velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci

Rozměr: px
Začít zobrazení ze stránky:

Download "velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci"

Transkript

1 Některé otázky pro kontrolu připravenosti na test k předmětu MIP a problémové okruhy v l.sem Náplní je látka z přednášek a cvičení do termínu testu v rozsahu přednášek, případně příslušného textu v doporučené literatuře - textu monografie -Vedral, Fischer. Základní vlastnosti logických obvodů řad TTL, TTL- LS, HC, HCT, obvodů nízkonapěťové logiky Co znamená údaj, že obvod je na vstupu + 5 V tolerantní, jaké problémy mohou vznikat při spolupráci logických obvodů při napájení z různých napájecích zdrojů. V čem se liší obvody řad HC a HCT. Jaké maximální napětí na vstupu - U IHmax může mít obvod z řady HCT ( např. 74HCT00). Jaké je náhradní schéma výstupu logického obvodu např. HC00, případně HCT00 pokud je na výstupu generována vysoká úroveň - H, případně nízká úroveň - L. Přibližně jaký vnitřní odpor má výstupní část obvodu HC, HCT ve stavu H, případně L? Jaké maximální napětí může být přivedeno na vstup odvodu 74HC00 s napájením U CC = 3,3 V? Jaké maximální napětí může být přivedeno na vstup odvodu 74AHC00 s napájením U CC = 3,3 V. Jaké napětí bude na výstupu obvodu 74HCT00 s U CC = 5 V, jestliže je výstup ve stavu H a je zatížen odporem R = 10 kohmů. Jaký je přibližně vnitřní odpor výstupu v obvodu 74HCT00, ve stavu H a ve stavu L? Jaký (přibližně) proud teče vstupem obvodů 7400 ( řada TTL), 74LS00 (řada LS), 74HCT00, 74HC00 s U CC = 5 V, jestliže je na vstup přivedena úroveň L (s napětím 0V), nebo úroveň H (s napětím 5 V)? Jaká je orientace proudu? Jaký má význam ekvivalentní výkonová ztrátová kapacita C PD u logických obvodů CMOS a jak se využije ve výpočtu? Jaká je výkonová ztráta hradla logického obvodu HCT00 s U CC = 5 V, jestliže má C PD = 15 pf a vstupní signál má frekvenci 1 MHz, výstup tohoto obvodu je zatížen kapacitou C L = 10 pf? Jaké problémy může přinášet použití velmi rychlých logických obvodů řady ACT, AC v mikropočítači; vysvětlete problematiku rušení proudovými impulsy při změnách stavu v log. obvodu? Jak se projevuje proudový impuls příčného proudu, který protéká mezi svorkami U CC a GND logického obvodu a proud, který protéká mezi výstupní svorkou obvodu (OUT) a svorkou GND, případně U CC? Jak se v takovém případě může projevit impedance vodiče připojujícího svorku GND logického obvodu na desce plošného spoje? Jaký význam má blokování rozvodu napájení kondenzátory. Jak se mají tyto kondenzátory umísťovat vzhledem k k logickému obvodu? Proč může vést ke zničení přepólování přívodu napájení u logických obvodů CMOS. Může být výstup logického obvodu s třístavovým výstupem připojen na sběrnici (v aktivním stavu - s přenos dat), aniž by tento obvod měl správné napájecí napětí. K čemu může dojít a proč? Jednočipové mikropočítače řady Jednočipový mikropočítač 8051, AT89C51, AT89C52, AT89C8252, AT89C2051 obvodová struktura, druhy a velikosti paměťových prostorů,

2 velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci? Napište příklad instrukce s přímým a nepřímým adresováním. Na jaké adrese začíná výkon programu u procesorů 8051, 89C51, AT89S8252? Jaké jsou (logicky) paměťové prostory u jednočipového mikropočítače Atmel AT89C52? Jak se liší z hlediska přístupu prostor vnitřní datové paměti na adresách 00-7Fh a 80h -0FFh? Jak se provádí přímé a nepřímé adresování vnitřní datové paměti. Lze použít přímé adresování externí datové paměti u 89C52? Jak se liší instrukce MOV A, #33h a MOV A, 33h. Co je to bitově adresovatelná paměť RAM, kde se v 89C51 nachází a jak je velká a jak se může adresovat? Kde může být umístěn zásobník (návratových adres) v mikropočítači AT89C51 a kde v AT89C52, AT89S8252? Může být umístěn také ve vnější paměti typu XDATA? Jak se mění ukazatel zásobníku ( SP) po zápisu do zásobníku? Může se v AT89C52 pomocí uživatelského programu zapisovat do vnitřní paměti CODE, DATA, IDATA? Jak je velká vnitřní datová paměť procesoru 8051? Je možno bitově adresovat bránu P1? Jak se adresuje vnější datová paměť AT89C51 a jakou největší kapacitu může mít? Kolika bitový je : akumulátor, registr R0, R1, R2, registr DPTR, registr SP. Kde může být v AT89C51, příp. v AT89C52 umístěn zásobník? Kde je (v jaké paměťovém prostoru) v AT89S8252 (používaném na cvičeních) umístěna paměť EEPROM, jak se k ní z hlediska programátorského přistupuje? Jaká se musí nejdříve provést inicializace, aby bylo možno použít vestavěný sériový kanál UART v I8031? Nakreslete stav výstupního signálu v čase při vysílání znaku A. Jak se programově synchronizuje spolupráce s UART-em (zápis a čtení dat) v AT89S8252? Na jakých nejnižších adresách bude začínat externí paměť programu, pokud se u použije též vnitřní paměť programu na čipu u AT89C52? Lze u AT89C52 zakázat funkci interní paměti programu na čipu? Kde jsou umístěny v (programátorském modelu) vstupně výstupní brány P1, P3 (stačí pouze přibližně), mohou se adresovat nepřímo? Nakreslete časování při zápisu do paměti SRAM 62256, označte jednotlivé signály a označte časový interval, kdy se adresy a data nesmějí měnit. Nakreslete časování sběrnic mikroprocesoru při cyklu zápis do paměti. Tvorba programu v jazyce symbolických adres. Programové prostředky: Překladač, object-hex konvertor. Jak se postupuje při přípravě programu pro vnitřní paměť mikropočítače AT89C52, od jaké adresy bude umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET, EQU, HIGH, LOW, DB, DS, INCLUDE K čemu složí pseudoinstrukce ORG, SET, EQU, DS, DB u překladače A51, který jste používali na cvičeních? Jak lze zapsat bitovou adresu při přípravě programu s překladačem A51? Čím se liší instrukce LJMP, JMP, AJMP, SJMP, příp. LCALL, CALL, ACALL. Jakým znakem může začínat návěští, jakým znakem může začínat číslo. V kolika bitech se vyjadřují čísla v překladači A51. Jaký bude obsah akumulátoru A, registrů R1, R2 po provedení instrukcí odpovídajících zápisu

