Čísla, reprezentace, zjednodušené výpočty

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Čísla, reprezentace, zjednodušené výpočty"

Transkript

1 Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1

2 Čísla 4 bitová dec bin. hex A B C D E F h A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 2

3 Čísla 4, 8 bitová dec bin. hex A B C D E F h n- dec. 2 n bin. 2 n hex. 2 n dec h h h h h h h h h 256 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 3

4 Čísla 4, 8, 16 - bitová dec bin. hex. n- dec. 2 n bin. 2 n hex. 2 n dec h h h h h h h h h h 512 (1/2 k) A h k B h k C h k D h k E h k F h k h h k A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 4

5 Čísla bitová n- dec. 2 n k / M 2 n hex. 2 n dec největší zobraz. číslo k 4 00 h FF 1 k kilo k 8 00 h FF k h FFF k h FFF k h FFF k h FFF k h FFFF 64 k adr. u k h FFFF k h FFFF k h FFFF M h F FFFF 1 M mega M h F FFFF M h F FFFF M h F FFFF M h FF FFFF A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 5

6 Čísla 25 až 32 -bitová n- Mega/ Giga 2 n hex. dec. 2 n největší zobraz. číslo M h FF FFFF M h FF FFFF M h FF FFFF M h FFF FFFF M h FFF FFFF G h FFF FFFF 1024 M -1G G h FFF FFFF G h FFFF FFFF 4 Giga u ARM - Cortex M3 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 6

7 Úseky paměťového prostoru - bloky délka: dec. hex. poč. - konc. adr. dekadicky adr.sig k 4 00 h 00-3 FF h !! k 8 00 h 00-7 FF h k h 00 - F FF h k h 00-1F FF h k h 00-3F FF h k h 00-7F FF h k h 00 - FF FF h Příklad: Paměťový blok o délce 8k je umístěn od A000h, na jaké adrese je poslední lokace paměti? první lokace A000 h, poslední A0 00 h + 1F FF h = BF FF h A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 7

8 Bloky 1k, 1M, 1G délka (dec.) délka (hex.) konc. adr. adr.sig k h 3 FF h 10!! k h FF FF h M h 0F FF FF h 20!! M h FF FF FF h G h 3F FF FF FF h 30!! G h FF FF FF FF h 32 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 8

9 Určení počtu bitů čísla - s. 1 Příklad. Kolik bitů musí mít čítač pro odměřování polohy inkrementálním snímačem s rozlišením polohy na 1um, a délkou 100 mm. Bude postačovat interní 16- bitový čítač v STM32? Řešení 1: Opakovaně dělit číslem 2, dokud výsledek nebude =1 nebo menší. Počet dělení = počet bitů , 50000, 25000, 12500,...,... 6,1035.., 3,051.., 1,5258.., 0, dělení A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 9

10 Určení počtu bitů čísla - s. 1 Příklad. Kolik bitů musí mít čítač pro odměřování polohy inkrementálním snímačem s rozlišením polohy na 1um, a délkou 100 mm. Bude postačovat interní 16- bitový čítač v STM32? Řešení 1: Opakovaně dělit číslem 2, dokud výsledek nebude =1 nebo menší. Počet dělení = počet bitů , 50000, 25000, 12500,...,... 6,1035.., 3,051.., 1,5258.., 0, dělení Řešení 2: Opakovaně násobit 2 x 2 x mocniny 2 dokud výsledek nebude roven x nebo větší... 2, 4, 8, 16, 32, 64, 128,..., 32768, 65536, , A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 10

11 Určení počtu bitů čísla - s.2 Příklad. Kolik bitů musí mít čítač pro odměřování polohy inkrementálním snímačem s rozlišením polohy na 1um, a délkou 100 mm. Bude postačovat interní 16- bitový čítač v STM32? Řešení 3: Převést dek. číslo x = d na bin b, spočítat bity - představuje to 17 bitové číslo A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 11

12 Určení počtu bitů čísla - s.2 Příklad. Kolik bitů musí mít čítač pro odměřování polohy inkrementálním snímačem s rozlišením polohy na 1um, a délkou 100 mm. Bude postačovat interní 16- bitový čítač v STM32? Řešení 3: Převést dek. číslo x = d na bin b, spočítat bity - představuje to 17 bitové číslo Řešení 4: Určit výpočtem počet bitů, hledá se n, pro které platí 2 n = X, případně nejmenší n, kde 2 n > X n - to je ale logaritmus při základu 2, dvojkový logaritmus jak určit logaritmus se základem 2? log 2 x = ln x / ln 2, (přirozený logaritmus) log 2 x = log x / log 2 (dekadický logaritmus) log 2 = 0,30103 (log )/ log 2 = 5 / 0,30103= 16, 6 Nutný minimálně 17 bitový čítač A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 12

13 Určení počtu bitů čísla - s.2 Příklad. Kolik bitů musí mít čítač pro odměřování polohy inkrementálním snímačem s rozlišením polohy na 1um, a délkou 100 mm. Bude postačovat interní 16- bitový čítač v STM32? Řešení 3: Převést dek. číslo x = d na bin b, spočítat bity - představuje to 17 bitové číslo Řešení 4: Určit výpočtem počet bitů, hledá se n, pro které platí 2 n = X, případně nejmenší n, kde 2 n > X n - to je ale logaritmus při základu 2, dvojkový logaritmus jak určit logaritmus se základem 2? log 2 x = ln x / ln 2, (přirozený logaritmus) log 2 x = log x / log 2 (dekadický logaritmus) (log )/ log 2 = 5 / 0,30103 = 16, 6 Nutný minimálně 17 bitový čítač pamatovat si dek. logaritmus log 2 = 0,30103, (odchylka zaokrouhl. = ) nebo alespoň log 2 = 0,3 (odchylka abs 0,00103, rel. 0,34 %) A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 13

