HISTORIE MODERNÍCH TECHNOLOGIÍ. Význam nových technologií v technické civilizaci

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "HISTORIE MODERNÍCH TECHNOLOGIÍ. Význam nových technologií v technické civilizaci"

Transkript

1 HISTORIE MODERNÍCH TECHNOLOGIÍ Význam nových technologií v technické civilizaci Moderní technologie jsou obecně označovány jako "pokrok". Tento pokrok je však současně trvalým zdrojem nestability a pohybu lidí, společenství, institucí, národů a kultur. Na počátku věku vědy a technologie se vlády většiny průmyslově vyspělých zemí staly katalyzátorem vědeckého rozvoje a technologické inovace. Tyto vlády dnes nesou zodpovědnost také za usměrňování a ovládání transformačních sil vědy a technologie. Dokonce jednoduchá technologická inovace může změnit svět: Když z Asie do západní Evropy v 8. století pronikla výroba kovových třmenů, společnost se od samých základů změnila. Poprvé bylo možno přenést energii běžícího koně přímo do zbraně jezdce v sedle, což mělo ničivé bojové důsledky (v roce 1066 početně slabší Normané se silnou a kovovými třmeny vybavenou jízdou na koních během jediného dne porazili krále Herolda). Objev stroje na čištění bavlny koncem 18. století umožnil značné rozšíření pěstování bavlny na jihu dnešních Spojených států a stal jedním ze silných podnětů dovozu černých otroků z Afriky. O asi 150 let později mechanický stroj na sklízení bavlny učinil práci většiny afroamerických otroků zbytečnou a způsobil téměř 30 let trvající masovou migraci asi 5 miliónů lidí ze zemědělského jihu do velkých měst na severu Spojených států. Tyto příklady nejen dokazují schopnost nových technologií změnit celou společnost, ale také provázanost technologických změn se složitou sociální strukturou společnosti (od rodiny, přes vzdělání, zaměstnání a služby, atd.). Připomeňme z nedávné minulosti, že jaderné zbraně určovaly geopolitický vývoj celého světa po 2. světové válce. Rozhlas, automobily, televize nebo vakcinace vedly k velkým změnám ve společnosti 20. století. Dnes tyto změny vyvolávají například počítače a mobilní telefony a v budoucnosti tyto změny vyvolá například biotechnologie a nanotechnologie. Prehistorie nanotechnologií Již dávno přidávali skláři pro dosažení zajímavých barevných efektů do skel prášky z kovů a jiných látek, zejména ze zlata, stříbra, zinku, kadmia, síry a selenu. Jak se v nedávné době ukázalo, byly mezi nimi i částice v rozměru nanometrů, které způsobovaly unikátní barevnost skel. Známé jsou tzv. Lykurgovy poháry pocházející asi ze 4. století našeho letopočtu, jejichž část se nachází v Britském muzeu v Londýně. Obsahují nanočástice slitiny na bázi Au - Ag (v poměru 3:7). Není známo, jakou technologii výroby těchto pohárů a podobných artefaktů římští skláři používali. Dalším příkladem je výsledek analýzy lesklé glazované keramiky z století. Zjistilo se, že lesk vyvolává dekorativní kovový film o tloušťce nm, obsahující kovové (stříbrné) sférické nanokrystaly rozptýlené v matrici bohaté na křemík, přičemž ve vnější vrstvě filmu o tloušťce nm se kov nenachází. Kompozitní struktura má optické vlastnosti závislé jak na rozměru částic, tak na matrici. Lesklá vrstva byla zřejmě prvním nanostrukturním filmem reprodukovatelně vyráběným člověkem. Keramika z italské Umbrie byla v 15. a 16. století pro své nádherné barvy vysoce ceněna po celé Evropě. Tým vědců z university v Perugii vedený Brunem Brunettim zjistil, že glazury renesanční keramiky obsahují částice mědi a stříbra o průměru nm a splňují kritérium pro zařazení mezi nanomateriály. Kovové nanočástice odrážejí světlo ze svého povrchu bez toho, že by jej rozptylovaly. Výsledkem je jedinečný metalízový efekt.

