......zajistit, aby po zátopu kotel rychle dosáhl vysoké provozní teploty....během nabíjení zahřívat studenou vodu ze zásobníku až ke dnu kotle, aby kotel nezkorodoval

Více

BILLER & BURDA s.r.o. AUTORIZOVANÝ PRODEJ A SERVIS KOMPRESORŮ ATLAS COPCO

BILLER & BURDA s.r.o. AUTORIZOVANÝ PRODEJ A SERVIS KOMPRESORŮ ATLAS COPCO BILLER & BURDA s.r.o. AUTORIZOVANÝ PRODEJ A SERVIS KOMPRESORŮ ATLAS COPCO Výroba stlačeného vzduchu z pohledu spotřeby energie Vzhledem k neustále se zvyšujícím cenám el. energie jsme připravili některá

Více

DN k VS Rozsah nastavení Δp Připojení (mm) (m 3 /h) (bar) 1,6. Rozsah nastavení Δp (mm) (m 3 /h) (bar) (bar) 1,6. Připojení

DN k VS Rozsah nastavení Δp Připojení (mm) (m 3 /h) (bar) 1,6. Rozsah nastavení Δp (mm) (m 3 /h) (bar) (bar) 1,6. Připojení Datový list Regulátor diferenčního tlaku s omezovačem průtoku (PN 16) AVPB montáž do vratného potrubí, měnitelné nastavení AVPB-F montáž do vratného potrubí, pevné nastavení Použití Regulátor se skládá

Více

BAZÉNOVÝ VÝMĚNÍK PX 15, PX 25, PX 32, PX 45

BAZÉNOVÝ VÝMĚNÍK PX 15, PX 25, PX 32, PX 45 BAZÉNOVÝ VÝMĚNÍK PX 15, PX 25, PX 32, PX 45 Technické informace, návod k instalaci a obsluze Člen MONIER GROUP Budoucnost patří slunci Zdroj energie, který se vyplatí využít Celosvětovou roční potřebu

Více

Tepelná čerpadla vzduch/voda. pro venkovní instalaci

Tepelná čerpadla vzduch/voda. pro venkovní instalaci Tepelná čerpadla vzduch/voda pro venkovní instalaci 4 Wärme pumpen Natur bewahren Tepelná čerpadla vzduch/voda Na první pohled: vytápění a příprava teplé vody venkovní instalace malý instalační náklad

Více

Potenciostat. Potenciostat. stav 03.2009 E/04

Potenciostat. Potenciostat. stav 03.2009 E/04 Všeobecně V moderních vodárnách, bazénech a koupalištích je třeba garantovat kvalitu vody pomocí automatických měřicích a regulačních zařízení. Měřicí panel PM 01 slouží ke zjišťování parametrů volného

Více

Úvod/obsah 2/3. Modernizace se vyplatí

Úvod/obsah 2/3. Modernizace se vyplatí Akční sestavy 2012 Topné systémy skládající se z plynových kotlů, slunečních kolektorů a tepelných čerpadel. Nabídka platná od 10. dubna do 30. června 2012. Úvod/obsah 2/3 Modernizace se vyplatí Na období

Více

Švédská tepelná čerpadla

Švédská tepelná čerpadla Přehled sortimentu a ceník 2009 / 3 www.cerpadla-ivt.cz 10 let záruka 5 let celé tepelné čerpadlo 10 let kompresor Švédská tepelná čerpadla C země / voda C je nejprodávanějším kompaktním tepelným čerpadlem

Více

ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ

ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ ENERSOL 2015 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ STŘEDOČESKÝ KRAJ Kategorie projektu: Enersol a praxe Jméno, příjmení žáka: Kateřina Čermáková

Více

TĚSNOST CHLADICÍCH OKRUHŮ A MANIPULACE S CHLADIVEM

TĚSNOST CHLADICÍCH OKRUHŮ A MANIPULACE S CHLADIVEM TĚSNOST CHLADICÍCH OKRUHŮ A MANIPULACE S CHLADIVEM Základy oboru 26-55/H004 Mechanik elektrotechnických zařízení údržba a servis chladicí a klimatizační techniky a tepelných čerpadel Zkouška těsnosti všeobecně

