HISTORIE MODERNÍCH TECHNOLOGIÍ. Význam nových technologií v technické civilizaci

Rozměr: px
Začít zobrazení ze stránky:

Download "HISTORIE MODERNÍCH TECHNOLOGIÍ. Význam nových technologií v technické civilizaci"

Transkript

1 HISTORIE MODERNÍCH TECHNOLOGIÍ Význam nových technologií v technické civilizaci Moderní technologie jsou obecně označovány jako "pokrok". Tento pokrok je však současně trvalým zdrojem nestability a pohybu lidí, společenství, institucí, národů a kultur. Na počátku věku vědy a technologie se vlády většiny průmyslově vyspělých zemí staly katalyzátorem vědeckého rozvoje a technologické inovace. Tyto vlády dnes nesou zodpovědnost také za usměrňování a ovládání transformačních sil vědy a technologie. Dokonce jednoduchá technologická inovace může změnit svět: Když z Asie do západní Evropy v 8. století pronikla výroba kovových třmenů, společnost se od samých základů změnila. Poprvé bylo možno přenést energii běžícího koně přímo do zbraně jezdce v sedle, což mělo ničivé bojové důsledky (v roce 1066 početně slabší Normané se silnou a kovovými třmeny vybavenou jízdou na koních během jediného dne porazili krále Herolda). Objev stroje na čištění bavlny koncem 18. století umožnil značné rozšíření pěstování bavlny na jihu dnešních Spojených států a stal jedním ze silných podnětů dovozu černých otroků z Afriky. O asi 150 let později mechanický stroj na sklízení bavlny učinil práci většiny afroamerických otroků zbytečnou a způsobil téměř 30 let trvající masovou migraci asi 5 miliónů lidí ze zemědělského jihu do velkých měst na severu Spojených států. Tyto příklady nejen dokazují schopnost nových technologií změnit celou společnost, ale také provázanost technologických změn se složitou sociální strukturou společnosti (od rodiny, přes vzdělání, zaměstnání a služby, atd.). Připomeňme z nedávné minulosti, že jaderné zbraně určovaly geopolitický vývoj celého světa po 2. světové válce. Rozhlas, automobily, televize nebo vakcinace vedly k velkým změnám ve společnosti 20. století. Dnes tyto změny vyvolávají například počítače a mobilní telefony a v budoucnosti tyto změny vyvolá například biotechnologie a nanotechnologie. Prehistorie nanotechnologií Již dávno přidávali skláři pro dosažení zajímavých barevných efektů do skel prášky z kovů a jiných látek, zejména ze zlata, stříbra, zinku, kadmia, síry a selenu. Jak se v nedávné době ukázalo, byly mezi nimi i částice v rozměru nanometrů, které způsobovaly unikátní barevnost skel. Známé jsou tzv. Lykurgovy poháry pocházející asi ze 4. století našeho letopočtu, jejichž část se nachází v Britském muzeu v Londýně. Obsahují nanočástice slitiny na bázi Au - Ag (v poměru 3:7). Není známo, jakou technologii výroby těchto pohárů a podobných artefaktů římští skláři používali. Dalším příkladem je výsledek analýzy lesklé glazované keramiky z století. Zjistilo se, že lesk vyvolává dekorativní kovový film o tloušťce nm, obsahující kovové (stříbrné) sférické nanokrystaly rozptýlené v matrici bohaté na křemík, přičemž ve vnější vrstvě filmu o tloušťce nm se kov nenachází. Kompozitní struktura má optické vlastnosti závislé jak na rozměru částic, tak na matrici. Lesklá vrstva byla zřejmě prvním nanostrukturním filmem reprodukovatelně vyráběným člověkem. Keramika z italské Umbrie byla v 15. a 16. století pro své nádherné barvy vysoce ceněna po celé Evropě. Tým vědců z university v Perugii vedený Brunem Brunettim zjistil, že glazury renesanční keramiky obsahují částice mědi a stříbra o průměru nm a splňují kritérium pro zařazení mezi nanomateriály. Kovové nanočástice odrážejí světlo ze svého povrchu bez toho, že by jej rozptylovaly. Výsledkem je jedinečný metalízový efekt.

2 Postup při výrobě takových glazur se zachoval v knize italského autora Cipriana Piccolpassa z roku Soli mědi a stříbra míchali hrnčíři s octem, okrem a jílem. Touto směsí pak natírali nádoby, které už měly na svém povrchu jednu vypálenou glazuru. Dalším vypalováním při konstantní teplotě dosáhli jedinečné metalízy. V roce 1861 jako první popsal suspenzi obsahující částice o rozměrech nm Thomas Graham, britský chemik a nazval ji koloidním systémem. Koloidní systémy byly intenzivně studovány významnými vědci (Rayleigh, Maxwell, Einstein) zejména na přelomu století a později vznikl i nový obor koloidní chemie. Velmi známým příkladem nanomateriálů jsou saze, které se vyrábějí nedokonalým spalováním organických látek bohatých na uhlík. Průmyslová výroba sazí je stará více než 100 let. Jsou to částice amorfního uhlíku o velikosti nm. Celosvětově se jich vyrábí asi 6 mil.tun a patří k jednomu z dosud nejpoužívanějších nanomateriálů. Přibližně 90% vyrobených sazí se používá v gumárenském průmyslu a pro výrobu technické pryže (hadice, řemeny, pryžové kabely, barvy aj.). V současné době chemická katalýza urychluje denně tisíce chemických přeměn, jako např. jsou rafinace ropy na benzín, přeměna levného grafitu na syntetický diamant pro nástroje, uplatňuje se při výrobě léků a polymerů atd. Při zkoumání katalyzátorů moderními prostředky bylo zjištěno, že řada z nich má vysoce uspořádané kovové a keramické nanostruktury, obsahující nanopóry. Tyto materiály jsou jak přírodní, tak syntetické a používají se nejen ke katalýze, ale i při adsorpci a separačních technologiích. Nejznámější jsou zeolity obsahující rovnoměrné póry o velikosti nm, jejichž průmyslová aplikace započala v roce Používají se např. při katalytickém krakování, hydrokrakování, hydroizomeraci, alkylaci benzenu atd. Příklady využití nanočástic (nanoprecipitátů) lze nalézt i v metalurgii. V roce 1906 byly poprvé sledovány precipitační změny doprovázející vytvrzování hliníkových slitin stárnutím. Podstatu procesu objasnili a zaznamenali Guinier a Preston v roce 1938 pomocí rtg. záznamu, kdy zjistili přítomnost mikrostrukturních objektů v materiálu. Dnes víme, že jemné precipitáty zodpovědné za zpevnění, např. ve slitině Al - 4%Cu, jsou klastry atomů Cu vytvářející tzv. Guinier-Prestonovy zóny. Vysoká žárupevnost nízkolegovaných ocelí a jejich dlouhodobá životnost v energetických zařízeních při vysokých teplotách a tlacích je dosahována precipitačním zpevněním železné matrice částicemi (např. karbidu vanadu V 4 C 3 ) o průměru nm a interakcí dislokací s těmito částicemi Orowanovým mechanismem. Optimální vzájemná vzdálenost a velikost částic je ovlivňována chemickým složením a tepelným zpracováním materiálu. PRVNÍ PRŮKOPNÍCI NANOTECHNOLOGIE Richard Philips Feynman Na možnosti z oblasti nanosvěta jako první poukázal Richard P. Feynman, který svou vizi o nanotechnologii nastínil v prosinci roku 1959 při příležitosti zasedání Americké fyzikální společnosti na Kalifornské technologické univerzitě (CALTECH). Jeho přednáška měla název There s Plenty of Room at the Bottom ( Tam dole je spousta místa ) a pojednávala o možnostech praktického využití světa atomů v budoucnosti.