3 MOV A, # LOW NOT 0FFh MOV R1, #HIGH NOT 0F0h MOV R2, # LOW - 0F0h Jakou budou mít hexadecimální, dekadickou, případně binární hodnotu následující výrazy v jednotlivých případech po překladu? sym set - 0F0h sym set LOW -0F0h sym set HIGH -0F0h sym set NOT 0F0h sym set NOT HIGH 0F0h sym set LOW NOT 0F0h sym set NOT LOW 0F000h sym set 1234 sym set 1234H sym set 1234H SHL 1 sym set 1234H SHR 2 sym set 1234D sym set -1234H sym set NOT 1234H Co vyjadřuje zápis DS 2, v kterém segmentu programu se používá? V čem se liší instrukce: MOV A, R1 od MOV Paměťová matice, princip koincidenčního adresování paměťové buňky v paměťové matici. Jak může být organizována paměťová matice pamětí o organizaci N x 8 bitů (např ). Paměťová buňka paměti ROM, EPROM, EEPROM, FLASH ROM. Čím se rozlišuje informační obsah buňky pro log. 0 a log. 1? Paměť EPROM, FLASH ROM, EEPROM, princip funkce, vlastnosti, řídicí signály, použití. Doba přístupu paměti t AA při čtení. Co je podmínkou získání platných dat na výstupu paměti v požadovaném okamžiku? Jak se zajišťuje elektronická kontrola identifikace typu paměti EPROM, EEPROM a FLASH? Jak probíhá naprogramování paměťových buněk v paměti EPROM, EEPROM a FLASH. Jak se liší uspořádání paměťové buňky, způsob programování a mazání paměti EPROM, FLASH a EEPROM? Jakým procesem se přenášejí náboje na plovoucí hradlo u paměti FLASH a jak se odstraňují. Jak se programuje a maže paměť EEPROM a v čem spočívá tento proces? Zápis do pamětí EEPROM, byte write, page write mode u EEPROM. Rozdíl mezi vlastnostmi EPROM, EEPROM, FLASH. Jaké řídicí signály má paměť 2764, 27256; k čemu sloužínaznačte časovým diagramem. Je možno použít paměť do plošného spoje, který byl navržen pro a jak? Jakou kapacitu a organizaci mají paměti EPROM typu 2764, 27C256, 275C12, 270C10, 270C20, 270C40, 27C080? Co je to "Page write" mód programování pamětí EEPROM, jak jej paměť rozliší od požadavku na programování jediného Byte. Jak se u pamětí EEPROM a FLASH rozpozná úspěšné naprogramování, co je to /D7 polling, D6 Toggle bit (polling)? Jaký je význam signálů /CS (příp. /CE), CE, /OE, /WE u pamětí? Co označuje dobu přístupu t AA při čtení z paměti EPROM, naznačte grafem. Nakreslete časování EPROM při čtení, označte dobu přístupu. Na čem závisí velikost této doby?