2 Postup při výrobě takových glazur se zachoval v knize italského autora Cipriana Piccolpassa z roku Soli mědi a stříbra míchali hrnčíři s octem, okrem a jílem. Touto směsí pak natírali nádoby, které už měly na svém povrchu jednu vypálenou glazuru. Dalším vypalováním při konstantní teplotě dosáhli jedinečné metalízy. V roce 1861 jako první popsal suspenzi obsahující částice o rozměrech nm Thomas Graham, britský chemik a nazval ji koloidním systémem. Koloidní systémy byly intenzivně studovány významnými vědci (Rayleigh, Maxwell, Einstein) zejména na přelomu století a později vznikl i nový obor koloidní chemie. Velmi známým příkladem nanomateriálů jsou saze, které se vyrábějí nedokonalým spalováním organických látek bohatých na uhlík. Průmyslová výroba sazí je stará více než 100 let. Jsou to částice amorfního uhlíku o velikosti nm. Celosvětově se jich vyrábí asi 6 mil.tun a patří k jednomu z dosud nejpoužívanějších nanomateriálů. Přibližně 90% vyrobených sazí se používá v gumárenském průmyslu a pro výrobu technické pryže (hadice, řemeny, pryžové kabely, barvy aj.). V současné době chemická katalýza urychluje denně tisíce chemických přeměn, jako např. jsou rafinace ropy na benzín, přeměna levného grafitu na syntetický diamant pro nástroje, uplatňuje se při výrobě léků a polymerů atd. Při zkoumání katalyzátorů moderními prostředky bylo zjištěno, že řada z nich má vysoce uspořádané kovové a keramické nanostruktury, obsahující nanopóry. Tyto materiály jsou jak přírodní, tak syntetické a používají se nejen ke katalýze, ale i při adsorpci a separačních technologiích. Nejznámější jsou zeolity obsahující rovnoměrné póry o velikosti nm, jejichž průmyslová aplikace započala v roce Používají se např. při katalytickém krakování, hydrokrakování, hydroizomeraci, alkylaci benzenu atd. Příklady využití nanočástic (nanoprecipitátů) lze nalézt i v metalurgii. V roce 1906 byly poprvé sledovány precipitační změny doprovázející vytvrzování hliníkových slitin stárnutím. Podstatu procesu objasnili a zaznamenali Guinier a Preston v roce 1938 pomocí rtg. záznamu, kdy zjistili přítomnost mikrostrukturních objektů v materiálu. Dnes víme, že jemné precipitáty zodpovědné za zpevnění, např. ve slitině Al - 4%Cu, jsou klastry atomů Cu vytvářející tzv. Guinier-Prestonovy zóny. Vysoká žárupevnost nízkolegovaných ocelí a jejich dlouhodobá životnost v energetických zařízeních při vysokých teplotách a tlacích je dosahována precipitačním zpevněním železné matrice částicemi (např. karbidu vanadu V 4 C 3 ) o průměru nm a interakcí dislokací s těmito částicemi Orowanovým mechanismem. Optimální vzájemná vzdálenost a velikost částic je ovlivňována chemickým složením a tepelným zpracováním materiálu. PRVNÍ PRŮKOPNÍCI NANOTECHNOLOGIE Richard Philips Feynman Na možnosti z oblasti nanosvěta jako první poukázal Richard P. Feynman, který svou vizi o nanotechnologii nastínil v prosinci roku 1959 při příležitosti zasedání Americké fyzikální společnosti na Kalifornské technologické univerzitě (CALTECH). Jeho přednáška měla název There s Plenty of Room at the Bottom ( Tam dole je spousta místa ) a pojednávala o možnostech praktického využití světa atomů v budoucnosti.