14 Určení počtu bitů čísla - s.3 Místo dělení 0,3 je možno násobit 3,32, zaokrouhleně 3,3 log 2 x = log x / log 2 = (1/ log 2) log x = 3,32 log x = ~ 3,3 log x binární číslo má počet míst, který se určí přibližně jako 3,3 násobek dekadického logaritmu čísla ~ 3,3. log x Opačný výpočet kolik dekadických řádů přibližně má n bitové binární číslo log x = log 2.log 2 x = 0,3. log 2 x (počet míst binárního čísla x 0,3) Kolika místný voltmetr by představovalo použití 14 bitového převodníku A/D? (binární čísla až )? log x = log 2. log 2 x = 0,3. 14 = 4,2 14 bitů představuje rozlišení více než 4 -místného voltmetru A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 14

15 Využití logaritmu se základem 2 pro výpočet počtu bitů Dek. logaritmus čísla log 2 = 0,30103, (zaokrouhlení log 2 = 0,3) (opakování: dek. logaritmus čísla log ( 10 m ) = m opakování: log (a * b) = log a + log b, log (a / b)= log a - log b A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 15

16 Využití logaritmu se základem 2 pro výpočet počtu bitů Dek. logaritmus čísla log 2 = 0,30103, (zaokrouhlení log 2 = 0,3) (opakování: dek. logaritmus čísla log ( 10 m ) = m opakování: log (a * b) = log a + log b, log (a / b)= log a - log b Využití pro zjednodušené výpočty - do kolika bitového binárního čísla se zobrazí dekadická čísla 100, 200, 500,1000, 2000, 5000, 10000, odhad, kolika bitové je bin. číslo představující hodnotu =10 10 m =10 n = log x/ log 2 = 10 / 0,3 = 33,33 tedy 34 bitů Kolik bitů je zapotřebí pro adresování bloku o délce (1G) log 2 ( ) = log ( ) / log 2 = 9, / 0, = ~30 číslo = (souhlasí s tabulkou), je třeba 30 bitů A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 16

17 Využití logaritmu se základem 2 pro odhad odhad n pro čísla typu x 1 = 10 m, x 2 = 2*10 m, x 3 = 0,5*10 m n = log x 1 / log 2 = m / log 2= m / 0,30103 = m * 3,322 = ~ m / 0,3 (zjednodušením 0, na 0,3 vychází odhad logaritmu vyšší o 0,3%) kolika bitové číslo je ? n= log (1* 10 6 ) / log 2= 6/0,3 = 20 bitů kolika bitové číslo je ? (opakování: log (2 * 10 6 ) = log log 2 ) n = log (2 *10 6 ) / log 2= (log log 2) / log 2= = (log 1*10 6 / log 2) + (log 2/ log 2)= (6 / 0,3) +1=20 + 1= 21 bitů A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 17

18 Využití logaritmu se základem 2 pro odhad odhad n pro čísla typu x 1 = 10 m, x 2 = 2*10 m, x 3 = 0,5*10 m n = log x 1 / log 2 = m / log 2= m / 0,30103 = m * 3,322 = ~ m / 0,3 (zjednodušením 0, na 0,3 vychází odhad logaritmu vyšší o 0,3%) kolika bitové číslo je ? n = log (1*10 6 ) / log 2= 6/0,3 = 20 bitů kolika bitové číslo je ? (opakování: log (2 * 10 6 )= log log 2 ) n = log (2 * 10 6 ) / log 2= (log log 2) / log 2 = = (log 1*10 6 / log 2) + (log 2/ log 2)= (6 / 0,3) +1=20 +1= 21 bitů kolika bitové číslo je = 0,5* 10 6? log = log ( / 2) = log log 2 n= (log )/log 2= (6-0,3) / 0,3= 6 / 0,3-0.3/ 0,3 = 20-1 = 19 bitů A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 18

19 Určení počtu dekadických míst Opačný výpočet kolik řádů (přibližně) má dekadický ekvivalent n bitového binárního čísla? log x = log 2. log 2 x = 0,3. log 2 x (počet míst binárního čísla x 0,3) Kolika místný voltmetr by představovalo použití 14 bitového převodníku A/D? (binární čísla až )? log x = log 2. log 2 x = 0,3. 14 = 4,2 14 bitů odpovídá rozlišení více než 4-místného voltmetru Signálový procesor ASP2185 má pro funkci MAC (multiply and accumulate) registr o délce 48 bitů. Jakému dekadickému číslu (řád) odpovídá maximální možný výsledek (bez znaménka)? log x = 0,3. 48 = 14,4 Výsledek odpovídá řádově číslu A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 19

20 Čísla - bez znaménka 8 bitové číslo bez znaménka Dec hex bin 0, 1, 2 až FFh b až b A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 20

21 Čísla - bez znaménka 8 bitové číslo bez znaménka Dec hex bin 0, 1, 2 až FFh b až b 16 bitové číslo bez znaménka Dec hex bin 0, 1, 2 až FFFFh 0.. b až b A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 21

22 Zobrazení kladných a záporných čísel - dvojkový doplněk Kladná čísla - nejvyšší bit 0 záporná čísla - nejvyšší bit 1 kladná čísla - přímo záporná čísla - dvojkový doplněk příklad pro 8 bitů analogicky pro 16, 32, 64 bitů možnost zobrazení - kladná čísla - v rozsahu 0 až +2 (n-1) -1 (+127; ; ;... záporná čísla - v rozsahu 0 až - 2 (n-1) (- 128; ; ; A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 22