3 Richard Philips Feynman se narodil v New Yorku 11. května Studoval na Massachusetts Institute of Technology (MIT) a Princetonské universitě. Během války pracoval na projektu atomové bomby. V roce 1945 byl jmenován profesorem teoretické fyziky na Cornellově universitě a od roku 1950 působil jako profesor na California Institute of Technology (CALTECH). Hlavní oblast Feynmanových výzkumů spadá do oblasti kvantové mechaniky, konkrétně kvantové elektrodynamiky. Vytvořil tzv. Feynmanovy diagramy, které jsou grafickým vyjádřením matematických vztahů, které popisují chování systémů interagujících částic. Feynman zasáhl takřka do všech problémů moderní fyziky: předpověděl existenci vnitřní struktury protonu a neutronu (partony), matematicky popsal chování kapalného hélia, zabýval se teorií prostoročasu na úrovni elementárních částic, předestřel vizi kvantového počítače, přispěl k teorii kvantové chromodynamiky, atd. Byl vynikajícím učitelem, příležitostným hráčem na bonga v sambové kapele i vtipným společníkem. V roce 1986 se proslavil na veřejnosti odhalením příčin závady na raketoplánu Challenger. Je nositelem Nobelovy ceny za fyziku v roce Tam dole je spousta místa, CALTECH, Rád bych teď popsal obor, řekl Feynman, v němž bylo vykonáno ještě málo, ale jenž v principu může zaznamenat obrovský rozvoj. Chci mluvit o problému, jak připravovat systémy o velmi malých rozměrech a kontrolovat jejich vlastnosti. Po tomto úvodu předložil slavný fyzik překvapenému publiku legendární otázku: Proč bychom nemohli zapsat na špendlíkovou hlavičku všech 24 dílů Encyklopedie Britanniky?. Feynman dokazuje, že nám tomu přírodní zákony nebrání a nabízí i odpověď, jakým způsobem text na tak malou plochu napíšeme. Netvrdí, že to bude zcela snadné, ale nepochybuje, že příští generace se s touto výzvou vypořádá. Feynman předpokládal, že veškeré informace, které člověk nashromáždil ve všech knihách světa, mohou být zapsány ve formě krychličky, jejíž hrana měří 0,1 mm! Od možnosti zápisu informací se Feynman dostává k možnosti ovlivňovat na této atomární úrovni chemické reakce. Předkládá otázku, zda najdeme nějakou fyzikální cestu, jak syntetizovat libovolnou chemickou látku, a ptá se, jakým způsobem lze zlepšit rozlišovací schopnost elektronového mikroskopu. Manipulace s atomy tvoří jádro Feynmanovy přednášky. Na tyto jeho otázky odpověděl rozvoj STM (angl. Scanning Tunneling Microscope) a AFM (angl. Atomic Force Microscope), který zcela v souladu s Feynmanovými předpoklady umožnil lidskému oku nahlédnout do mikrosvěta rozměrů nanometrů a menších. Feynman předpověděl řadu oblastí, které stojí v centru dnešního zájmu řady vědeckých ústavů, zabývajícími se nanotechnolgiemi:...ani v nejmenším nepochybuji, předpovídá Feynman význam nanotechnologie při přípravě nových materiálů, že jakmile budeme schopni kontrolovat uspořádání atomů, rejstřík vlastností, které materiály mohou mít, se úžasně zvětší a úměrně tomu se objeví i nové možnosti jejich uplatnění. V závěru přednášky Feynman vyzval vědecký svět, aby začal dobývat nanosvět. Nabídl jeden tisíc dolarů tomu, kdo jako první dokáže zapsat jednu stránku textu běžné knihy na plochu, která bude zmenšena na 1/ původní plochy, přičemž text bude čitelný elektronovým mikroskopem. Dalších jeden tisíc dolarů slíbil vyplatit tomu, kdo zhotoví funkční elektromotorek, jenž se vejde do krychličky o hraně 0,4 mm.