4 Paměťové buňky a uspořádání pamětí SRAM, dvoubránové paměti, paměti FIFO. Jak se chová paměť FIFO po svém zaplnění, pokud nejsou přiváděny čtecí impulsy? Jak lze zjistit aktuální stav paměti FIFO? Cyklus čtení a zápisu paměti SRAM. Cyklus čtení paměti EPROM, EEPROM, FLASH. Nakreslete paměťovou buňku paměti EPROM; jak se liší její naprogramovaný a nenaprogramovaný stav? Jakým procesem se přenášejí náboje na plovoucí hradlo u paměti EPROM a FLASH a jak se odstraňují. Jak se programuje a maže paměť EEPROM a v čem spočívá tento proces? Jestliže bude paměť SRAM typu 6116 (příp. 6264, 62256) umístěna od adresy 8000h v prostoru XDATA mikropočítače s I80C31, na jaké adrese se bude nacházet poslední Byte této paměti? Vysvětlete princip měření odporu pomocí MKO, jak jste jej realizovali ve své laboratorní úloze. Jaký vztah platí pro dobu kyvu monostabilního klopného obvodu, jak je možno tento vztah odvodit? Jaký význam pro to měl vstup /INT0? Jak jste ve své úloze přijímali a vysílali znaky prostřednictvím sériového rozhraní (RS-232)? Jak se zjistí, že z nadřazeného počítače byl do interního obvodu UART v 8051 předán znak? Uveďte tuto malou část programu, kterou jste tuto skutečnost zjišťovali. Jak se vysílá znak pomocí vestavěného obvodu UART a jak se zjistí, že znak byl již vyslán. Jaká byla doba vyslání znaku na sériovou linku, jestliže používáte modulační rychlost 9600 Bd, (start bit, 8 datových bitů, 1 stop bit). Nakreslete průběh signálu na výstupním pinu TxD (vysílač UART) u 8051, jestliže se vysílá znak A. Jaké je pořadí jednotlivých bitů při vysílání? Čím je určena modulační rychlost při vysílání znaku vestavěným obvodem UART v 8051? Jak se postupuje při využití externího přerušení a přerušení od časovače u 8051? Jaké se musejí provést inicializace? Jak je možno poznat, že byl obvodem UART již přijat znak, případně již vyslán znak? Která instrukce (RET nebo RETI) se musí použít pro návrat z podprogramu pro obsluhu přerušení u 8031, jaký je rozdíl ve funkci a použití těchto instrukcí? Jak se mění obsah čítače T0 v režimu, ve kterém jste jej používali pro měření doby kyvu MKO (monostabilního klopného obvodu). Jakou dobu trvá vykonání instrukcí 8051 (např. NOP nebo LJMP), jestliže je použit krystal o frekvenci 12 MHz, příp. 11,0592 MHz? Jakou nejdelší dobu kladného impulsu je možno měřit metodou hradlování čítače T0 v AT89C52, AT89S8252 ( podobně, jako jste používali ve cvičeních), jestliže je použit krystal o frekvenci 12 MHz, příp. 11,0592 MHz? Otázky a odpovědi v testu se předpokládají pouze v rozsahu, v jakém byla látka odpřednášena, případně odcvičena v rámci předmětu " Mikroprocesory v přístrojové technice". Předpokládají se též znalosti, které by student měl mít, pokus se věnoval práci na cvičeních a samostatně zpracovával všechny úlohy. Při návrhu obvodů se předpokládají znalosti z teorie obvodů a logických obvodů. Otázky jsou pro zkrácení formulovány poněkud zkráceně a zjednodušeně. Některá problematika se vyskytuje v otázkách opakovaně v různých variacích. Předpokládá se, že čtenář při případných nejasnostech nahlédne do zápisků z přednášek nebo do doporučené literatury.

5 Pro studium je možno také využít, jak bylo prezentováno na přednáškách, vybraných katalogových listů součástek, které jsou v elektronické formě umístěny na www stránkách measure.feld.cvut.cz, na něž je také odkaz ze stránek předmětu MIP. Jedná se např. o: mikropočítač AT89C52, I8031,.. paměti RAM 6264, 62256, paměti EPROM 2764, 27256, paměti FLASH Atmel AT29C010, AMD AM29F010, paměti FIFO, dvoubránové paměti, vybrané logické obvody HC, HCT Mikropočítač I8031 představuje základní mikropočítač řady 51 bez vnitřní paměti programu; obsahuje pouze 128 Byte vnitřní paměti RAM. Na něm se dokumentují základní vlastnosti procesorů celé řady 51 AT89C51 má stejnou strukturu, navíc však paměť programu typu FLASH 4 kbyte, AT89C52 opět vychází z 8031, obsahuje paměť programu FLASH 8 kbyte, navíc dalších 128 Byte nepřímo adresovatelné paměti RAM v prostoru IDATA, navíc také čítač T2 AT89S8252 (používaný na cvičeních) vychází z AT89C52, obsahuje navíc 2 kbyte vnitřní paměti EEPROM. Dále obsahuje další ukazatel DPTR1, pro adresování paměti typu XDATA. Všechny tyto mikropočítače jsou pinově kompatibilní a je možno je umístit do stejné desky plošného spoje. Mají shodnou funkci řídicích signálů ( /PSEN, /RD, /WR) při komunikaci s případnou vnější pamětí programu a dat. Jaké může být na vstupu hradla 74HCT00 (s U CC = 5 V) maximální napětí UIL = maxpro úroveň L (logická nula) a jaké minimální napětí pro úroveň H UIHmin = Jaká je výkonová ztráta hradla logického obvodu HCT00 s U CC = 5 V, jestliže má C PD = 15 pf a vstupní signál má frekvenci 1 MHz, výstup tohoto obvodu je zatížen kapacitou C L = 10 pf? nakreslete a popište paměťovou buňku CMOS SRAM Nakreslete časování při zápisu do paměti SRAM 62256, označte jednotlivé signály a označte časový interval, kdy se adresy a data nesmějí měnit. Jakou nejdelší dobu kladného impulsu je možno měřit metodou hradlování čítače T0 v AT89C52, AT89S8252 ( podobně, jako jste používali ve cvičeních), jestliže je použit krystal o frekvenci 12 MHz, příp. 11,0592 MHz? Nakreslete a popište logický obvod s blokováním napájení, jaké kondenzátory je vhodné použítt?