23 Čísla- 8 bit bez znam., reprezentace zápor. č. 8 bit se zn. 8 bitové číslo se znaménkem dvojkový doplněk 0, +1,+2. až +127 d 7Fh b až b -1, -2, až b až b Výpočet: kladná čísla - přímo binární ekvivalent záporná -dvojkový doplněk Určení dvojkového doplňku, negace všech bitů a přičtení 1 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 23

24 Čísla- 8 bit bez znam., reprezentace zápor. č. 8 bit se zn. 8 bitové číslo se znaménkem dvojkový doplněk 0, +1,+2. až +127 d 7Fh b až b -1, -2, až b až b Výpočet: kladná čísla - přímo binární ekvivalent záporná -dvojkový doplněk Určení dvojkového doplňku, negace všech bitů a přičtení 1 Příklad určení dvojkového doplňku pro čísla -1, -128, 1d b 128 d b negace b b b = -1 d = -128 d FFh 80 h A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 24

25 Čísla -16 bitová se znaménkem, dvojkový doplněk 16 bitové číslo se znaménkem, kladná čísla 0, 1, 2 až d 0000 h až 7 F FF h b až A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 25

26 Čísla -16 bitová se znaménkem, dvojkový doplněk 16 bitové číslo se znaménkem, kladná čísla 0, 1, 2 až d 0000 h až 7 F FF h b až reprezentace 1 ve dvojkovém doplňku, záporná čísla 1d b (1) negace b b = -1 d F F F F h (bez znaménka odpovídá ) A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 26

27 Čísla -16 bitová se znaménkem, dvojkový doplněk 16 bitové číslo se znaménkem, kladná čísla 0, 1, 2 až d 0000 h až 7 F FF h b až reprezentace 1 ve dvojkovém doplňku, záporná čísla b (1) negace b b = -1 d F F F F h (bez znaménka odpovídá ) b (32768) negace b b = d h (bez znaménka by odpovídalo ) A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 27

28 Čísla - se znaménkem, dvojkový doplněk, rekapitulace Záporné číslo nejvyšší bit (MSB) 1, kladné číslo- (MSB) 0 Největší kladné číslo: 0 na nejvyšším bitu a samé Největší zápor. číslo: 1 na nejvyšším bitu a samé reprezentované samé ( ) ( ) A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 28

29 Čísla - se znaménkem, dvojkový doplněk, rekapitulace Záporné číslo nejvyšší bit (MSB) 1, kladné číslo- (MSB) 0 Největší kladné číslo: 0 na nejvyšším bitu a samé Největší zápor. číslo: 1 na nejvyšším bitu a samé reprezentované samé ( ) ( ) Převod záporného čísla nazpět na kladné - abs. hodnota Podobný způsob, negace a přičíst 1. Nejdříve test na záporné číslo MSB =? 1 a pak až úprava -128d b -1 d negace b b = 128 d = 1 d A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 29

30 Součet čísel Záporné číslo nejvyšší bit (MSB) = 1, kladné číslo- MSB= b +16 d ( -1) = b -1 ( záporné číslo) b = +1 5 d OV= 0 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 30

31 Součet čísel Záporné číslo nejvyšší bit (MSB) = 1, kladné číslo- MSB= b +16 d ( -1) = b -1 ( záporné číslo) b = +1 5 d OV= 0 Přetečení: b +127 d chyba b +1 ( záporné číslo) b = -128 chyba OV =1 nastává přenos z D6 do D7, ale není přenos z D7 do C A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 31

32 Součet čísel Záporné číslo nejvyšší bit (MSB) = 1, kladné číslo- MSB= b +16 d ( -1) = b -1 ( záporné číslo) b = +1 5 d OV= 0 Přetečení: b +127 d chyba b +1 ( záporné číslo) b = -128 chyba OV =1 nastává přenos z D6 do D7, ale není přenos z D7 do C Příznak OV - Oveflow - nastaven - pokud je součet kladných čísel - záporný, Nastává přenos z D6 do D7, ale není přenos z D7 do C nebo součet záporných čísel- kladný, Nastává přenos z D7 do C, ale není přenos z D6 do D7 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 32

33 Součet čísel Záporné číslo nejvyšší bit (MSB) = 1, kladné číslo- MSB= b +16 d ( -1) = b -1 ( záporné číslo) b = +1 5 d OV= 0 Přetečení: b +127 d chyba b +1 ( záporné číslo) b = -128 chyba OV =1 nastává přenos z D6 do D7, ale není přenos z D7 do C Příznak OV - Oveflow - nastaven - pokud je součet kladných čísel - záporný, Nastává přenos z D6 do D7, ale není přenos z D7 do C nebo součet záporných čísel- kladný, Nastává přenos z D7 do C, ale není přenos z D6 do D7 C - Carry přetečení z D7 příznakové bity C, OV ve stavovém slově PSW A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 33

34 Součet záporných čísel Záporné číslo nejvyšší bit ( MSB) 1, kladné číslo- MSB b - 8 d ( -7) =? b -7 d b = -15 d ( -7) = -15 správně nastává současně přenos (z D7 do C) i (z D6 do D7), OV=0 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 34

35 Součet záporných čísel Záporné číslo nejvyšší bit ( MSB) 1, kladné číslo- MSB b - 8 d ( -7) =? b -7 d b = -15 d ( -7) = -15 správně nastává současně přenos (z D7 do C) i (z D6 do D7), OV= b -128 d (-128) =? b -127 d C b = (-128)= +1 - chyba nastává přetečení C (z D7 do C), ale není současně (z D6 do D7), OV=1 Chyba - součet záporných čísel je kladný A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 35