4 Myslím, že na vyplacení těchto odměn nebudu muset čekat nijak dlouho, uzavřel svou přednášku. Vyplaceny byly obě ceny. Druhá byla vyplacena již v roce 1960, když student CALTECHu Bill McLellan zkonstruoval miniaturní elektromotorek. První ale až za 26 let, a to doktorandovi Stanfordské univerzity Tomovi Newmanovi, který pomocí elektronového litografu napsal krát zmenšeným písmem první stranu románu Charlese Dickense Příběh dvou měst. V 50. letech Richarda Feynmana nikdo z vědců nebral vážně, ale lidé nezaháleli : Následující dvě desetiletí přinesla miniaturizaci v elektronice. Další desetiletí komputerizaci, PC se dostaly ze sálů na pracovní stoly. Objevily se možnosti sledování molekul a atomů pomocí AFM a STM. Počátek 90. let znamenal nástup internetu, rozvoj mikrosystémového a genetického inženýrství a první úspěšné pokusy technologií v měřítku nanometrů. Kim Eric Drexler Feynmanovy myšlenky byly popularizovány v 80. a 90. letech zejména díky úsilí K. Erica Drexlera (*1955) v knihách Stroje stvoření: Nástup éry nanotechnologie (angl. Engines of Creation: The Coming Era of Nanotechnology, 1986) a Nanosystémy (angl. Nanosystems, 1992). Drexler rozpracoval myšlenku nanotechnologické revoluce a popsal svět miniaturních umělých systémů, jakýchsi neuvěřitelně malých stroječků neboli nanorobotů, které se budou podobat živým organismům nejen schopností reprodukce, ale i vzájemnou komunikací a sebezdokonalováním, přičemž jejich velikost se bude pohybovat na molekulární úrovni. The Coming Era of Nanotechnology V této knize Drexler podrobně popsal, jak neviditelné nanosystémy budou schopny molekulu po molekule postavit všechno, co jim předem stanovený program zadá, od počítačů a kosmických sond, po dálnice a mrakodrapy. Kniha je rozdělena do dvou základní částí: V první části knihy - nazvané Základy předvídavosti E. Drexler představil principy umělých replikátorů a naznačil pravděpodobný postup při vývoji souvisejícím s nanotechnologií. Příkladem strojů pracujících v molekulárním měřítku jsou buňky živých organismů. Dosud jsme neodhalili všechny principy jejich činnosti, to nám však nebrání začít tvořit replikátory podle našich plánů. "Většina biochemiků pracuje jako vědci, ne jako inženýři. Snaží se předpovědět, jak se chovají přírodní proteiny, místo toho, aby vyráběli proteiny, které se budou chovat podle jejich předpovědí." Druhou etapou výzkumu bude zrod replikátorů na neproteinové bázi. Proteinové stroje jsou příliš křehké, příliš neohrabané a nespolehlivé na to, abychom s nimi mohli vystačit. Poslouží nám alespoň při vytvoření replikátorů mnohem dokonalejších - univerzálních asemblerů. Tato druhá generace replikátorů bude schopna vytvářet a opravovat složité molekulární struktury. Tyto nanostroje budou programovatelné, podobným způsobem, jakým DNA programuje činnost živých buněk a budou schopny

5 se namnožit a vytvořit tak armádu komunikujících robotů připravených vykonat užitečnou práci - sestavit z atomů kovů slitiny přesně definovaných, dosud nevídaných vlastností, léčit choroby, stavět domy, budovat kosmické stanice atd. Molekulární dělníci - asemblery - nám otevřou cestu k vytvoření nanopočítačů. Dosáhnou cíle, ke kterému směřují snahy mikroelektroniků leptajících polovodiče s úmyslem vytvořit co nejmenší tranzistory a nejkratší vodivé dráhy. Neuronové superpočítače se synapsemi o délce několik atomů pak svou obrovskou pracovní silou předčí jakýkoliv hardware postavený na konvenčních technologiích. Další nanostroje - disasemblery - nám naopak umožní přečíst libovolnou molekulární strukturu nějakého předmětu (např. lidského mozku) a naprogramovat pak asemblery, které tuto strukturu mohou opakovaně vyrábět. Máme mnoho poznatků o atomech, interakcích, máme chemii, fyziku částic - kvantovou mechaniku, tedy vědecký základ. Dokážeme simulovat chování a vlastnosti a spočítat pravděpodobnou dobu života obřích molekul, které dnes ještě nedokážeme syntetizovat. Víme, že nanostroje jsou možné. Známe principy jejich replikace a programování. Máme před sebou příklad, že nanostroje mohou fungovat - živé buňky. Všechno je tedy jen otázkou času. Druhá část knihy je nazvaná Obrysy možného. Např. kapitola Myslící stroje, je věnovaná otázkám umělé inteligence. Drexler dělí inteligentní chování na dvě části - sociální a technické. Tvrdí, že v "technické inteligenci" jsme již podstatného pokroku dosáhli, čehož jsou důkazem mj. expertní systémy, neuronové sítě a fuzzy logika. (angl. fuzzy - nejasný, neurčitý). Lepší počítače urychlí pokrok v návrhu technologií a ještě lepších počítačů, vývoj bude dále akcelerovat. V oblasti "lidské inteligence", nás podstatná práce teprve čeká, avšak určitý náhled převádí tuto úlohu opět na problém "technické inteligence": Inteligentní člověk se v určitém prostředí správně rozhoduje. Inteligentní stroj nahrazující člověka v těch samých podmínkách se chová stejně, případně efektivněji. Drexler tvrdí: Kritici umělé inteligence často myslí, že zřejmě nemůžeme vytvořit stroje chytřejší, než jsme my sami. Zapomínají na to, že naši vzdálení, němí předci se dokázali vyvinout v jedince vysoké inteligence a vůbec při tom nemysleli. V dalších kapitolách rozvíjí své myšlenky o možnostech nové technologie v různých oblastech lidské činnosti: pro vesmírné mise (kapitola Svět mimo Zemi ) v medicíně a ochraně zdraví, resp. dlouhověkosti (kapitoly Stroje léčení, Dlouhý život v otevřeném světě, Dveře do budoucnosti ). V kapitole Meze růstu se autor knihy zabývá otázkou, zda existují hranice v nanotechnologiích a zda dojde v budoucnosti k zastavení vývoje v této oblasti. Dochází k závěru, že jediné podstatné omezení určují pouze fyzikální zákony: "Lidé, kteří zaměňují vědu s technologiemi, nechápou skutečné meze. Někdo si může myslet, že když víme všechno, můžeme udělat cokoliv. Pokroky technologií skutečně přinášejí nová know-how, otevírají nové možnosti. Naproti tomu pokrok ve vědě jenom překreslí mapu skutečných hranic, což často ukáže nové nemožnosti." Poslední kapitola Nebezpečí a naděje si klade zásadní otázky typu: Co se stane, když asemblery dokážou vytvořit prakticky cokoliv s lidskou prací? Co když nanoroboti budou zneužiti? Je třeba zdůraznit, že Drexler je při pohledu na budoucnost nanotechnologií optimistou. Jeho kniha je koncipována v širších společensko-filosofických souvislostech. Timothy Leary Mezi další jména přiřazována k počátkům nanotechnologie, lépe řečeno k jejich vizionářům, patří Timothy Leary ( ) americký psycholog, filozof, vědec a