od jaké adresy bude program umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET

od jaké adresy bude program umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET 1) Archiktura procesorů řady 51 Jednočipové mikropočítače řady X51. Jednočipové mikropočítače rodiny X51 - AT89C52, AT89S8252 obvodová struktura, druhy a velikosti paměťových prostorů, velikosti vnitřních

Více

Náplň předmětu A3B38MMP a kontrolní otázky k terminu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma

Náplň předmětu A3B38MMP a kontrolní otázky k terminu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma Náplň předmětu A3B38MMP a kontrolní otázky k terminu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma mikroprocesorem řízeného přístroje Architektura, paměťový model,

Více

Náplň předmětu A3B38MMP a kontrolní otázky k termínu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma

Náplň předmětu A3B38MMP a kontrolní otázky k termínu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma Náplň předmětu A3B38MMP a kontrolní otázky k termínu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma mikroprocesorem řízeného přístroje Architektura, paměťový model,

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus

Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná

Více

Struktura a architektura počítačů (BI-SAP) 10

Struktura a architektura počítačů (BI-SAP) 10 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Kontrolní otázky a okruhy k testu v semestru A4B38NVS (verze r. 2012) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM

Kontrolní otázky a okruhy k testu v semestru A4B38NVS (verze r. 2012) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Kontrolní otázky a okruhy k testu v semestru A4B38NVS (verze r. 2012) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Cortex- M3 - proto, pokud je dotaz na procesor, míní

Více

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer

Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru

Více

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051

Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051 051 Seznámení s mikropočítačem Architektura mikropočítače Instrukce Paměť Čítače Porovnání s AT89C2051 Seznámení s mikropočítačem řady 8051 Mikroprocesor řady 8051 pochází z roku 1980 a je vytvořené firmou

Více

Dělení pamětí Volatilní paměti Nevolatilní paměti. Miroslav Flídr Počítačové systémy LS /11- Západočeská univerzita v Plzni

Dělení pamětí Volatilní paměti Nevolatilní paměti. Miroslav Flídr Počítačové systémy LS /11- Západočeská univerzita v Plzni ělení pamětí Volatilní paměti Nevolatilní paměti Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/11- Západočeská univerzita v Plzni ělení pamětí Volatilní paměti Nevolatilní

Více

Přerušovací systém s prioritním řetězem

Přerušovací systém s prioritním řetězem Přerušovací systém s prioritním řetězem Doplňující text pro přednášky z POT Úvod Přerušovací systém mikropočítače může být koncipován několika způsoby. Jednou z možností je přerušovací systém s prioritním

Více

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje

Paměti. Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru jsou používány

Více

požadovan adované velikosti a vlastností Interpretace adresy POT POT

požadovan adované velikosti a vlastností Interpretace adresy POT POT požadovan adované velikosti a vlastností K.D. - přednášky 1 Interpretace adresy Ve kterémkoliv místě lze adresu rozdělit na číslo bloku a offset uvnitř bloku. Velikost bloku je dána délkou příslušné části

Více

Úloha Ohmetr zadání úlohy

Úloha Ohmetr zadání úlohy Úloha Ohmetr zadání úlohy Přednáška 3 - část A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Měření odporu pomocí MKO 74121 Sestavte mikroprocesorem

Více

Vestavné systémy BI-VES Přednáška 5

Vestavné systémy BI-VES Přednáška 5 Vestavné systémy BI-VES Přednáška 5 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011 ZS2010/11 Evropský

Více

PROTOKOL O LABORATORNÍM CVIČENÍ

PROTOKOL O LABORATORNÍM CVIČENÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ Provedl: Jan Kotalík Datum: 3.1. 2010 Číslo: Kontroloval/a Datum: 1. ÚLOHA: Návrh paměti Pořadové číslo žáka:

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. MEIII Paměti konstant

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. MEIII Paměti konstant Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 1.5 Paměti konstant Obor: Mechanik elektronik Ročník: 3. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je spolufinancován

Více

Použití programovatelného čítače 8253

Použití programovatelného čítače 8253 Použití programovatelného čítače 8253 Zadání 1) Připojte obvod programovatelný čítač- časovač 8253 k mikropočítači 89C52. Pro čtení bude obvod mapován do prostoru vnější programové (CODE) i datové (XDATA)

Více

Paměti Josef Horálek

Paměti Josef Horálek Paměti Josef Horálek Paměť = Paměť je pro počítač životní nutností = mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky své práce = Paměti v zásadě můžeme rozdělit na: = Primární

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:

Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor: Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:

Více

Ṁikroprocesory v přístroj. technice. Ohm-metr ... Petr Česák

Ṁikroprocesory v přístroj. technice. Ohm-metr ... Petr Česák Ṁikroprocesory v přístroj. technice Ohm-metr.......... Petr Česák Letní semestr 2001/2002 . Ohm-metr 2. úloha ZADÁNÍ Sestavte mikroprocesorem I8031 řízený přístroj pro měření odporu v rozsahu 0 až 40 kohm.