36 Součet záporných čísel Záporné číslo nejvyšší bit ( MSB) 1, kladné číslo- MSB b - 8 d ( -7) =? b -7 d b = -15 d ( -7) = -15 správně nastává současně přenos (z D7 do C) i (z D6 do D7), OV= b -128 d (-128) =? b -127 d b = (-128)= +1 - chyba nastává přetečení C (z D7 do C), ale není současně (z D6 do D7), OV=1 Chyba - součet záporných čísel je kladný Použití příznaků při sčítání: C - Carry přetečení z D7 chyba součtu (přetečení) čísel bez znaménka OV - overflow - chyba součtu (přetečení) čísel se znaménkem A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 36

37 Výpočet nastavení SP u AT89C52 Příklad: Jaké je možné max. nastavení ukazatele zásobníku - SP u AT89C52, pokud je zapotřebí 8 zápisů návratové adresy ( 8x CALL za sebou)? Návratová adresa = 16 bitů, 2 Byte, 8 x 2 = 16 Byte dec. = 10 hex interní RAM u 89C52 (IDATA), nepřímo adr. 256 Byte, poslední adresa FFh FFh - 10h = EF h - první lokace použitá pro zásobník, Před zápisem do zásobníku se SP u 8052 nejdříve inkrementuje nastavení SP na EFh - 1 = EE h Řešení MOV SP, # 0EEh blok o délce adr. poč.- konc. dekadicky h 00 - FF h A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 37

38 Určení počtu adresovacích signálů Příklad: Kolik adresových lokací pam. XDATA může adresovat procesor AT89C52? AT89C52 generuje 16 bitových signálů A15 až A0, tedy 2 16 = = 64 k Kolik adresových bloků o délce 8K je možno adresovat procesorem AT89C52, jestliže generuje 16 - bitovou adresu 16 bitů dec, 64 K, je možno adresovat celkem 8 bloků po 8 k Kolik adresovacích vstupů povede do bloku 8 k 8 k - 8 x blok 1 K, pro 1 K - 10 adr. signálů, pro číslo 8 jsou 3 sig. celkem = 13 adresovacích vstupů - signálů Jiný přístup:. 8k- 8 x = signálů A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 38

39 Výpočet délky programového kódu Příklad: Program je umístěn mezi adresami A100 h a A724 h ve vývojové desce. Jak dlouhý je kód a bylo by možno jej umístit do AT89C2051? A7 24 h poslední obsazená adresa - poslední Byte - A1 00 h první obsazená adresa - první Byte h rozdíl adres Pozor! celkem je ale obsazeno 624 h +1 = 625 h Vysvětlení 0000 Byte Byte Byte = 2, = 3 Byte celkem 625 h = 6 x x = 6 x x = = 1573 Délka kódu je 1573 byte, do prog. paměti AT89C2051 se vejde, protože 1573 je méně něž 2 K = 2048 A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 39

40 Výpočet rozlišení převodníku A/D, průměrování Příklad: Převodník A/D v procesoru STM32 je 12 - bitový, jaký je jeho krok, jestliže jeho rozsah je 3,3 V? 3,3 V/ 4096 = mv Příklad: Z kolika vzorků je možno jednoduše počítat průměr, jestliže je maximální dosažitelná hodnota každého odměru délky impulsu je 7000 impulsů dec. a využívá se přičítání do 16 -bitového výsledku? 16- bitové číslo - max zobrazitelné číslo (bez znaménka) / 7000 = 9,3 Teoreticky by bylo možno počítat průměr z 9 odměrů, prakticky se využije 8 odměrů. 8 x 7000 = , = DAC0 h Dělení 8, realizace - posunem 16- bitového součtu v registrech 3x doprava. (Využití laboratorní úloze ve cvičeních.) Obecně, používat dělení, 2, 4,8,16, 32,... A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 40

41 Zjednodušené výpočty Dělení bin. čísla číslem 2, 4, 8, 16 posun o 1, 2, 3, 4 místa doprava Násobení bin. čísla číslem 2, 4, 8, 16 posun o 1, 2, 3, 4 místa doleva Průměrování z 8 odměrů (binární čísla) součet hodnot z 8 odměrů a posun výsledku o 3 místa doprava (dělení 8) (proto mají osciloskopy průměrování z 2, 4, 8, 16,.. odměrů) Násobení 3x (3 dekadicky = 11 b) 3. n = 2. n + 1.n číslo n binární přičíst k bin. číslu posunutému o 1 místo doprava analogicky možno použít i pro jiná čísla A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 41

42 Průměrování Průměrování, podstata a použití - výklad na tabuli Snížení působení šumu průměrováním (podmínka- náhodný šumový signál) Šum zde chápán jako náhodný signál, který se přičítá k výsledku měření šum střední hodnota rovna nule Při použití střední hodnoty z nekonečného počtu odměrů vyloučení šumu Reálně konečný počet odměrů pro určení průměru Při n odměrech snížení působení šumu na hodnotu oproti původnímu 16 =4 působení, (16 odměrů, čtvrtinové působení šumů) Průměrování často využíváno v přístrojích viz. funkce osciloskopu Volba počtu vzorků pro průměrování 2, 4, 8, 16, 32 pro snazší realizaci dělení Vedlejší efekt průměrování zvýšení rozlišovací schopnosti Funkce průměrování v laboratorní úloze ohmetr, voltmetr Ohmetr rozlišení bez průměrování na krok po 7 Ohmech ( 7, 14, 21, ) rozlišení s průměrováním z 16 odměrů na jednotky Ohmů 1 n A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 42