6 publicista. V 80. letech minulého století se intenzivně zabýval technologiemi (zvláště zkoumal možnosti počítačů) a nových technologií jako jsou nanotechnologie a kryogenika. Timoty Leary byl známý svým bezmezným technokratickým optimismem v souladu s Drexlerovými teoriemi, kdy říkal: S úspěchem nanotechnologie by se svět stal místem nepředstavitelné hospodářské hojnosti. Bylo by například možné vytvořit jakýkoli předmět jen z prachu a slunečního svitu. Reparační buněčné mechanismy, vetknuté do každé buňky lidského těla, aby mohly zpomalit či úplně zvrátit účinky bolestí a chorob. Stavba tryskových motorů by se stala záležitostí jedné minuty, vyrostly by znenadání a dokonale jako krystaly z kapalných roztoků obsahujících nanostroje.. Feynman, Drexler a Leary byli v tehdejší vědecké komunitě považováni za blázny. Prudký rozvoj oblastí nových technologií ke konci dvacátého století jim však začal dávat za pravdu: V roce 1990 vědecký tým společnosti IBM napsal pomocí tunelového skenovacího mikroskopu logo své firmy na niklovou destičku 35 izolovanými xenonovými atomy. V dalším roce byly vyrobeny první uhlíkaté nanotrubičky a bylo demonstrováno vedení elektrického proudu jedinou molekulou. V laboratořích velkých amerických společností a univerzit se podařilo sestrojit první nanomechanismy, jakými jsou například osy deset tisíckrát tenčí než lidský vlas, neviditelná molekulová ložiska s ultranízkým třením, nanovláček, jezdící po jedné koleji, nebo první nanotranzistory využívající výhodných vlastností fullerenů. K dalším neméně významným průkopníkům patří např.: Herold Kroto, Richard Smalley a Robert F.C. Kenneth objevili roce 1985 fullereny - novou formy uhlíku, získali Nobelovu cenu za chemii. Gerd Karl Binnig a Heinrich Rohrer ukázali v roce 1981 možnosti skenovacího tunelového mikroskopu (STM) pro sledování světa atomů. James Gimzewski - průkovník výzkumu elektrických kontaktů s izolovanými atomy a molekulami, k čemuž využil STM. George Whitesides a jeho pracovní skupina dodnes pracující v pěti oblastech nanotechnologie: biochemie, výzkum materiálů, katalyzátory a fyzikální organická chemie aj. Sumio Iijima v roce 1991 objevil nanotrubice. Ray Kurzweil - autor knihy Věk inteligentních strojů (The Age of Intelligent Machine, 1990) na konferenci The 2000 Foresight Conference on Molecular Nanotechnology předeslal, že do konce tohoto století nebude existovat rozdíl mezi strojem a lidskou bytostí. Nebyli to pouze tito vědci, kteří nastolili základní vize nanotechnologií a zároveň přispěli k jejich realizaci, ale byly to také mnohé pracovní skupiny univerzit (např. Purdue Universita v USA stát Indiana, kanadská Universita of Albert, aj.) a společností (např. IBM, Intel a Hewlett-Packard), ve kterých se začaly provádět a do současné doby také provádí výzkumy a realizace v oblasti nano. Z fantazie Richarda P. Feynmana se postupně začala stávat skutečnost. To, že se objevy a aplikace nanotechnologií objevují pravidelně ve vědeckých periodikách, je již samozřejmostí. Nejen vědcům, ale i politikům je čím dál víc jasnější, že vstup těchto technologií do běžného lidského života na sebe zřejmě nedá dlouho čekat.

7 VYBRANÉ MEZNÍKY V DĚJINÁCH NANOTECHNOLOGIÍ 400 před Kristem - Démokritos použil slovo atomos", což starořecky znamená nedělitelný" Albert Einsten publikoval práci, v níž stanovil průměr molekuly cukru na cca jeden nanometr Max Knoll a Ernst Ruska vyvinuli elektronový mikroskop, umožňující zobrazit objekty menší než 1 nanometr Richard Feynman předkládá první vizi nanotechnologie ve sborníku Caltech vychází Feynmanova hypotéza o možnosti budování nanosystémů Alfred Y. Cho a John Arthur z Bell Laboratories vynalezli pomocí molekulových svazků epitaxi Norio Tamaguči navrhl používání termínu nanotechnologie pro obrábění s tolerancí menší než 1 nm první článek o nanotechnologii ve vědeckém časopise Gerd Binning a Heinrich Rohrer vytvořili skenující tunelový mikroskop, který může zobrazit i jednotlivé atomy řetězová reakce v polymeru - vytvořen první umělý chromozóm 1985 R. Smalley, H. Kroto a R. Curl - objev fullerenů poprvé zaznamenány jednotlivé kvantové skoky v atomech - založen Foresight Institute Eric Drexler vydal knihu Stroje stvoření vypracována metoda identifikace osob podle DNA z jediného vlasu pomocí tunelového skenovacího mikroskopu napsal tým vědců na niklovou destičku 35 xenonovými atomy písmena IBM metoda sériové výroby buckminsterfullerenu pomocí ohybu rentgenových paprsků vznikl první snímek molekul fullerenu - Arthur Hebard demonstroval, že molekuly fullerenu spolu s draslíkem nebo rubidiem jsou supravodivé založen Institute for Molecular Manufacturing S.Iijima objevil nanotrubice Drexlerova kniha Nanosystémy první úplné mapy struktury dvou lidských chromozomů, prototyp kvantového hradla výpočty na superpočítači potvrdily Feynmanovu a Gell-Manovu teorii kvantové chromodynamiky první nanodráty - řetízky silné pouze několik nanometrů W. Robinett a R. Stanley Williams sestavili program či spíše virtuální realitu, která ve spojení se STM umožňuje prohlížet si jednotlivé atomy hmoty, dotýkat se jich a manipulovat s nimi demonstrováno vedení elektrického proudu jednou molekulou - založena společnost Nanocor, zabývající se vývojem nanokompozitních materiálů založena společnost Zyvex - první firma zabývající se konstrukcí nanomechanismů Skupina kolem C. Dekkera z univerzity v Delftu v Nizozemsku sestrojila z uhlíkových nanotrubic tranzistor James M. Tour a Mark A. Reed předvedli, že jednotlivá molekula může fungovat jako molekulový přepínač rozluštění lidského genomu - první nanomotorek na bázi DNA (Bell Labs) americký prezident Clinton vyhlašuje program National Nanotechnology Initiative tranzistor z nanotrubiček (IBM) - první nanolaser, základ pro optický přenos dat v inteligentních nanosystémech - logický obvod v jedné molekule, tvořený dvěma tranzistory

8 začínají se prosazovat inteligentní kompozitní materiály první mezinárodní konference o nanotechnologii (R. Smalley přednesl návrh, že ideálním prostředkem pro molekulové nanotechnologie jsou fullerenové struktury) Výzkumný tým Hewlett-Packard představil první molekulární paměť na světě, ve které jsou informace zapisovány do jednotlivých molekul čipu překročena hranice 50 nm Společnost IBM vyrobila první uhlíkový světelný zdroj, miniaturní baterku v podobě trubičky krát tenčí než lidský vlas Andrei Rode, John Giapintzakis objevili pátou formu C - nanopěnu, která má feromagnetické vlastnosti

Nanotechnologie. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 29. 5. 2013. Ročník: devátý

Nanotechnologie. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 29. 5. 2013. Ročník: devátý Nanotechnologie Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 29. 5. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemie a společnost 1 Anotace: Žáci se seznámí s nanotechnologiemi.