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Profilová část maturitní zkoušky 2014/2015

Profilová část maturitní zkoušky 2014/2015 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Okruhy a kontrolní otázky k testu v semestru A4B38NVS (verze r. 2015) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM

Okruhy a kontrolní otázky k testu v semestru A4B38NVS (verze r. 2015) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Okruhy a kontrolní otázky k testu v semestru A4B38NVS (verze r. 2015) Procesory s jádrem ARM Cortex - M3, (V dalším textu dotazy směřují na jádro ARM Cortex- M3 - proto, pokud je dotaz na procesor, míní

Více

A51 MACRO ASSEMBLER POKUSNY PROGRAM DATE 10/3/007 PAGE 1

A51 MACRO ASSEMBLER POKUSNY PROGRAM DATE 10/3/007 PAGE 1 Demonstrač nítext k předná š ce Mikroprocesory v přístrojové technice, kat. měření. A51 MACRO ASSEMBLER POKUSNY PROGRAM DATE 10/3/007 PAGE 1 MS-DOS MACRO ASSEMBLER A51 V4.4 OBJECT MODULE PLACED IN DEMC.OBJ

Více

Miroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni

Miroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni Počítačové systémy Vnitřní paměti Miroslav Flídr Počítačové systémy LS 2006-1/21- Západočeská univerzita v Plzni Hierarchire pamětí Miroslav Flídr Počítačové systémy LS 2006-2/21- Západočeská univerzita

Více

Rozhraní mikrořadiče, SPI, IIC bus,..

Rozhraní mikrořadiče, SPI, IIC bus,.. Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška A3B38MMP 2013 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2013, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Rozhraní SPI Rozhraní SPI ( Serial Peripheral

Více

Systém řízení sběrnice

Systém řízení sběrnice Systém řízení sběrnice Sběrnice je komunikační cesta, která spojuje dvě či více zařízení. V určitý okamžik je možné aby pouze jedno z připojených zařízení vložilo na sběrnici data. Vložená data pak mohou

Více

Překladač - Assembler, úloha SW_ UART

Překladač - Assembler, úloha SW_ UART Překladač - Assembler, úloha SW_ UART Přednáška 2 - část A3B38MMP, 2014 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL Praha, kat. měření 1 Náplň Úloha UART, specifikace

Více

Paměťový podsystém počítače

Paměťový podsystém počítače Paměťový podsystém počítače typy pamětových systémů počítače virtuální paměť stránkování segmentace rychlá vyrovnávací paměť 30.1.2013 O. Novák: CIE6 1 Organizace paměťového systému počítače Paměťová hierarchie...

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika

Více

Paměti Flash. Paměti Flash. Základní charakteristiky

Paměti Flash. Paměti Flash. Základní charakteristiky Paměti Flash K.D. - přednášky 1 Základní charakteristiky (Flash EEPROM): Přepis dat bez mazání: ne. Mazání: po blocích nebo celý čip. Zápis: po slovech nebo po blocích. Typická životnost: 100 000 1 000

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

4. Elektronické logické členy. Elektronické obvody pro logické členy

4. Elektronické logické členy. Elektronické obvody pro logické členy 4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:

Více

Překladač - Assembler. kat. měření, ČVUT - FEL, Praha A3B38MMP, X38MIP Přednáška 3 - část. J. Fischer

Překladač - Assembler. kat. měření, ČVUT - FEL, Praha A3B38MMP, X38MIP Přednáška 3 - část. J. Fischer Překladač - Assembler Přednáška 3 - část A3B38MMP, X38MIP -2011 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2012,J.Fischer, kat. měření, ČVUT - FEL 1 Náplň Úloha UART, specifikace zadání, vysvětlení

Více

uz80 Embedded Board ver. 1.0 uz80 Vestavná Řídící Deska ver. 1.0

uz80 Embedded Board ver. 1.0 uz80 Vestavná Řídící Deska ver. 1.0 uz80 Embedded Board ver. 1.0 uz80 Vestavná Řídící Deska ver. 1.0 Jednodeskový mikroprocesorový řídící systém s CPU Zilog Z84C15 nebo Toshiba TMPZ84C015: Deska obsahuje: 1. CPU Z84C15 (Zilog) nebo TMPZ84C015

Více

5. A/Č převodník s postupnou aproximací

5. A/Č převodník s postupnou aproximací 5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 11. října 2007 1 Definice Historie Charakteristiky 2 MCU (microcontroller unit) ATmega8 Programování Blikání LEDkou 3 Kdo s kým Seriový port (UART)

Více

Principy komunikace s adaptéry periferních zařízení (PZ)

Principy komunikace s adaptéry periferních zařízení (PZ) Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.

Více

Návrh konstrukce odchovny 2. dil

Návrh konstrukce odchovny 2. dil 1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 2. dil Pikner Michal Elektrotechnika 19.01.2011 V minulem dile jsme si popsali návrh konstrukce odchovny. senzamili jsme se s

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

P232/485. Převodník RS232 na RS485. Příručka uživatele AUTOMATIZAČNÍ TECHNIKA

P232/485. Převodník RS232 na RS485. Příručka uživatele AUTOMATIZAČNÍ TECHNIKA P232/485 Převodník RS232 na RS485 Příručka uživatele R AUTOMATIZAČNÍ TECHNIKA Střešovická 49, 162 00 Praha 6, e-mail: s o f c o n @ s o f c o n. c z tel./fax : 220 610 348 / 220 180 454, http :// w w w.