43 Průměrování Průměrování metoda zpracování signálu pro potlačení působení šumu viz. též. V úloze Ohmetr, Voltmetr - se průměrováním sníží fluktuace výsledku měření A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 43

44 Výpočty s bin. a hex. čísly na PC Pro ověření výpočtů - kalkulačka Win. Vědecká kalkulačka nastavení délky slova 1, 2, 4 Byte (Byte, Word, Qword) Seskupování..skupiny po 4 číslicích A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 44

45 Využití věd. kalkulačky na PC pro operace s bin a hex. čísly, +/- převod na dvojkový doplněk ( při bin), Lsh shift doleva o počet míst inv Lsh - shift doprava o počet míst A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 45

46 Ověření výpočtů s binárními a hex. čísly Použití - program kalkulačka Windows nastavení věd. kalkulačka Převod dec na hex a bin Funkce při nastavení režimu HEX, BIN, OCT: Nastavení délky čísla: Qword 64 bitů, Dword 32 b, Word 16 b, Byte 8 b A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 46

47 Ověření výpočtů s binárními a hex. čísly Použití - program kalkulačka Windows nastavení věd. kalkulačka Převod dec na hex a bin Funkce při nastavení režimu HEX, BIN, OCT: Nastavení délky čísla: Qword 64 bitů, Dword 32 b, Word 16 b, Byte 8 b Jsou možné operace: Záporné číslo - určení dvojkového doplňku klávesa +/-, 10 +/- = F0 N!, faktoriál Negace bitů čísla Not ( v rámci celého čísla 0 - >1, 1 - > 0) Logické funkce And, Or, Xor Lsh posun doleva o daný počet bit. pozic ( zadaný v použité soustavě) Inv Lsh posun doprava Sčítání, odečítání, násobení, celočíselné dělení, Mod - zbytek po celočíselném dělení F7 mod F = 7 (zbytek po dělení F7 / 7 ) A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 47

48 Ověření výpočtů s binárními a hex. čísly Použití - program kalkulačka Windows nastavení věd. kalkulačka Převod dec na hex a bin Funkce při nastavení režimu HEX, BIN, OCT: Nastavení délky čísla: Qword 64 bitů, Dword 32 b, Word 16 b, Byte 8 b Jsou možné operace: Záporné číslo dvojkový doplněk- klávesa +/-, přík.lad 10 +/- = F0 N!, faktoriál Negace bitů čísla Not ( v rámci celého čísla 0 - >1, 1 - > 0) Logické funkce And, Or, Xor Lsh posun doleva o daný počet bit. pozic ( zadaný v použité soustavě) Inv Lsh posun doprava Sčítání, odečítání, násobení, celočíselné dělení, Mod - zbytek po celočíselném dělení F7 mod F = 7 (zbytek po dělení F7 / 7 ) druhá, třetí mocnina, Druhá odmocnina inv x^2, třetí odmocnina inv x^3 Výpočty s velkými čísly výsledek se zobrazuje na zvolený počet bitů (podle volby Q, D, W, B). Zobrazuje se spodní část čísla. A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 48

49 Kalkulačka Windows - další funkce Použití - program kalkulačka Windows nastavení věd. kalkulačka e 1 = e stisk 1, inv, ln e x zadání čísla x, inv, ln 10 x zadání čísla x, inv, log x zadání čísla x, inv, x^2 zadání čísla x, inv, x^y y x A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 49

50 Zjednodušené výpočty Odhad druhé odmocniny z binárního čísla Při výpočtu druhé odmocniny Newtonovou iterační metodou - nutný co nejlepší odhad odmocniny pro první krok výpočtu Odhad odmocniny z binárního čísla pomocí logaritmu se základem 2 ( x ) 2 = x log ( ) x = log 2 použití logaritmu se základem 2 x x 1 2 =2 ( x) log 2 x = e logx 2 256d = b log 2 ( b) = 8 počet nul, míst 8/2 = 4, odmocnina 2 4, 256= 2 16d 384d b log 2 (384))= 8.585, podle počtu míst přibl. 8 log 2 (sqrt (384))= (1/2) log 2 (384)= přibližně 8/2= 4 sqrt (384) - první odhad odmocniny pro iteraci 2 4 = 16 d = (1000 b) 4 = A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 50

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

v aritmetické jednotce počíta

v aritmetické jednotce počíta v aritmetické jednotce počíta tače (Opakování) Dvojková, osmičková a šestnáctková soustava () Osmičková nebo šestnáctková soustava se používá ke snadnému zápisu binárních čísel. 2 A 3 Doplněné nuly B Číslo

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4 Uložení dat v počítači Data = užitečné, zpracovávané informace Kódování (formát) dat = způsob uložení v počítači (nutno vše převést na čísla ve dvojkové soustavě) Příklady kódování dat Text každému znaku

Více

PB002 Základy informačních technologií

PB002 Základy informačních technologií Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

2 Ukládání dat do paměti počítače

2 Ukládání dat do paměti počítače Projekt OP VK Inovace studijních oborů zajišťovaných katedrami PřF UHK Registrační číslo: CZ..7/../8.8 Cíl Studenti budou umět zapisovat čísla ve dvojkové, osmičkové, desítkové a v šestnáctkové soustavě