Více

MAKING MODERN LIVING POSSIBLE. Datový list DHP-A TEPELNÁ ČERPADLA DANFOSS

MAKING MODERN LIVING POSSIBLE. Datový list DHP-A TEPELNÁ ČERPADLA DANFOSS MAKING MODERN LIVING POSSIBLE Datový list DHP-A TEPELNÁ ČERPADLA DANFOSS VFBMA548 Datový list Danfoss DHP-A Tepelné čerpadlo zajišťující vytápění i teplou vodu. Možnost účinného provozu až do -20 C. Systém

Více

I Vy můžete snížit své náklady na vytápění. Využijte atraktivní letní akci.

I Vy můžete snížit své náklady na vytápění. Využijte atraktivní letní akci. I Vy můžete snížit své náklady na vytápění. Využijte atraktivní letní akci. Od 12. července do 12. září 2010 2 Velká letní akce Ti, kteří se v letním období rozhodnou zmodernizovat svůj topný systém instalací

Více

KRYCÍ LIST SOUPISU. 01 - Vytápění. Cena s DPH v CZK 0,00. Cena bez DPH. Stavba: Objekt: KSO: IČ: DIČ: Projektant: DIČ: Poznámka: 0,00 0,00 0,00 0,00

KRYCÍ LIST SOUPISU. 01 - Vytápění. Cena s DPH v CZK 0,00. Cena bez DPH. Stavba: Objekt: KSO: IČ: DIČ: Projektant: DIČ: Poznámka: 0,00 0,00 0,00 0,00 KRYCÍ LIST SOUPISU Stavba: Objekt: 01 - Vytápění KSO: Místo: Zadavatel: Uchazeč: Projektant: Datum: IČ: DIČ: IČ: DIČ: IČ: DIČ: Poznámka: Cena bez DPH DPH základní 21,00% ze snížená 15,00% ze Cena s DPH

Více

KOMPONENTY PRO INSTALACE

KOMPONENTY PRO INSTALACE 4 KOMPONENTY PRO INSTLE Komponenty pro instalace 93 Kompenzátory délkové roztažnosti 94 Komponenty pro odvzdušnění a plnění 95 Rozdělovače vody pro připojení vodoměrů, průchodky pro bytová jádra 96 Křížení

Více

NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ

NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ NELUMBO ENERGY TEPELNÁ ČERPADLA OHŘEV + CHLAZENÍ Solární tepelné čerpadlo! Nejnovější solární hybridní technologie, přímý solární ohřev chladiva TČ: TF > 5,0! Kvalitní značkové kompresory, stabilní provoz

Více

TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA

TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA TEPELNÉ ČERPADLO THERMA V VZDUCH / VODA Řešení pro nový dům i rekonstrukci Výrobky řady THERMA V byly navrženy s ohledem na potřeby při rekonstrukcích (zrušení nebo výměna kotle) i výstavbách nových domů.

Více

Energetická rozvaha. bytových domů. HANA LONDINOVÁ energetický auditor. Zpracovatel:

Energetická rozvaha. bytových domů. HANA LONDINOVÁ energetický auditor. Zpracovatel: bytových domů Zpracovatel: HANA LONDINOVÁ energetický auditor leden 2010 Obsah Obsah... 2 1 Úvod... 3 1.1 Cíl energetické rozvahy... 3 1.2 Datum vyhotovení rozvahy... 3 1.3 Zpracovatel rozvahy... 3 2 Popsání

Více

Akční sestavy Vitosol 100-F

Akční sestavy Vitosol 100-F Akční sestavy Vitosol 100-F Platný od 1. února do 30. června 2011 Akční sestavy Vitosol 100-F 2/3 Nečekejte na zelenou, ušetřete již dnes! Moderní a úsporné vytápění to je více než jen úsporný kotel.