Více

Klimatizace. Třída: 4.C. Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT. Skupina: 3. Zpráva číslo: 3

Klimatizace. Třída: 4.C. Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT. Skupina: 3. Zpráva číslo: 3 Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT Třída: 4.C Skupina: 3 Klimatizace Zpráva číslo: 3 Dne: 08.01.2007 Soupis použitých přístrojů: přípravek s μc 8051 přípravek s LCD přípravek

Více

Paměti počítače 9.přednáška

Paměti počítače 9.přednáška Paměti počíta tače 9.přednáška Paměť Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na

Více

Dekódování adres a návrh paměťového systému

Dekódování adres a návrh paměťového systému Dekódování adres a návrh paměťového systému K.D. 2004 Tento text je určen k doplnění přednášek z předmětu POT. Je zaměřen jen na některé body probírané na přednáškách bez snahy o úplné vysvětlení celé

Více

Paměti počítače ROM, RAM

Paměti počítače ROM, RAM Paměti počítače ROM, RAM Paměť je zařízení, které slouží k ukládání programů a dat, s nimiž počítač pracuje. Paměti počítače lze rozdělit do tří základních skupin: registry paměťová místa na čipu procesoru

Více

Praktické úlohy- 2.oblast zaměření

Praktické úlohy- 2.oblast zaměření Praktické úlohy- 2.oblast zaměření Realizace praktických úloh zaměřených na dovednosti v oblastech: Měření specializovanými přístroji, jejich obsluha a parametrizace; Diagnostika a specifikace závad, měření

Více

Pohled do nitra mikroprocesoru Josef Horálek

Pohled do nitra mikroprocesoru Josef Horálek Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická

Více

Rozhraní mikrořadiče, SPI, IIC bus,..

Rozhraní mikrořadiče, SPI, IIC bus,.. Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 14 - X38MIP -2009, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Rozhraní SPI Rozhraní SPI ( Serial Peripheral Interface) - původ firma Motorola SPI není typ

Více

Manuál přípravku FPGA University Board (FUB)

Manuál přípravku FPGA University Board (FUB) Manuál přípravku FPGA University Board (FUB) Rozmístění prvků na přípravku Obr. 1: Rozmístění prvků na přípravku Na obrázku (Obr. 1) je osazený přípravek s FPGA obvodem Altera Cyclone III EP3C5E144C8 a

Více

Základní uspořádání pamětí MCU

Základní uspořádání pamětí MCU Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou

Více

Paměti operační paměti

Paměti operační paměti Paměti operační paměti Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_828 1.11.2012

Více

Maturitní témata - PRT 4M

Maturitní témata - PRT 4M Maturitní témata - PRT 4M ústní zkouška profilové části Maturita - školní rok 2015/2016 1. Architektura mikrořadičů a PC 2. Popis mikrořadičů řady 51 3. Zobrazovací jednotky 4. Řadiče Atmel 5. Hradlová

Více

TECHNICKÝ POPIS MODULU GRAFIK =============================

TECHNICKÝ POPIS MODULU GRAFIK ============================= listů: 8 list : 1 TECHNICKÝ POPIS MODULU GRAFIK ============================= zpracoval: Nevoral schválil: Cajthaml ZPA, k.p. Nový Bor, listopad 1985 4-151-00342-4 list: 1 list: 2 1. VŠEOBECNĚ Obvody realizované

Více

Logické funkce a obvody, zobrazení výstupů

Logické funkce a obvody, zobrazení výstupů Logické funkce a obvody, zobrazení výstupů Digitální obvody (na rozdíl od analogových) využívají jen dvě napěťové úrovně, vyjádřené stavy logické nuly a logické jedničky. Je na nich založeno hodně elektronických

Více

PK Design. Modul USB2xxR-MLW20 v1.0. Uživatelský manuál. Přídavný modul modulárního vývojového systému MVS. Verze dokumentu 1.0 (05.04.

PK Design. Modul USB2xxR-MLW20 v1.0. Uživatelský manuál. Přídavný modul modulárního vývojového systému MVS. Verze dokumentu 1.0 (05.04. Modul USB2xxR-MLW20 v1.0 Přídavný modul modulárního vývojového systému MVS Uživatelský manuál Verze dokumentu 1.0 (05.04.2007) Obsah 1 Upozornění...3 2 Úvod...4 2.1 Vlastnosti modulu...4 2.2 Použití modulu...4

Více

MSP 430F1611. Jiří Kašpar. Charakteristika

MSP 430F1611. Jiří Kašpar. Charakteristika MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů

DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů projekt GML Brno Docens DUM č. 10 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 04.12.2013 Ročník: 1A, 1B, 1C Anotace DUMu: jak fungují vnitřní paměti, typy ROM a RAM pamětí,

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:

Více

Velmi zjednodušený úvod

Velmi zjednodušený úvod Velmi zjednodušený úvod Výroková logika: A, B, C - výroky. Booleova algebra Výroky nabývají hodnot Pravdivý a Nepravdivý. C = A B A B Booleova algebra: a, b, c - logické (Booleovské) proměnné. Logické

Více

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC

Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy

Více

Konfigurace portů u mikrokontrolérů

Konfigurace portů u mikrokontrolérů Konfigurace portů u mikrokontrolérů Porty u MCU Většina vývodů MCU má podle konfigurace některou z více funkcí. K přepnutí funkce dochází většinou automaticky aktivováním příslušné jednotky. Základní konfigurace

Více

Zadání semestrálního projektu PAM

Zadání semestrálního projektu PAM P ř evaděč RS485 Navrhněte s procesorem AT89C2051 převaděč komunikační sběrnice RS485 s automatickým obracením směru převodníku po přenosu bytu. Převaděč vybavte manuálním nastavením přenosové rychlosti