Více

Už známe datové typy pro representaci celých čísel i typy pro representaci

Už známe datové typy pro representaci celých čísel i typy pro representaci Dlouhá čísla Tomáš Holan, dlouha.txt, Verse: 19. února 2006. Už známe datové typy pro representaci celých čísel i typy pro representaci desetinných čísel. Co ale dělat, když nám žádný z dostupných datových

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy MQL4 COURSE By Coders guru www.forex-tsd.com -4 Operace & Výrazy Vítejte ve čtvrté lekci mého kurzu MQL4. Předchozí lekce Datové Typy prezentovaly mnoho nových konceptů ; Doufám, že jste všemu porozuměli,

Více

Analogově-číslicové převodníky ( A/D )

Analogově-číslicové převodníky ( A/D ) Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Data a datové typy 1 / 28 Obsah přednášky Základní datové typy Celá čísla Reálná čísla Znaky 2 / 28 Organizace dat Výběr vhodné datvé struktry různá paměťová náročnost různá

Více

Napájení Zapnutí nebo vypnutí: Pro zapnutí kalkulátory stiskněte tlačítko [ON/C], pro vypnutí kalkulátoru stiskněte [2ndF] [OFF]

Napájení Zapnutí nebo vypnutí: Pro zapnutí kalkulátory stiskněte tlačítko [ON/C], pro vypnutí kalkulátoru stiskněte [2ndF] [OFF] UŽIVATELSKÝ MANUÁL Všeobecné informace VĚDECKÁ KALKULAČKA Model SR-260 Napájení Zapnutí nebo vypnutí: Pro zapnutí kalkulátory stiskněte tlačítko [ON/C], pro vypnutí kalkulátoru stiskněte [2ndF] [OFF] Funkce

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

MS EXCEL_vybrané matematické funkce

MS EXCEL_vybrané matematické funkce MS EXCEL_vybrané matematické funkce Vybrané základní matematické funkce ABS absolutní hodnota čísla CELÁ.ČÁST - zaokrouhlení čísla na nejbližší menší celé číslo EXP - vrátí e umocněné na hodnotu argumentu

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

BI-JPO (Jednotky počítače) Cvičení

BI-JPO (Jednotky počítače) Cvičení BI-JPO (Jednotky počítače) Cvičení Ing. Pavel Kubalík, Ph.D., 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme

Více

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT MĚŘENÍ S LOGICKÝM ANALYZÁTOREM Jména: Jiří Paar, Zdeněk Nepraš Datum: 2. 1. 2008 Pracovní skupina: 4 Úkol: 1. Seznamte se s ovládáním logického analyzátoru M611 2. Dle postupu měření zapojte pracoviště

Více

Přednáška 2: Čísla v počítači. Práce s počítačem. Číselné soustavy. Převody mezi soustavami. Aritmetické operace. Uložení čísel v paměti počítače

Přednáška 2: Čísla v počítači. Práce s počítačem. Číselné soustavy. Převody mezi soustavami. Aritmetické operace. Uložení čísel v paměti počítače Ergonomie Ergonomie Osnova přednášky Výpočetní technika I Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně pavelhaluza@mendelucz ergonomie údržba počítače poziční a nepoziční soustavy převody mezi

Více

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika

FUNKCE 2. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý. Vzdělávací oblast: Informatika a výpočetní technika FUNKCE 2 Autor: Mgr. Dana Kaprálová Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Čísla v počítači Výpočetní technika I

Čísla v počítači Výpočetní technika I .. Výpočetní technika I Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně pavel.haluza@mendelu.cz Osnova přednášky ergonomie údržba počítače poziční a nepoziční soustavy převody mezi aritmetické operace

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Bohemius, k.s. www.bohemius.cz

Bohemius, k.s. www.bohemius.cz Bohemius, k.s. www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky Formulář Malé DPH: Dále následuje : FORMULÁŘ - VLASTNÍ KALKULAČKA o produktu KDO BUDE S FORMULÁŘEM PŘEDEVŠÍM PRACOVAT

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Zobrazení dat Cíl kapitoly:

Zobrazení dat Cíl kapitoly: Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české

Více

Administrativní kalkulačka skutečně pro každého, včetně manažerů. Bohemius k.s. BIUS2 - BIUS 3. www.bohemius.cz

Administrativní kalkulačka skutečně pro každého, včetně manažerů. Bohemius k.s. BIUS2 - BIUS 3. www.bohemius.cz Administrativní kalkulačka skutečně pro každého, včetně manažerů Bohemius k.s. BIUS2 - BIUS 3 www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky DALŠÍ OBSAH : O produktu Kdo bude

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Obsah OBSAH... 1 1 ZÁKLADNÍ POJMY... 1 2 HISTORIE POČÍTAČŮ... 2 2.1 GENERACE POČÍTAČŮ... 3 2.2 KATEGORIE POČÍTAČŮ... 3 3 KONCEPCE

Více

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY technické vybavení počítače uchování dat vstupní a výstupní zařízení, paměti, data v počítači počítačové sítě sociální

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 34 Reprezentace dat

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

BIUS 2 BIUS 3. Bohemius k.s.

BIUS 2 BIUS 3. Bohemius k.s. Máš chybu na pojistném? Jak ale zjistit vyměřovací základ, když zaokrouhlujeme na Kč nahoru, nebo třeba na stokoruny? Jak zjistit výši původní chyby? Bohemius k.s. BIUS 2 BIUS 3 www.bohemius.cz O PRODUKTU

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D Měřič tepla a chladu, vyhodnocovací jednotka průtoku plynu INMAT 57S a INMAT 57D POPIS ARCHIVACE typ 457 OBSAH Možnosti archivace v měřiči INMAT 57 a INMAT 57D... 1 Bilance... 1 Uživatelská archivace...