Více

Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj

Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO TEPELNÁ ČERPADLA ekonomika provozu a dimenzování Jiří Čaloun, DiS Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím

Více

Sedlové ventily VF 2, VL 2 - dvoucestné VF 3, VL 3 trojcestné

Sedlové ventily VF 2, VL 2 - dvoucestné VF 3, VL 3 trojcestné Datový list Sedlové ventily VF 2, VL 2 - dvoucestné VF 3, VL 3 trojcestné Popis Ventily poskytují kvalitní a cenově příznivé řešení pro většinu aplikací vytápění i chlazení s médiem - voda. Tyto ventily

Více

Tepelné čerpadlo Excellence pro komfortní a úsporný dům

Tepelné čerpadlo Excellence pro komfortní a úsporný dům Tepelné čerpadlo Excellence pro komfortní a úsporný dům V současné době, kdy se staví domy s čím dál lepšími tepelně izolačními vlastnostmi, těsnými stavebními výplněmi (okna, dveře) a vnějším pláštěm,

Více

UT Ústřední vytápění

UT Ústřední vytápění UT Ústřední vytápění Františka 2.01 D.1.4A TZ UT - 1 z 6 OBSAH: Úvod:... 3 Situace:... 3 Tepelná bilance a výpočty:... 3 CELKOVÁ ENERGETICKÁ NÁROČNOST STAVBY :... 3 Zdroj tepla:... 4 Odvod spalin... 4

Více

TRONIC CONTROL. Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic.

TRONIC CONTROL. Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic. TRONIC CONTROL Nad Safinou I č.p.449 252 42 Vestec u Prahy tel./fax: 266 710 254-5 602 250 629 e-mail: info@tronic.cz http//www.tronic.cz Firemní program Výrobní oblast vývoj a výroba řídicích systémů

Více

REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA

REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA REMKO ARCTIC-WP INVERTOROVÁ TEPELNÁ ČERPADLA Řešení s tepelnými čerpadly pro jednoduchou nástěnnou montáž Série RVT-ARCTIC 1-2014 Kvalita se systémem REMKO DODAVATEL SYSTÉMŮ ORIENTOVANÝ NA ZÁKAZNÍKY PO

Více

Nabídka: tepelného čerpadla Vaillant geotherm VWL (provedení vzduch/voda)

Nabídka: tepelného čerpadla Vaillant geotherm VWL (provedení vzduch/voda) Nabídka: tepelného čerpadla Vaillant geotherm VWL (provedení vzduch/voda) Nabídka č. 2202036 Investor: Jan Klauz RD Benešovsko Email: Jan.Klauz@sgs.com Tel.: 72472305 Vyhotovil: Daniel Vlasák Vaillant

Více

Profil společnosti. Kompresorová technika Průmyslové chlazení Rozvody technických plynů Dodávky pro zdravotnictví

Profil společnosti. Kompresorová technika Průmyslové chlazení Rozvody technických plynů Dodávky pro zdravotnictví Profil společnosti Kompresorová technika Průmyslové chlazení Rozvody technických plynů Dodávky pro zdravotnictví Společně najdeme řešení Let s find solution together O společnosti Společnost BSJ group

Více

Rekonstrukce zdroje vytápění a rozšíření teplovodní sítě CZT v Jesenici

Rekonstrukce zdroje vytápění a rozšíření teplovodní sítě CZT v Jesenici ZADAVATEL: MĚSTO JESENICE Mírové náměstí 368, 270 33 Jesenice IČ: 00243825 zastoupené: starostou města, panem Ing. Janem Polákem VEŘEJNÁ ZAKÁZKA: Rekonstrukce zdroje vytápění a rozšíření teplovodní sítě

Více

- Ovládací trn: - Pružina: - Těsnění:

- Ovládací trn: - Pružina: - Těsnění: ALEFFI www.caleffi.com 58684.02 eplotní přetlakový ventil s automatickým plněním opyright 2009 aleffi Funkce Rozsah sortimentu echnické specifikace eplotní přetlakový ventil s dvojím účinkem se používá

Více

s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw)

s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw) Tepelné čerpadlo VZDUCH - VODA s ohřevem vody a hydraulickým modulem ARIANEXT - 8 kw (připravujeme 10 a 12 kw) kompaktní tepelné čerpadlo s doplňkovým elektroohřevem ARIANEXT COMPACT 8 kw ARIANEXT PLUS

Více

Tepelná čerpadla vzduch/voda. pro vnitřní instalaci

Tepelná čerpadla vzduch/voda. pro vnitřní instalaci Tepelná čerpadla vzduch/voda pro vnitřní instalaci 4 Wärme pumpen Natur bewahren Centrála domácí techniky KHZ LW KHZ-LW 60 vytápění chlazení vzduchový výměník připojení na solární systém Na první pohled:

Více

PRAKTICKÝ RÁDCE. Malé a střední soustavy topení a chlazení. Expanzní nádoby pro topné soustavy. Expanzní nádoby pro pitnou vodu

PRAKTICKÝ RÁDCE. Malé a střední soustavy topení a chlazení. Expanzní nádoby pro topné soustavy. Expanzní nádoby pro pitnou vodu Malé a střední soustavy topení a chlazení Expanzní nádoby pro topné soustavy Expanzní nádoby pro pitnou vodu Automatické doplňování topných soustav Změkčování plnicí a doplňovací vody pro topné soustavy

Více

Požadavky tepelných čerpadel

Požadavky tepelných čerpadel Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979

Více

Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011

Solární tepelné soustavy. Ing. Stanislav Bock 3.května 2011 Solární tepelné soustavy Ing. Stanislav Bock 3.května 2011 Princip sluneční kolektory solární akumulační zásobník kotel pro dohřev čerpadlo Možnosti využití nízkoteplotní aplikace do 90 C ohřev bazénové

Více

EXPANZNÍ NÁDOBY SOLAR MAG 18, 25, 35, 50, 80 MONTÁŽNÍ SETY A VENTILY PRO EXPANZNÍ NÁDOBY

EXPANZNÍ NÁDOBY SOLAR MAG 18, 25, 35, 50, 80 MONTÁŽNÍ SETY A VENTILY PRO EXPANZNÍ NÁDOBY EXPANZNÍ NÁDOBY SOLAR MAG 18, 25, 35, 50, 80 MONTÁŽNÍ SETY A VENTILY PRO EXPANZNÍ NÁDOBY Technické informace, návod k instalaci a obsluze Člen MONIER GROUP Budoucnost patří slunci Zdroj energie, který

Více

Solární systémy Brilon pro ohřev teplé vody a podporu vytápění

Solární systémy Brilon pro ohřev teplé vody a podporu vytápění Solární systémy rilon pro ohřev teplé vody a podporu vytápění www.varisol.cz Změňte svůj způsob myšlení s kolektory Thermomax, Varisol Thermomax HP200/250 Vysoce účinný vakuový trubicový kolektor pracující

Více

ČESKÁ REPUBLIKA. Ceník tepelných čerpadel země/voda 4,7 až 31,8 kw. platný od dubna 2015. www.alpha-innotec.cz

ČESKÁ REPUBLIKA. Ceník tepelných čerpadel země/voda 4,7 až 31,8 kw. platný od dubna 2015. www.alpha-innotec.cz ČESKÁ REPUBLIKA Ceník tepelných čerpadel země/voda 4,7 až 31,8 kw platný od dubna 2015 www.alpha-innotec.cz Přehled tepelných výkonů přehled tepelných čerpadel podle tepelného výkonu alterra tepelná čerpadla

Více

Energetické systémy pro nízkoenergetické stavby

Energetické systémy pro nízkoenergetické stavby Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Energetické systémy pro nízkoenergetické stavby Systémy pro vytápění a přípravu TUV doc. Ing. Petr