Více

Jednočipové mikropočítače (mikrokontroléry)

Jednočipové mikropočítače (mikrokontroléry) Počítačové systémy Jednočipové mikropočítače (mikrokontroléry) Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Co je mikrokontrolér integrovaný obvod, který je často součástí

Více

Semestrální práce z předmětu Speciální číslicové systémy X31SCS

Semestrální práce z předmětu Speciální číslicové systémy X31SCS Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií Autor: Tomáš Válek, xvalek02@stud.fit.vutbr.cz Login: xvalek02 Datum: 21.listopadu 2012 Obsah 1 Úvod do rozhraní I 2 C (IIC) 1 2 Popis funkčnosti

Více

Struktura a architektura počítačů (BI-SAP) 11

Struktura a architektura počítačů (BI-SAP) 11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 11 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Řízení IO přenosů DMA řadičem

Řízení IO přenosů DMA řadičem Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována

Více

Periferní operace využívající přímý přístup do paměti

Periferní operace využívající přímý přístup do paměti Periferní operace využívající přímý přístup do paměti Základní pojmy Programová obsluha periferní operace řízení této činnosti procesorem. Periferní operace využívající přerušení řízení řadičem přerušení,

Více

Základní principy konstrukce systémové sběrnice - shrnutí. Shrnout základní principy konstrukce a fungování systémových sběrnic.

Základní principy konstrukce systémové sběrnice - shrnutí. Shrnout základní principy konstrukce a fungování systémových sběrnic. Základní principy konstrukce systémové sběrnice - shrnutí Shrnout základní principy konstrukce a fungování systémových sběrnic. 1 Co je to systémová sběrnice? Systémová sběrnice je prostředek sloužící

Více

Struktura a architektura počítačů (BI-SAP) 7

Struktura a architektura počítačů (BI-SAP) 7 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

ČEMU ROZUMÍ MIKROPROCESOR?

ČEMU ROZUMÍ MIKROPROCESOR? ČEMU ROZUMÍ MIKROPROCESOR? Čemu rozumí mikroprocesor? Číslo DUM v digitálním archivu školy VY_32_INOVACE_10_01_01 Materiál poskytuje pohled na mikroprocesor, jako na číslicový obvod. Seznamuje se základními

Více

Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry.

Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Paměti Cílem kapitoly je seznámit studenta s pamětmi. Jejich minulostí, současností a hlavnímu parametry. Klíčové pojmy: paměť, RAM, rozdělení pamětí, ROM, vnitřní paměť, vnější paměť. Úvod Operační paměť

Více

Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný

Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů Zdeněk Oborný Freescale 2013 1. Obecné vlastnosti Cílem bylo vytvořit zařízení, které by sloužilo jako modernizovaná náhrada stávající

Více

Test. Kategorie M. 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí signálu?

Test. Kategorie M. 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí signálu? Oblastní kolo, Vyškov 2006 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Na obrázku je průběh napětí, sledovaný osciloskopem. Jaké je efektivní napětí

Více

Program "Světla" pro mikropočítač PMI-80

Program Světla pro mikropočítač PMI-80 Program "Světla" pro mikropočítač PMI-80 Dokument věnovaný mikropočítači PMI-80, jeho programování a praktickým ukázkám. Verze dokumentu:. Autor: Blackhead Datum: rok 1997, 4.3.004 1 Úvod Tento program

Více

Vana RC0001R1 RC0001R1

Vana RC0001R1 RC0001R1 Vana RC0001R1 Vana RC0001R1 má celkem 21 pozic o šířce čelního panelu 4 moduly. Je určena pro obecné použití s deskami systému Z102, který používá pro komunikaci mezi procesorovou deskou a obecnými I/O

Více

Paměti EEPROM (1) 25/07/2006 1

Paměti EEPROM (1) 25/07/2006 1 Paměti EEPROM (1) EEPROM - Electrically EPROM Mají podobné chování jako paměti EPROM, tj. jedná se o statické, energeticky nezávislé paměti, které je možné naprogramovat a později z nich informace vymazat

Více

MĚŘENÍ HRADLA 1. ZADÁNÍ: 2. POPIS MĚŘENÉHO PŘEDMĚTU: 3. TEORETICKÝ ROZBOR. Poslední změna

MĚŘENÍ HRADLA 1. ZADÁNÍ: 2. POPIS MĚŘENÉHO PŘEDMĚTU: 3. TEORETICKÝ ROZBOR. Poslední změna MĚŘENÍ HRADLA Poslední změna 23.10.2016 1. ZADÁNÍ: a) Vykompenzujte sondy potřebné pro připojení k osciloskopu b) Odpojte vstupy hradla 1 na přípravku a nastavte potřebný vstupní signál (Umax, Umin, offset,

Více

MIKROKONTROLÉRY. Jednočipový počítač nebo také angl. Microcontroller (Mikrokontrolér, MCU, µc)

MIKROKONTROLÉRY. Jednočipový počítač nebo také angl. Microcontroller (Mikrokontrolér, MCU, µc) Jednočipový počítač nebo také angl. Microcontroller (Mikrokontrolér, MCU, µc) je většinou monolitický integrovaný obvod obsahující kompletní mikropočítač. Jednočipové počítače se vyznačují velkou spolehlivostí