3 Richard Philips Feynman se narodil v New Yorku 11. května Studoval na Massachusetts Institute of Technology (MIT) a Princetonské universitě. Během války pracoval na projektu atomové bomby. V roce 1945 byl jmenován profesorem teoretické fyziky na Cornellově universitě a od roku 1950 působil jako profesor na California Institute of Technology (CALTECH). Hlavní oblast Feynmanových výzkumů spadá do oblasti kvantové mechaniky, konkrétně kvantové elektrodynamiky. Vytvořil tzv. Feynmanovy diagramy, které jsou grafickým vyjádřením matematických vztahů, které popisují chování systémů interagujících částic. Feynman zasáhl takřka do všech problémů moderní fyziky: předpověděl existenci vnitřní struktury protonu a neutronu (partony), matematicky popsal chování kapalného hélia, zabýval se teorií prostoročasu na úrovni elementárních částic, předestřel vizi kvantového počítače, přispěl k teorii kvantové chromodynamiky, atd. Byl vynikajícím učitelem, příležitostným hráčem na bonga v sambové kapele i vtipným společníkem. V roce 1986 se proslavil na veřejnosti odhalením příčin závady na raketoplánu Challenger. Je nositelem Nobelovy ceny za fyziku v roce Tam dole je spousta místa, CALTECH, Rád bych teď popsal obor, řekl Feynman, v němž bylo vykonáno ještě málo, ale jenž v principu může zaznamenat obrovský rozvoj. Chci mluvit o problému, jak připravovat systémy o velmi malých rozměrech a kontrolovat jejich vlastnosti. Po tomto úvodu předložil slavný fyzik překvapenému publiku legendární otázku: Proč bychom nemohli zapsat na špendlíkovou hlavičku všech 24 dílů Encyklopedie Britanniky?. Feynman dokazuje, že nám tomu přírodní zákony nebrání a nabízí i odpověď, jakým způsobem text na tak malou plochu napíšeme. Netvrdí, že to bude zcela snadné, ale nepochybuje, že příští generace se s touto výzvou vypořádá. Feynman předpokládal, že veškeré informace, které člověk nashromáždil ve všech knihách světa, mohou být zapsány ve formě krychličky, jejíž hrana měří 0,1 mm! Od možnosti zápisu informací se Feynman dostává k možnosti ovlivňovat na této atomární úrovni chemické reakce. Předkládá otázku, zda najdeme nějakou fyzikální cestu, jak syntetizovat libovolnou chemickou látku, a ptá se, jakým způsobem lze zlepšit rozlišovací schopnost elektronového mikroskopu. Manipulace s atomy tvoří jádro Feynmanovy přednášky. Na tyto jeho otázky odpověděl rozvoj STM (angl. Scanning Tunneling Microscope) a AFM (angl. Atomic Force Microscope), který zcela v souladu s Feynmanovými předpoklady umožnil lidskému oku nahlédnout do mikrosvěta rozměrů nanometrů a menších. Feynman předpověděl řadu oblastí, které stojí v centru dnešního zájmu řady vědeckých ústavů, zabývajícími se nanotechnolgiemi:...ani v nejmenším nepochybuji, předpovídá Feynman význam nanotechnologie při přípravě nových materiálů, že jakmile budeme schopni kontrolovat uspořádání atomů, rejstřík vlastností, které materiály mohou mít, se úžasně zvětší a úměrně tomu se objeví i nové možnosti jejich uplatnění. V závěru přednášky Feynman vyzval vědecký svět, aby začal dobývat nanosvět. Nabídl jeden tisíc dolarů tomu, kdo jako první dokáže zapsat jednu stránku textu běžné knihy na plochu, která bude zmenšena na 1/ původní plochy, přičemž text bude čitelný elektronovým mikroskopem. Dalších jeden tisíc dolarů slíbil vyplatit tomu, kdo zhotoví funkční elektromotorek, jenž se vejde do krychličky o hraně 0,4 mm.

4 Myslím, že na vyplacení těchto odměn nebudu muset čekat nijak dlouho, uzavřel svou přednášku. Vyplaceny byly obě ceny. Druhá byla vyplacena již v roce 1960, když student CALTECHu Bill McLellan zkonstruoval miniaturní elektromotorek. První ale až za 26 let, a to doktorandovi Stanfordské univerzity Tomovi Newmanovi, který pomocí elektronového litografu napsal krát zmenšeným písmem první stranu románu Charlese Dickense Příběh dvou měst. V 50. letech Richarda Feynmana nikdo z vědců nebral vážně, ale lidé nezaháleli : Následující dvě desetiletí přinesla miniaturizaci v elektronice. Další desetiletí komputerizaci, PC se dostaly ze sálů na pracovní stoly. Objevily se možnosti sledování molekul a atomů pomocí AFM a STM. Počátek 90. let znamenal nástup internetu, rozvoj mikrosystémového a genetického inženýrství a první úspěšné pokusy technologií v měřítku nanometrů. Kim Eric Drexler Feynmanovy