Více

VIESMANN. List technických údajů VITOMAX 300 LT. Teplovodní kotel pro přípust. výstupní teplotu do 120 C 1,86 až 5,90 MW

VIESMANN. List technických údajů VITOMAX 300 LT. Teplovodní kotel pro přípust. výstupní teplotu do 120 C 1,86 až 5,90 MW VIESMANN VITOMAX 300 LT Teplovodní kotel pro přípust. výstupní teplotu do 120 C 1,86 až 5,90 MW List technických údajů Obj.č.: viz ceník, ceny na dotaz VITOMAX 300 LT Typ M343 Nízkoteplotní olejový/plynový

Více

PODLAHOVÉ VYTÁPĚNÍ A CHLAZENÍ NEJUNIVERZÁLNĚJŠÍ SYSTÉM PRO NOVOSTAVBY A REKONSTRUKCE REVOLUČNÍ TECHNOLOGIE INOVATIVNÍ MATERIÁLY ŠVÉDSKÁ KVALITA

PODLAHOVÉ VYTÁPĚNÍ A CHLAZENÍ NEJUNIVERZÁLNĚJŠÍ SYSTÉM PRO NOVOSTAVBY A REKONSTRUKCE REVOLUČNÍ TECHNOLOGIE INOVATIVNÍ MATERIÁLY ŠVÉDSKÁ KVALITA PODLAHOVÉ VYTÁPĚNÍ A CHLAZENÍ NEJUNIVERZÁLNĚJŠÍ SYSTÉM PRO NOVOSTAVBY A REKONSTRUKCE REVOLUČNÍ TECHNOLOGIE INOVATIVNÍ MATERIÁLY ŠVÉDSKÁ KVALITA SYSTÉM OPTIHEAT OPTIHeat je ucelený systém teplovodního vytápění

Více

Vytápění BT01 TZB II - cvičení

Vytápění BT01 TZB II - cvičení Vytápění BT01 TZB II - cvičení BT01 TZB II HARMONOGRAM CVIČENÍ AR 2012/2012 Týden Téma cvičení Úloha (dílní úlohy) Poznámka Stanovení součinitelů prostupu tepla stavebních Zadání 1, slepé matrice konstrukcí

Více

Švédská tepelná čerpadla

Švédská tepelná čerpadla Švédská tepelná čerpadla Přehled sortimentu 2014 www.cerpadla-ivt.eu Proč si pořídit tepelné čerpadlo značky IVT? IVT je největším dodavatelem tepelných čerpadel země / voda na našem trhu Specializace

Více

NOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz

NOVÝ Zpětný ventil. Typ 561 a 562. www.titan-plastimex.cz NOVÝ Zpětný ventil Typ 561 a 562 www.titan-plastimex.cz VÝHODY Nové zpětné ventily jsou maximálně spolehlivé a výkonné díky optimalizované geometrii proudění vede k vašemu prospěchu a vyššímu zisku. Zpětné

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

SC-C01-20 / SC-C01-30. Solární panel NÁVOD K INSTALACI

SC-C01-20 / SC-C01-30. Solární panel NÁVOD K INSTALACI SC-C01-20 / SC-C01-30 Solární panel NÁVOD K INSTALACI OBSAH 1. Specifikace 2 2. Bezpečnostní pokyny 3 3. Doporučení 4 4. Údržba 6 5. Návod k sestavení 7 2 1. Specifikace Typ SC-20 SC-30 A - délka 1460

Více

Efektivní využití obnovitelných zdrojů pro Váš maximální komfort

Efektivní využití obnovitelných zdrojů pro Váš maximální komfort NOVINKA Buderus Tepelná čerpadla vzduch/voda IP inside Light Comfort Efektivní využití obnovitelných zdrojů pro Váš maximální komfort Teplo je náš živel Nová generace tepelných čerpadel vzduch/voda Nová