Více

FVZ K13138-TACR-V004-G-TRIGGER_BOX

FVZ K13138-TACR-V004-G-TRIGGER_BOX TriggerBox Souhrn hlavních funkcí Synchronizace přes Ethernetový protokol IEEE 1588 v2 PTP Automatické určení možnosti, zda SyncCore zastává roli PTP master nebo PTP slave dle mechanizmů standardu PTP

Více

Paměti Rambus DRAM (RDRAM) Paměti Flash Paměti SGRAM

Paměti Rambus DRAM (RDRAM) Paměti Flash Paměti SGRAM Paměti Rambus DRAM (RDRAM) Paměti Flash Paměti SGRAM 1 Požadavky na RDRAM - začátky Nové DRAM musí zajistit desetinásobné zvýšení šířky pásma srovnání výkonu procesoru a paměti. Náklady na výrobu a prodej

Více

Strojový kód. Instrukce počítače

Strojový kód. Instrukce počítače Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska

Více

EduKit84. Výuková deska s programátorem pro mikrokontroléry PIC16F84A firmy Microchip. Uživatelská příručka

EduKit84. Výuková deska s programátorem pro mikrokontroléry PIC16F84A firmy Microchip. Uživatelská příručka EduKit84 Výuková deska s programátorem pro mikrokontroléry PIC16F84A firmy Microchip Uživatelská příručka OBSAH 1. EduKit84 3 2. Popis zařízení 3 3. Provozní režimy 3 4. Mikrokontrolér PIC16F84A 4 5. Tabulka

Více

PK Design. Uživatelský manuál. Modul USB-FT245BM v2.2. Přídavný modul modulárního vývojového systému MVS. Verze dokumentu 1.0 (7. 11.

PK Design. Uživatelský manuál. Modul USB-FT245BM v2.2. Přídavný modul modulárního vývojového systému MVS. Verze dokumentu 1.0 (7. 11. Modul USB-FT245BM v2.2 Přídavný modul modulárního vývojového systému MVS Uživatelský manuál Verze dokumentu 1.0 (7. 11. 04) Obsah 1 Upozornění... 3 2 Úvod... 4 2.1 Vlastnosti modulu...4 2.2 Použití modulu...4

Více

3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu.

3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu. 3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu. Obsah 3. Principy komunikace s perifériemi: V/V brány, programové

Více

Témata profilové maturitní zkoušky

Témata profilové maturitní zkoušky Obor: 18-20-M/01 Informační technologie Předmět: Databázové systémy Forma: praktická 1. Datový model. 2. Dotazovací jazyk SQL. 3. Aplikační logika v PL/SQL. 4. Webová aplikace. Obor vzdělání: 18-20-M/01

Více

BASPELIN CPM. Popis komunikačního protokolu verze EQ22 CPM EQ22 KOMPR

BASPELIN CPM. Popis komunikačního protokolu verze EQ22 CPM EQ22 KOMPR BASPELIN CPM Popis komunikačního protokolu verze EQ22 CPM EQ22 KOMPR říjen 2007 EQ22 CPM Obsah 1. Přehled příkazů 2 2. Popis příkazů 3 3. Časování přenosu 8 4. Připojení regulátorů na vedení 10 1. Přehled

Více

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje:

Základní deska (1) Označována také jako mainboard, motherboard. Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený

Více

Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns ms rychlost toku dat (tj. počet přenesených bitů za sekundu)

Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns ms rychlost toku dat (tj. počet přenesených bitů za sekundu) Paměti Parametry pamětí vybavovací doba (tj. čas přístupu k záznamu v paměti) = 10 ns...100 ms rychlost toku dat (tj. počet přenesených bitů za sekundu) kapacita paměti (tj. počet bitů, slabik, slov) cena

Více

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů logického obvodu část Teoretický rozbor

MĚŘENÍ Laboratorní cvičení z měření Měření parametrů logického obvodu část Teoretický rozbor MĚŘENÍ Laboratorní cvičení z měření část 3-6-1 Teoretický rozbor Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 1 Číslo materiálu:

Více

Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a

Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a Programovatelný časový spínač 1s 68h řízený jednočip. mikroprocesorem v3.0a Tato konstrukce představuje časový spínač řízený mikroprocesorem Atmel, jehož hodinový takt je odvozen od přesného krystalového

Více

Paměti a jejich organizace

Paměti a jejich organizace Kapitola 5 Paměti a jejich organizace 5.1 Vnitřní a vnější paměti, vlastnosti jednotlivých typů Vnější paměti Jsou umístěny mimo základní jednotku. Lze je zařadit mezi periferní zařízení. Zápis a čtení

Více

Kategorie Ž1. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení!

Kategorie Ž1. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! Mistrovství České republiky soutěže dětí a mládeže v radioelektronice, Vyškov 2011 Test Kategorie Ž1 START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Napětí 230 V (dříve

Více

BASPELIN CPM. Popis komunikačního protokolu verze EQ3 CPM EQ3 KOMPR

BASPELIN CPM. Popis komunikačního protokolu verze EQ3 CPM EQ3 KOMPR BASPELIN CPM Popis komunikačního protokolu verze EQ3 CPM EQ3 KOMPR říjen 2007 EQ3 CPM Obsah 1. Přehled příkazů 2 2. Popis příkazů 3 3. Časování přenosu 10 4. Připojení regulátorů na vedení 11 1. Přehled

Více