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Převody jednotek Vedlejší jednotky objemu

Převody jednotek Vedlejší jednotky objemu Převody jednotek Vedlejší jednotky objemu Pár užitečných rad, jak postupovat při převádění jednotek objemu. Zopakujme si již známé jednotky objemu: Základní jednotka: metr krychlový ( kubík značka m Odvozené

Více

Jak do počítače. aneb. Co je vlastně uvnitř

Jak do počítače. aneb. Co je vlastně uvnitř Jak do počítače aneb Co je vlastně uvnitř Po odkrytí svrchních desek uvidíme... Von Neumannovo schéma Řadič ALU Vstupně/výstupní zař. Operační paměť Počítač je zařízení, které vstupní údaje transformuje

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

PiKRON s.r.o. ( http://www.pikron.com ) 16. července 2002. 2.1.4 Filtrace vstupních dat z AD převodníků... 3

PiKRON s.r.o. ( http://www.pikron.com ) 16. července 2002. 2.1.4 Filtrace vstupních dat z AD převodníků... 3 ULAD 10 - Uživatelský manuál PiKRON s.r.o. ( http://www.pikron.com ) 16. července 2002 Obsah 1 Specifikace převodníku ULAD 10 1 2 Ovládání z PC po lince RS-485 2 2.1 Slovník přístupných proměnných....................

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Exploitace zranitelností. Obsah

Exploitace zranitelností. Obsah Obsah 1 Úvod... 4 1.1 Lockdown a hackerlab...4 1.2 Vaše ochrana... 4 2 Exploit... 5 2.1 Typy exploitů...5 3 Zranitelnost FTP serveru Cesar...5 3.1 Fuzzer ftp-fuzzer.py...5 3.1.1 Spuštění fuzzeru...7 4

Více

ČÍSLICOVÁ TECHNIKA OBSAH KAPITOLA 1 ČÍSELNÉ SOUSTAVY A KÓDY

ČÍSLICOVÁ TECHNIKA OBSAH KAPITOLA 1 ČÍSELNÉ SOUSTAVY A KÓDY OBSAH Čísla a číslice... Desítková (dekadická ) číselná soustava... Tvorba libovolné číselné soustavy... 3 Převody čísel mezi číselnými soustavami... 6 Převod čísel z dekadické soustavy do libovolné jiné...

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou OD NULY K NEKONEâNU Poãítej jako EgypÈan Nejstarší známý početní systém založený na čísle 10 zavedli před 5 000 lety v Egyptě. Egypťané používali skupinu čar pro vyjádření čísel do devítky. Vypadala asi

Více

Bohemius, k.s. doplňkový modul. www.bohemius.cz

Bohemius, k.s. doplňkový modul. www.bohemius.cz Bohemius, k.s. doplňkový modul www.bohemius.cz Modul je součástí administrativní i manažerské kalkulačky Tento formulář je i součástí administrativní kalkulačky : Formulář - vlastní kalkulačka - o produktu

Více

Mobilní paletová váha, Paletový vozík s váhou Typ: KPZ 74 a KPZ 74E. Mobilní vážení? Šetří Váš čas a Vaše peníze! Za příplatek: Vestavěná tiskárna

Mobilní paletová váha, Paletový vozík s váhou Typ: KPZ 74 a KPZ 74E. Mobilní vážení? Šetří Váš čas a Vaše peníze! Za příplatek: Vestavěná tiskárna Kvalitní německá konstrukce Mobilní paletová váha, Paletový vozík s váhou Typ: KPZ 74 a KPZ 74E Váživost až 1500 kg Mobilní vážení = úspora času Nezávislý na napájení z el. sítě Robustní konstrukce Velký

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY 5. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkol měření 1. Ověření funkce dvoudrátového převodníku XTR 101 pro měření teploty termoelektrickými články (termočlánky). 2. Použití měřicího modulu Janascard AD232 s izotermální

Více

Pohled do nitra mikroprocesoru

Pohled do nitra mikroprocesoru Pohled do nitra mikroprocesoru Obsah 1. Pohled do nitra mikroprocesoru 2. Architektury mikroprocesorů 3. Organizace cvičného mikroprocesoru 4. Registry v mikroprocesoru 5. Aritmeticko-logická jednotka

Více

Popis komunikačních protokolů snímačů řady Tx3xx a Tx4xx s digitálním komunikačním rozhraním RS232 a RS485

Popis komunikačních protokolů snímačů řady Tx3xx a Tx4xx s digitálním komunikačním rozhraním RS232 a RS485 Popis komunikačních protokolů snímačů řady Tx3xx a Tx4xx s digitálním komunikačním rozhraním RS232 a RS485 Popis pro verzi firmware 02.60. OBSAH POPIS KOMUNIKAČNÍCH PROTOKOLŮ... 4 MODBUS RTU... 4 Podporované

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku:

Předmět: Ročník: Vytvořil: Datum: Informační. září 2013 Modrovská technologie. zaměření) Název zpracovaného celku: Předmět: Ročník: Vytvořil: Datum: Informační 1. a 2. Ing. Andrea a komunikační (podle oboru září 2013 Modrovská technologie zaměření) Název zpracovaného celku: Tabulkový procesor Excel Podmíněné formátování,

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

Vážící sada, Váha na vysokozdvižné vozíky

Vážící sada, Váha na vysokozdvižné vozíky Kvalitní německá konstrukce Průmyslové provedení Vážící sada, Váha na vysokozdvižné vozíky Typ: KPZ 76-1 a KPZ 76-1E Jednoduchá obsluha Velká tlačítka Výborná čitelnost Podsvícení displaye Vysoká přesnost