Více

Nanotechnologie v medicíně. Předmět: Lékařská přístrojová technika

Nanotechnologie v medicíně. Předmět: Lékařská přístrojová technika Nanotechnologie v medicíně Předmět: Lékařská přístrojová technika Molekulární nanotechnologie (MNT) µ Nanomedicína Definice: nanomedicína může být definována jako sledování lidského organismu, reparace

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Zdravotní rizika

Více

Fullereny. Nanomateriály na bázi uhlíku

Fullereny. Nanomateriály na bázi uhlíku Fullereny Nanomateriály na bázi uhlíku Modifikace uhlíku základní alotropické modifikace C grafit diamant fullereny další modifikace grafen amorfní uhlík uhlíkaté nanotrubičky fullerit Modifikace uhlíku

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc.

Nanotechnologie a jejich aplikace. doc. RNDr. Roman Kubínek, CSc. Nanotechnologie a jejich aplikace doc. RNDr. Roman Kubínek, CSc. Předpona pochází z řeckého νανος což znamená trpaslík 10-9 m 380-780 nm rozsah λ viditelného světla Srovnání známých malých útvarů SPM Vyjasnění

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

POHLED DO NANOSVĚTA Roman Kubínek

POHLED DO NANOSVĚTA Roman Kubínek POHLED DO NANOSVĚTA Roman Kubínek Olomoucký fyzikální kaleidoskop 7. listopadu 2003, Přírodovědecká fakulta UP Nanometr 10-9 m (miliardtina metru) 380-780 nm rozsah viditelného světla obor 21. století,

Více

Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost

Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost Principy počítačů I Perspektivní technologie, měření výkonnosti a spolehlivost snímek 1 Principy počítačů Část XI Perspektivní technologie, měření výkonnosti a spolehlivost 1 snímek 2 1 cm 1 µm 50 nm 1

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028

Mikro a nano vrstvy. Technologie a vlastnosti tenkých vrstev, tenkovrstvé sensory - N444028 Mikro a nano vrstvy 1 Co je nanotechnolgie? Slovo pochází z řečtiny = malost, trpaslictví. Z něj n j odvozen termín n nanotechnologie. Jako nanotechnologie je označov ována oblast vědy, jejímž cílem je

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

Určitě si pamatuješ, že všechno se skládá z atomů. Kámen, pero, videohra, televize, pes a ty také se skládáš z atomů

Určitě si pamatuješ, že všechno se skládá z atomů. Kámen, pero, videohra, televize, pes a ty také se skládáš z atomů Určitě si pamatuješ, že všechno se skládá z atomů. Kámen, pero, videohra, televize, pes a ty také se skládáš z atomů Atomy vytvářejí molekuly nebo materiály. Nanotechnologie se zabývá manipulováním s atomy

Více

GENETIKA 1. Úvod do světa dědičnosti. Historie

GENETIKA 1. Úvod do světa dědičnosti. Historie GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných

Více

Objevy v oblasti antiferomagnetických materiálů mění způsob ukládání dat

Objevy v oblasti antiferomagnetických materiálů mění způsob ukládání dat Objevy v oblasti antiferomagnetických materiálů mění způsob ukládání dat Vedoucí Oddělení spintroniky a nanoelektroniky ve Fyzikálním ústavu Akademie věd ČR Tomáš Jungwirth informoval účastníky LII. zasedání

Více

Základy nanotechnologií KEF/ZANAN

Základy nanotechnologií KEF/ZANAN Základy nanotechnologií KEF/ZANAN 23. 9. Úvod do nanomateriálů a nanotechnologií 1 Vůjtek 30. 9. Úvod do nanomateriálů a nanotechnologií 2 Vůjtek 7. 10. Mikroskopické metody pro nanotechnologie Vůjtek

Více

Přírodovědecká fakulta bude mít elektronový mikroskop

Přírodovědecká fakulta bude mít elektronový mikroskop Přírodovědecká fakulta bude mít elektronový mikroskop Přístroj v hodnotě několika milionů korun zapůjčí Přírodovědecké fakultě Masarykovy univerzity (MU) společnost FEI Czech Republic, výrobce elektronových

Více

Nanorobotika a její využití v medicíně. Bc. Lukáš Madrý

Nanorobotika a její využití v medicíně. Bc. Lukáš Madrý Nanorobotika a její využití v medicíně Bc. Lukáš Madrý Diplomová práce 2011 ABSTRAKT Diplomová práce Nanorobotika a její využití v medicíně se zabývá především studií aplikace a výroby nanorobota,

Více

Nanosystémy v katalýze

Nanosystémy v katalýze Nanosystémy v katalýze Nanosystémy Fullerenes C 60 22 cm 12,756 Km 0.7 nm 1.27 10 7 m 0.22 m 0.7 10-9 m 10 7 krát menší 10 9 krát menší 1 Stručná historie nanotechnologie ~ 0 Řekové a Římané používají

Více

VY_32_INOVACE_INF.15. Dějiny počítačů II.