myšlenky byly popularizovány v 80. a 90. letech zejména díky úsilí K. Erica Drexlera (*1955) v knihách Stroje stvoření: Nástup éry nanotechnologie (angl. Engines of Creation: The Coming Era of Nanotechnology, 1986) a Nanosystémy (angl. Nanosystems, 1992). Drexler rozpracoval myšlenku nanotechnologické revoluce a popsal svět miniaturních umělých systémů, jakýchsi neuvěřitelně malých stroječků neboli nanorobotů, které se budou podobat živým organismům nejen schopností reprodukce, ale i vzájemnou komunikací a sebezdokonalováním, přičemž jejich velikost se bude pohybovat na molekulární úrovni. The Coming Era of Nanotechnology V této knize Drexler podrobně popsal, jak neviditelné nanosystémy budou schopny molekulu po molekule postavit všechno, co jim předem stanovený program zadá, od počítačů a kosmických sond, po dálnice a mrakodrapy. Kniha je rozdělena do dvou základní částí: V první části knihy - nazvané Základy předvídavosti E. Drexler představil principy umělých replikátorů a naznačil pravděpodobný postup při vývoji souvisejícím s nanotechnologií. Příkladem strojů pracujících v molekulárním měřítku jsou buňky živých organismů. Dosud jsme neodhalili všechny principy jejich činnosti, to nám však nebrání začít tvořit replikátory podle našich plánů. "Většina biochemiků pracuje jako vědci, ne jako inženýři. Snaží se předpovědět, jak se chovají přírodní proteiny, místo toho, aby vyráběli proteiny, které se budou chovat podle jejich předpovědí." Druhou etapou výzkumu bude zrod replikátorů na neproteinové bázi. Proteinové stroje jsou příliš křehké, příliš neohrabané a nespolehlivé na to, abychom s nimi mohli vystačit. Poslouží nám alespoň při vytvoření replikátorů mnohem dokonalejších - univerzálních asemblerů. Tato druhá generace replikátorů bude schopna vytvářet a opravovat složité molekulární struktury. Tyto nanostroje budou programovatelné, podobným způsobem, jakým DNA programuje činnost živých buněk a budou schopny

5 se namnožit a vytvořit tak armádu komunikujících robotů připravených vykonat užitečnou práci - sestavit z atomů kovů slitiny přesně definovaných, dosud nevídaných vlastností, léčit choroby, stavět domy, budovat kosmické stanice atd. Molekulární dělníci - asemblery - nám otevřou cestu k vytvoření nanopočítačů. Dosáhnou cíle, ke kterému směřují snahy mikroelektroniků leptajících polovodiče s úmyslem vytvořit co nejmenší tranzistory a nejkratší vodivé dráhy. Neuronové superpočítače se synapsemi o délce několik atomů pak svou obrovskou pracovní silou předčí jakýkoliv hardware postavený na konvenčních technologiích. Další nanostroje - disasemblery - nám naopak umožní přečíst libovolnou molekulární strukturu nějakého předmětu (např. lidského mozku) a naprogramovat pak asemblery, které tuto strukturu mohou opakovaně vyrábět. Máme mnoho poznatků o atomech, interakcích, máme chemii, fyziku částic - kvantovou mechaniku, tedy vědecký základ. Dokážeme simulovat chování a vlastnosti a spočítat pravděpodobnou dobu života obřích molekul, které dnes ještě nedokážeme syntetizovat. Víme, že nanostroje jsou možné. Známe principy jejich replikace a programování. Máme před sebou příklad, že nanostroje mohou fungovat - živé buňky. Všechno je tedy jen otázkou času. Druhá část knihy je nazvaná Obrysy možného. Např. kapitola Myslící stroje, je věnovaná otázkám umělé inteligence. Drexler dělí inteligentní chování na dvě části - sociální a technické. Tvrdí, že v "technické inteligenci" jsme již podstatného pokroku dosáhli, čehož jsou důkazem mj. expertní systémy, neuronové sítě a fuzzy logika. (angl. fuzzy - nejasný, neurčitý). Lepší počítače urychlí pokrok v návrhu technologií a ještě lepších počítačů, vývoj bude dále akcelerovat. V oblasti "lidské inteligence", nás podstatná práce teprve čeká, avšak určitý náhled převádí tuto úlohu opět na problém "technické inteligence": Inteligentní člověk se v určitém prostředí správně rozhoduje. Inteligentní stroj nahrazující člověka v těch samých podmínkách se chová stejně, případně efektivněji. Drexler tvrdí: Kritici umělé inteligence často myslí, že zřejmě nemůžeme vytvořit stroje chytřejší, než jsme my sami. Zapomínají na to, že naši vzdálení, němí předci se dokázali vyvinout v jedince vysoké inteligence a vůbec při tom nemysleli. V dalších kapitolách rozvíjí své myšlenky