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

DATABÁZE MS ACCESS 2010

DATABÁZE MS ACCESS 2010 DATABÁZE MS ACCESS 2010 KAPITOLA 5 PRAKTICKÁ ČÁST TABULKY POPIS PROSTŘEDÍ Spuštění MS Access nadefinovat název databáze a cestu k uložení databáze POPIS PROSTŘEDÍ Nahoře záložky: Soubor (k uložení souboru,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu ázev školy Autor ázev Téma hodiny Předmět Ročník /y/ C.1.07/1.5.00/34.0394 VY_3_IOVACE_1_ČT_1.01_ vyjádření čísel v různých číselných soustavách Střední odborná škola a Střední

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Základy informatiky a teorie informace

Základy informatiky a teorie informace První kapitola Základy informatiky a teorie informace Učební text Mgr. Radek Hoszowski Základy informatiky a teorie informace Jednotka informace V této kapitole se dozvíme základní informace o jednotkách

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

NÁVOD K OBSLUZE. Obj. č. 7120094

NÁVOD K OBSLUZE. Obj. č. 7120094 NÁVOD K OBSLUZE Obj. č. 7120094 Před použitím si přečtěte tento manuál Poučení Tento přístroj si osvojil technologii ultrazvuku a umožňuje měřit vzdálenost, plochu a objemu. Má funkci lokalizací laserem,

Více

Počítačové sítě pro V3.x Teoretická průprava I. Ing. František Kovařík

Počítačové sítě pro V3.x Teoretická průprava I. Ing. František Kovařík Počítačové sítě pro V3.x Teoretická průprava I. Ing. František Kovařík PK IT a ICT, SŠ IT a SP, Brno frantisek.kovarik@sspbrno.cz LL vrstva (linky) 2 Obsah 2. bloku Význam LL, SLIP, PPP, HDLC, Ethernet.

Více

Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011

Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011 Osobní počítač Zpracoval: ict Aktualizace: 10. 11. 2011 Charakteristika PC Osobní počítač (personal computer - PC) je nástroj člověka pro zpracovávání informací Vyznačuje se schopností samostatně pracovat

Více

Úpravy digitálních fotografií a jejich principy

Úpravy digitálních fotografií a jejich principy Úpravy digitálních fotografií a jejich principy Ing. Hana Druckmüllerová ydruck00@stud.fme.vutbr.cz Ing. Petra Nováčková ynovac06@stud.fme.vutbr.cz Ústav matematiky Fakulta strojního inženýrství Vysoké

Více

Jak snadno počítat? KALKULAČKY. Legenda

Jak snadno počítat? KALKULAČKY. Legenda KALKULAČKY Ibico KALKULAČKY Jak snadno počítat? Kalkulačky představují pomoc v kanceláři i na služební cestě. Profesionální kalkulačky IBICO přizpůsobené potřebám obchodníků, účetních, pracovníků v logistice,

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MENU PARAMETRY AKTIVOVÁNO

MENU PARAMETRY AKTIVOVÁNO MENU PARAMETRY AKTIVOVÁNO Použitím MENU PARAMETRY můžete aktivovat 5 funkcí. Do těchto funkcí vstoupíte stisknutím kláves 1 až 5. Tyto funkce umožňují nastavit následující vlastnosti pravítek: 1 NASTAVENI

Více

Robustní provedení Robustní vodicí sloupec i měřicí hlava Vysoce přesný měřicí systém s kontrolní měřicí hlavou, systém není citlivý na nečistoty

Robustní provedení Robustní vodicí sloupec i měřicí hlava Vysoce přesný měřicí systém s kontrolní měřicí hlavou, systém není citlivý na nečistoty - 2-16 Nový výškoměr Chcete-li dosáhnout přesných výsledků jednoduše a rychleji, je zde nový výškoměr. Výškoměr je použitelný v dílně i ve výrobě. Přesně jak to od našich měřidel očekáváte. Uživatelsky

Více

INDEX ZX ROM VÝPIS. knihy. autora Ing. Daniela Jenneho a kol. verzia 29.11.2010 2010 Softhouse Ltd.

INDEX ZX ROM VÝPIS. knihy. autora Ing. Daniela Jenneho a kol. verzia 29.11.2010 2010 Softhouse Ltd. INDEX knihy ZX ROM VÝPIS autora Ing. Daniela Jenneho a kol. verzia 29.11.2010 2010 Softhouse Ltd. 1, logická 18, 39 A, nenulové 181 A, nezměněné 190 A, nulové 186, 204 Abramovitz 199 Absolute magnitude

Více

Jak snadno počítat? KALKULAČKY. Legenda

Jak snadno počítat? KALKULAČKY. Legenda KALKULAČKY Ibico KALKULAČKY Jak snadno počítat? Kalkulačky představují pomoc v kanceláři i na služební cestě. Profesionální kalkulačky IBICO přizpůsobené potřebám obchodníků, účetních, pracovníků v logistice,

Více

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007

WSH Windows Script Hosting. OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 WSH Windows Script Hosting OSY 2 Přednáška číslo 2 opravená verze z 15.10.2007 Co je skript? Skriptování nástroj pro správu systému a automatizaci úloh Umožňuje psát skripty jednoduché interpretované programové

Více

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat.

S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. @08. Derivace funkce S funkcemi můžeme počítat podobně jako s čísly, sčítat je, odečítat, násobit a dělit případně i umocňovat. Definice: Součet funkce f a g je takový předpis, taková funkce h, která každému

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více