VY_32_INOVACE_INF.15. Dějiny počítačů II. VY_32_INOVACE_INF.15 Dějiny počítačů II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 První programovatelné stroje V roce

Více

NANOTECHNOLOGIE sny a skutenost

NANOTECHNOLOGIE sny a skutenost NANOTECHNOLOGIE sny a skutenost Roman Kubínek Olomoucký fyzikální kaleidoskop 25. listopadu 2005, Pírodovdecká fakulta UP Nanometr 10-9 m (miliardtina metru) 380-780 nm rozsah λ viditelného svtla obor

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální

Atomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

VYUŽITÍ NANOMATERIÁLŮ K VÝROBĚ POTRAVIN SOUČASNÝ STAV V EU

VYUŽITÍ NANOMATERIÁLŮ K VÝROBĚ POTRAVIN SOUČASNÝ STAV V EU Přednáška v rámci Mezinárodní konference k novým potravinám, Praha, 20. 6. 2018 VYUŽITÍ NANOMATERIÁLŮ K VÝROBĚ POTRAVIN SOUČASNÝ STAV V EU Vladimír Ostrý, doc., MVDr., CSc. Státní zdravotní ústav Centrum

Více

Uhlík v elektrotechnice

Uhlík v elektrotechnice Uhlík v elektrotechnice Až do nedávné doby se vědělo, že uhlík má pouze formu diamantu nebo grafitu. Jejich využití je v elektrotechnice dlouhodobě známé. Avšak s nástupem zájmu vědeckých pracovišť o děje

Více

Ukončení činnosti AV ČR v roli poskytovatele účelové podpory

Ukončení činnosti AV ČR v roli poskytovatele účelové podpory Kancelář Akademie věd České republiky Leoš Horníček Ukončení činnosti AV ČR v roli poskytovatele účelové podpory Institut profesní přípravy Odborný seminář 3. 4. 2014 Praha 8, Bílý dům Obsah příspěvku

Více

NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA

NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA NANOMATERIÁLY, NANOTECHNOLOGIE, NANOMEDICÍNA Nano je z řečtiny = trpaslík. 10-9, 1 nm = cca deset tisícin průměru lidského vlasu Nanotechnologie věda a technologie na atomární a molekulární úrovni Mnoho

Více

Inovace výuky prostřednictvím šablon pro SŠ

Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Struktura atomu. Beránek Pavel, 1KŠPA

Struktura atomu. Beránek Pavel, 1KŠPA Struktura atomu Beránek Pavel, 1KŠPA Co je to atom? Částice, kterou již nelze chemicky dělit Fyzikálně ji lze dělit na elementární částice Modely atomů Model z antického Řecka (Démokritos) Pudinkový model

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci PŘÍKLADY SOUČASNÝCH

Více

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony

Jádro se skládá z kladně nabitých protonů a neutrálních neutronů -> nukleony Otázka: Atom a molekula Předmět: Chemie Přidal(a): Dituse Atom = základní stavební částice všech látek Skládá se ze 2 částí: o Kladně nabité jádro o Záporně nabitý elektronový obal Jádro se skládá z kladně

Více

Chemické metody přípravy tenkých vrstev

Chemické metody přípravy tenkých vrstev Chemické metody přípravy tenkých vrstev verze 2013 Povrchové filmy monomolekulární Langmuirovy filmy PAL (povrchově aktivní látky) na polární kapalině (vodě), 0,205 nm 2 na 1 molekulu, tloušťka dána délkou

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV: VY_32_INOVACE_191_Elektřina a její počátky AUTOR: Ing.

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: NÁZEV: VY_32_INOVACE_191_Elektřina a její počátky AUTOR: Ing. NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_191_Elektřina a její počátky AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 8.10.2011 VZDĚL. OBOR, TÉMA: Fyzika

Více

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU

ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 202 Název zpracovaného celku: ATOM VÝVOJ PŘEDSTAV O SLOŽENÍ A STRUKTUŘE ATOMU Leukippos, Démokritos (5. st. př. n. l.; Řecko).

Více

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy. PERIODICKÁ TABULKA Je známo více než 100 prvků 90 je přirozených (jsou v přírodě) 11 plynů 2 kapaliny (brom, rtuť) Ostatní byly připraveny uměle. Dmitrij Ivanovič Mendělejev uspořádal 63 tehdy známých

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

nm. mory_cz_02_68x68mm_02.indd :31

nm. mory_cz_02_68x68mm_02.indd :31 20.000 nm mory_cz_02_68x68mm_02.indd 1 17-07-16 12:31 Uhlík strukturou podobný diamantu (Tvrdý) povlak mory_cz_02_68x68mm_02.indd 2 17-07-16 12:31 mory_cz_02_68x68mm_02.indd 3 17-07-16 12:31 Uhlík strukturou

Více

Nanoelektronika aneb Co by nás nemělo překvapit ve světě malých rozměrů

Nanoelektronika aneb Co by nás nemělo překvapit ve světě malých rozměrů Nanoelektronika aneb Co by nás nemělo překvapit ve světě malých rozměrů Radek Kalousek Ústav fyzikálního inženýrství Fakulta strojního inženýrství Vysoké učení technické v Brně Proč nanotechnologie? Mooreův

Více

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

HISTORIE ATOMU. M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY HISTORIE ATOMU M g r. ROBERT P ECKO TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Historie atomu (modely) Mgr. Robert Pecko Období bez modelu pojetí hmoty

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Pohled na svět dalekohledem i mikroskopem.

Pohled na svět dalekohledem i mikroskopem. Pohled na svět dalekohledem i mikroskopem.. Toto je výlet velikou rychlostí překonáváním vzdáleností s frakcí 10. 10 0 1 metr Vzdálenost hromádky listí na zahrádce. 10 1 0 metrů Jděme blíže, možná, uvidíme

Více

Alfred NOBEL. Základní škola a Mateřská škola Nikolčice, příspěvková organizace

Alfred NOBEL. Základní škola a Mateřská škola Nikolčice, příspěvková organizace CZ.1.07/1.4.00/21.2490 VY_32_INOVACE_13_F8 Alfred NOBEL Základní škola a Mateřská škola Nikolčice, příspěvková organizace Mgr. Jiří Slavík Alfred Nobel Narozen - 21. října 1833, Stockholm Zemřel - 10.

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

Jak to celé vlastně začalo

Jak to celé vlastně začalo Historie počítače Jak to celé vlastně začalo Historie počítačů, tak jak je známe dnes, začala teprve ve 30. letech 20. století. Za vynálezce počítače je přesto považován Charles Babbage, který v 19. století

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

Zařazení materiálu: Šablona: Sada: Inovace a zkvalitnění výuky v oblasti přírodních věd (V/2) Název materiálu: Autor materiálu: Pavel Polák

Zařazení materiálu: Šablona: Sada: Inovace a zkvalitnění výuky v oblasti přírodních věd (V/2) Název materiálu: Autor materiálu: Pavel Polák Projekt: Příjemce: Tvořivá škola, registrační číslo projektu CZ.1.07/1.4.00/21.3505 Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Šablona: Sada:

Více

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436

Kvantové tečky. a jejich využití v bioanalýze. Jiří Kudr SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE CZ/FMP.17A/0436 Kvantové tečky a jejich využití v bioanalýze Jiří Kudr Datum: 9.4.2015 Hvězdárna Valašské Meziříčí, p.o, Vsetínská 78, Valašské Meziříčí, Nanotechnologie

Více

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů.

Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Fyzika je přírodní věda, která zkoumá a popisuje zákonitosti přírodních jevů. Násobky jednotek název značka hodnota kilo k 1000 mega M 1000000 giga G 1000000000 tera T 1000000000000 Tělesa a látky Tělesa

Více

Nové komerční aplikace

Nové komerční aplikace 115.42 nm 57.71 nm 0 nm 2000 nm 2000 nm 1000 nm Nové komerční aplikace 1000 nm 0 nm 0 nm nanomateriálů - zlato a stříbro Co jsou to nanotechnologie Richard Feynman There is plenty room at the bottom (Tam

Více

MŘÍŽKY A VADY. Vnitřní stavba materiálu

MŘÍŽKY A VADY. Vnitřní stavba materiálu Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

Utajené vynálezy Nemrtvá kočka

Utajené vynálezy Nemrtvá kočka Nemrtvá kočka Od zveřejnění teorie relativity se uskutečnily tisíce pokusů, které ji měly dokázat nebo vyvrátit. Zatím vždy se ukázala být pevná jako skála. Přesto jsou v ní slabší místa, z nichž na některá

Více

Moderní nástroje v analýze biomolekul

Moderní nástroje v analýze biomolekul Moderní nástroje v analýze biomolekul Definice Hmotnostní spektrometrie (zkratka MS z anglického Mass spectrometry) je fyzikálně chemická metoda. Metoda umožňující určit molekulovou hmotnost chemických

Více

Budoucnost mikroelektroniky ve hvězdách.... spintronika jednou z možných cest

Budoucnost mikroelektroniky ve hvězdách.... spintronika jednou z možných cest Budoucnost mikroelektroniky ve hvězdách... spintronika jednou z možných cest Transistor Transistor 1:1 1:0.000001 1. transistor z roku 1947..dnes s velikostí hradla pod 20 nm a vzdáleností 2 nm od polovodivého

Více

Atomová fyzika - literatura

Atomová fyzika - literatura Atomová fyzika - literatura Literatura: D.Halliday, R. Resnick, J. Walker: Fyzika (Část 5: Moderní fyzika), I. Úlehla, M. Suk, Z. Trnka: Atomy, jádra, částice, Akademia, Praha, 1990. A. Beiser: Úvod do

Více

NANOTECHNOLOGIE. pro začátečníky. České Budějovice

NANOTECHNOLOGIE. pro začátečníky. České Budějovice NANOTECHNOLOGIE pro začátečníky České Budějovice 16. 2. 2019 The work presented in this document is supported by the European Commission s FP7 programme project Scientix 2 (Grant agreement N. 337250).

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno

ATOMOVÉ JÁDRO A JEHO STRUKTURA. Aleš Lacina Přírodovědecká fakulta MU, Brno ATOMOVÉ JÁDRO A JEHO STRUKTURA Aleš Lacina Přírodovědecká fakulta MU, Brno "Poněvadž a-částice... procházejí atomem, pečlivé studium odchylek "těchto střel" od původního směru může poskytnout představu

Více

Stručná historie výpočetní techniky část 1

Stručná historie výpočetní techniky část 1 Stručná historie výpočetní techniky část 1 SOU Valašské Klobouky VY_32_INOVACE_1_1 IKT Stručná historie výpočetní techniky 1. část Mgr. Radomír Soural Za nejstaršího předka počítačů je považován abakus,

Více

Nanomateriály z pohledu ochrany zdraví při práci Jaroslav Mráz Státní zdravotní ústav, Praha

Nanomateriály z pohledu ochrany zdraví při práci Jaroslav Mráz Státní zdravotní ústav, Praha 1 Nanomateriály z pohledu ochrany zdraví při práci Jaroslav Mráz Státní zdravotní ústav, Praha 2 Nanomateriály (NM) z pohledu ochrany zdraví při práci Základní pojmy Základní charakteristiky vyráběných

Více

Nanotechnologie a jejich aplikace ve veterinárním lékařství. RNDr. Jiří Oborný

Nanotechnologie a jejich aplikace ve veterinárním lékařství. RNDr. Jiří Oborný Nanotechnologie a jejich aplikace ve veterinárním lékařství RNDr. Jiří Oborný Co jsou to nanotechnologie Richard Feynman There is plenty room at the bottom (Tam dole je spousta místa) r. 1959 začátek

Více

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace Číslo projektu Číslo materiálu Autor Průřezové téma Předmět CZ.1.07/1.5.00/34.0565 VY_32_INOVACE_286_Historie_počítačů

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Nanočástice, nanotechnologie a nanoprodukty a jejich vazba na BOZP

Nanočástice, nanotechnologie a nanoprodukty a jejich vazba na BOZP Nanočástice, nanotechnologie a nanoprodukty a jejich vazba na BOZP Karel Klouda Lenka Frišhansová Josef Senčík Výzkumný ústav bezpečnosti práce, v.v.i. (VÚBP, v.v.i.) Oddělení prevence rizik a ergonomie

Více

Optika a nanostruktury na KFE FJFI

Optika a nanostruktury na KFE FJFI Optika a nanostruktury na KFE FJFI Marek Škereň 28. 11. 2012 www: email: marek.skeren@fjfi.cvut.cz tel: 221 912 825 mob: 608 181 116 Skupina optické fyziky Fakulta jaderná a fyzikálně inženýrská České

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory Historie V prosinci 1947 výzkumní pracovníci z Bellových laboratořích v New Jersey zjistili, že polovodičová destička z germania se zlatými hroty zesiluje slabý signál. Vědci byli

Více

Memristor. Úvod. Základní struktura mertistorů

Memristor. Úvod. Základní struktura mertistorů Memristor Úvod Vědcům společnosti HP (Hewlett-Packard) se skoro náhodou povedlo nanotechnologií prakticky realizovat nový typ součástky s vlastnostmi již dříve předvídaného prvku pojmenovaného jako memristor

Více

k a p i t O l a 1 Záhada existence

k a p i t O l a 1 Záhada existence Kapitola 1 Záhada existence Všichni existujeme jen krátkou chvíli a během ní prozkoumáme jen malou část celého vesmíru. Ale lidé jsou zvídavý druh. Žasneme a hledáme odpovědi. Žijíce v tomto obrovském

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie obecná 1. ročník Datum tvorby 15.11.2013 Anotace a) určeno pro

Více

Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces

Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces Precipitace Čisté kovy s ohledem na své mechanické parametry nemají většinou pro praktická použití vhodné užitné vlastnosti. Je proto snaha využít všech možností ke zlepší těchto parametrů, zejména pak

Více

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Světlo = vlny i částice! 19. století:

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz

Kvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Dvouštěrbinový experiment A Fig.