Více

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD

Efektivní energie (NRQRPLFN¾ RKďHY YRG\ Y GRP FQRVWL SRPRF WHSHOQªKR ÎHUSDGOD Efektivní energie Jak to funguje Tepelné čerpadlo vzduch / voda získává energii z atmosféry. Tento systém vyžaduje pouze 1 kw elektrické energie k výrobě 3 až 5 kw tepelné energie. 2-4 kw ENERGIE ZE VZDUCHU

Více

12 Tepelná čerpadla zažívají renesanci Učební list

12 Tepelná čerpadla zažívají renesanci Učební list Projekt CZ.1.07/1.1.00/08.0094 Vzdělávání pro udržitelný rozvoj v environmentálních a ekonomických souvislostech Asociace pedagogů základního školství České republiky www.vcele.eu 12 Tepelná čerpadla zažívají

Více

Centrální zásobování materiálem

Centrální zásobování materiálem Centrální zásobování materiálem Aplikační možnosti Systém centrálního zásobování materiálem je určen pro potrubní přepravu plastového materiálu-granulátu v plastikářských provozech. Pro dopravu využívá

Více

Proplachovací a plnící jednotka - CSBS Technické informace pro montáž a provoz

Proplachovací a plnící jednotka - CSBS Technické informace pro montáž a provoz Proplachovací a plnící jednotka - CSBS Technické informace pro montáž a provoz Obsah: Bezpečnostní pokyny... 2 Předpisy... 2 Způsob používání zařízení... 2 Popis symbolů... 2 1 Všeobecné pokyny... 4 2

Více

Návrh nového otopného systému po zateplení obálky budovy ZŠ a MŠ v Loukovci. Jedná se o přízemní objekt o ploše 775 m 2 s plochou střechou.

Návrh nového otopného systému po zateplení obálky budovy ZŠ a MŠ v Loukovci. Jedná se o přízemní objekt o ploše 775 m 2 s plochou střechou. ZŠ ŽELEŠICE Investor: Obecní úřad Želešice Termín realizace: 2010 Hodnota zrealizovaného díla: 17 200 000,- Součástí projektové dokumentace byl návrh architektonického řešení a celková rekonstrukce otopného

Více

Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné. Vytápění Chlazení Čerstvý vzduch Čistý vzduch

Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné. Vytápění Chlazení Čerstvý vzduch Čistý vzduch Stropní systémy pro vytápění a chlazení Komfortní a energeticky úsporné Vytápění Chlazení Čerstvý vzduch Čistý vzduch Zehnder vše pro komfortní, zdravé a energeticky úsporné vnitřní klima Vytápění, chlazení,

Více

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY.1Úvod Autor: Ing. František Svoboda Csc. Zvážení rizik tvorby vedlejších produktů desinfekce (DBP) pro úpravu konkrétní vody je podmíněno návrhem

Více

Technický list pro tepelné čerpadlo země-voda HP3BW-model B

Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický popis TČ Tepelné čerpadlo země-voda, voda-voda s označením HPBW B je kompaktní zařízení pro instalaci do vnitřního prostředí, které

Více

21.4.2015. Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách

21.4.2015. Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách 21.4.2015 Energetické využití a technologie spalování uhelného multiprachu v soustavách CZT a průmyslových energetikách 2 SÍDLA SPOLEČNOSTÍ 3 SCHÉMA KOTELNY NA UHELNÝ PRACH sklad paliva a dávkování parní

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

PROFESIONÁLNÍ ČIŠTĚNÍ TOPNÝCH SYSTÉMŮ

PROFESIONÁLNÍ ČIŠTĚNÍ TOPNÝCH SYSTÉMŮ 04/2014 PROFESIONÁLNÍ ČIŠTĚNÍ TOPNÝCH SYSTÉMŮ Společnost Maychem s.r.l. byla založena v roce 1970 a s výrobou kapalin pro topné systémy se začala zabývat v roce1975. Nejprve se orientovala na výrobu těsnících

Více