Více

Využití nanomateriálů pro konzervaci mikrobiálních taxonů z životního prostředí

Využití nanomateriálů pro konzervaci mikrobiálních taxonů z životního prostředí Využití Nanovlákna Nanovlákna v Biofilm Konzervace Využití nanomateriálů pro konzervaci mikrobiálních taxonů z životního prostředí 1 Kolonizace Ondřej Šnajdar Envishop, Praha, 2015 Nanomateriály 2 Kolonizace

Více

Scénář text Scénář záběry Místo, kontakt, poznámka. Animace 1: pavouk, mravenec a včela.

Scénář text Scénář záběry Místo, kontakt, poznámka. Animace 1: pavouk, mravenec a včela. Scénář text Scénář záběry Místo, kontakt, poznámka Na otázku, proč bychom měli studovat fyziku, již odpověděl Bacon, který byl velmi zajímavou postavou 17. století. Byl první, který se pokusil o logickou

Více

Pracovní listy pro žáky

Pracovní listy pro žáky Pracovní listy pro žáky : (Ne)viditelná DNA Úvod do tématu Přečtěte si následující tři odborné články a přiřaďte k nim názvy oborů, ve kterých se využívá metod izolace DNA: forenzní genetika, paleogenetika,

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 8. a 9. ročník Základní Dějepis Téma / kapitola Technický

Více

Chemie kolem nás...a v nás

Chemie kolem nás...a v nás Chemie kolem nás......a v nás Popularizační přednáška o chemii RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně O čem bude reč? Setkáváme se s chemií v běžném životě? Jaké

Více

Budoucnost patří uhlíkatým nanomateriálům

Budoucnost patří uhlíkatým nanomateriálům Budoucnost patří uhlíkatým nanomateriálům Otakar Frank Oddělení elektrochemických materiálů Ústav fyzikální chemie J. Heyrovského, v.v.i. Akademie věd ČR otakar.frank@jh-inst.cas.cz www.nanocarbon.cz Nanoúvod

Více

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ

Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Nano a mikrotechnologie v chemickém inženýrství Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Hi-tech Nano a mikro technologie v chemickém inženýrství umožňují: Samočisticí

Více

MMC kompozity s kovovou matricí

MMC kompozity s kovovou matricí MMC kompozity s kovovou matricí Přednosti MMC proti kovům Vyšší specifická pevnost (ne absolutní) Vyšší specifická tuhost (ne absolutní) Lepší únavové vlastnosti Lepší vlastnosti při vysokých teplotách

Více

Elektronické a optoelektronické součástky

Elektronické a optoelektronické součástky Garant předmětu: prof. Ing. Pavel Hazdra, CSc. hazdra@fel.cvut.cz Otevřené Elektronické Systémy Virtual Labs OES 1 / 4 Čím se zde bude zabývat? Principy činnosti struktur užívaných k ovládání elektronů

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

??????? Záporně nabitá částice... ANION. Těžký, toxický, červenohnědý, kapalný halogen... VY_32_INOVACE_193 6. 6. 2013

??????? Záporně nabitá částice... ANION. Těžký, toxický, červenohnědý, kapalný halogen... VY_32_INOVACE_193 6. 6. 2013 VY_32_INVACE_193 6. 6. 2013 Popis a použití výukového materiálu Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3707 Šablona: III/2 Č. materiálu:

Více

Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. LIV. Akademické fórum, 18. 9. 2014

Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. LIV. Akademické fórum, 18. 9. 2014 Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. 1 Ústav fyziky materiálů, AV ČR, v. v. i. Zkoumat a objasňovat vztah mezi chováním a vlastnostmi materiálů a jejich strukturními charakteristikami Dlouholetá

Více

Další typy kovových nanočástic... 109 7.2 Uhlíkové nanomateriály... 110 Diamanty... 111 Fullereny... 116 Uhlíkové nanotuby... 119 7.

Další typy kovových nanočástic... 109 7.2 Uhlíkové nanomateriály... 110 Diamanty... 111 Fullereny... 116 Uhlíkové nanotuby... 119 7. Obsah Obsah... 3 Předmluva... 5 1. Úvod... 6 2. Stavba hmoty na úrovni atomů a molekul... 9 3. Krystalická stavba hmoty... 20 4. Vlastnosti povrchů a nanomateriálů... 33 5. Metody metrologie nanostruktur

Více

Oponenti: RNDr. Aleš Hendrych, Ph.D. RNDr. Jiří Tuček, Ph.D.

Oponenti: RNDr. Aleš Hendrych, Ph.D. RNDr. Jiří Tuček, Ph.D. Oponenti: RNDr. Aleš Hendrych, Ph.D. RNDr. Jiří Tuček, Ph.D. Publikace byla vytvořena v rámci projektu Otevřená síť partnerství na bázi aplikované fyziky, reg. č. CZ. 1.07/2.4.00/17. 0014 1. vydání Roman

Více

ztuhnutím pyrosolu taveniny, v níž je dispergován plyn, kapalina nebo tuhá látka fotochemickým rozkladem krystalů některých solí

ztuhnutím pyrosolu taveniny, v níž je dispergován plyn, kapalina nebo tuhá látka fotochemickým rozkladem krystalů některých solí a pevným kapalným plynným disperzním podílem chovají se jako pevné látky i když přítomnost částic disperzního podílu v pevné látce obvykle značně mění její vlastnosti, zvláště mechanické a optické Stabilita

Více

Nanomateriály - nanotechnologie

Nanomateriály - nanotechnologie Nanomateriály - nanotechnologie RNDr. Milada Vomastková, CSc. 14.4.2014 Úvod Evropský komisař pro Vědu a výzkum Janez Potocnik řekl: Nanotechnologie je oblast, která má vysoce nadějné vyhlídky pro změnu

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX / 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)

Více

v y of T Nanoroboti Work Lukáš Haluza A A doc. Ing. Ivan Křupka, Ph.D.

v y of T Nanoroboti Work Lukáš Haluza A A doc. Ing. Ivan Křupka, Ph.D. V v y of T F av k o F Nanoroboti Work A A V Lukáš Haluza doc. Ing. Ivan Křupka, Ph.D. Vysoké u ení technické v Brn, Fakulta strojního inženýrství Ústav konstruování Akademický rok: 2006/07 ZADÁNÍ BAKALÁ

Více