o možnostech nové technologie v různých oblastech lidské činnosti: pro vesmírné mise (kapitola Svět mimo Zemi ) v medicíně a ochraně zdraví, resp. dlouhověkosti (kapitoly Stroje léčení, Dlouhý život v otevřeném světě, Dveře do budoucnosti ). V kapitole Meze růstu se autor knihy zabývá otázkou, zda existují hranice v nanotechnologiích a zda dojde v budoucnosti k zastavení vývoje v této oblasti. Dochází k závěru, že jediné podstatné omezení určují pouze fyzikální zákony: "Lidé, kteří zaměňují vědu s technologiemi, nechápou skutečné meze. Někdo si může myslet, že když víme všechno, můžeme udělat cokoliv. Pokroky technologií skutečně přinášejí nová know-how, otevírají nové možnosti. Naproti tomu pokrok ve vědě jenom překreslí mapu skutečných hranic, což často ukáže nové nemožnosti." Poslední kapitola Nebezpečí a naděje si klade zásadní otázky typu: Co se stane, když asemblery dokážou vytvořit prakticky cokoliv s lidskou prací? Co když nanoroboti budou zneužiti? Je třeba zdůraznit, že Drexler je při pohledu na budoucnost nanotechnologií optimistou. Jeho kniha je koncipována v širších společensko-filosofických souvislostech. Timothy Leary Mezi další jména přiřazována k počátkům nanotechnologie, lépe řečeno k jejich vizionářům, patří Timothy Leary ( ) americký psycholog, filozof, vědec a

6 publicista. V 80. letech minulého století se intenzivně zabýval technologiemi (zvláště zkoumal možnosti počítačů) a nových technologií jako jsou nanotechnologie a kryogenika. Timoty Leary byl známý svým bezmezným technokratickým optimismem v souladu s Drexlerovými teoriemi, kdy říkal: S úspěchem nanotechnologie by se svět stal místem nepředstavitelné hospodářské hojnosti. Bylo by například možné vytvořit jakýkoli předmět jen z prachu a slunečního svitu. Reparační buněčné mechanismy, vetknuté do každé buňky lidského těla, aby mohly zpomalit či úplně zvrátit účinky bolestí a chorob. Stavba tryskových motorů by se stala záležitostí jedné minuty, vyrostly by znenadání a dokonale jako krystaly z kapalných roztoků obsahujících nanostroje.. Feynman, Drexler a Leary byli v tehdejší vědecké komunitě považováni za blázny. Prudký rozvoj oblastí nových technologií ke konci dvacátého století jim však začal dávat za pravdu: V roce 1990 vědecký tým společnosti IBM napsal pomocí tunelového skenovacího mikroskopu logo své firmy na niklovou destičku 35 izolovanými xenonovými atomy. V dalším roce byly vyrobeny první uhlíkaté nanotrubičky a bylo demonstrováno vedení elektrického proudu jedinou molekulou. V laboratořích velkých amerických společností a univerzit se podařilo sestrojit první nanomechanismy, jakými jsou například osy deset tisíckrát tenčí než lidský vlas, neviditelná molekulová ložiska s ultranízkým třením, nanovláček, jezdící po jedné koleji, nebo první nanotranzistory využívající výhodných vlastností fullerenů. K dalším neméně významným průkopníkům patří např.: Herold Kroto, Richard Smalley a Robert F.C. Kenneth objevili roce 1985 fullereny - novou formy uhlíku, získali Nobelovu cenu za chemii. Gerd Karl Binnig a Heinrich Rohrer ukázali v roce 1981 možnosti skenovacího tunelového mikroskopu (STM) pro sledování světa atomů. James Gimzewski - průkovník výzkumu elektrických kontaktů s izolovanými atomy a molekulami, k čemuž využil STM. George Whitesides a jeho pracovní skupina dodnes pracující v pěti oblastech nanotechnologie: biochemie, výzkum materiálů, katalyzátory a fyzikální organická chemie aj. Sumio Iijima v roce 1991 objevil nanotrubice. Ray Kurzweil - autor knihy Věk inteligentních strojů (The Age of Intelligent Machine, 1990) na konferenci The 2000 Foresight Conference on Molecular Nanotechnology předeslal, že do konce tohoto století nebude existovat rozdíl mezi strojem a lidskou bytostí. Nebyli to pouze tito vědci, kteří nastolili základní vize nanotechnologií a zároveň přispěli k jejich realizaci, ale byly to také mnohé pracovní skupiny univerzit (např. Purdue Universita v USA stát Indiana, kanadská Universita of Albert, aj.) a společností (např. IBM, Intel a Hewlett-Packard), ve kterých se začaly provádět a do současné doby také provádí výzkumy a realizace v oblasti nano. Z fantazie Richarda P. Feynmana se postupně začala stávat skutečnost. To, že se objevy a aplikace nanotechnologií objevují pravidelně ve vědeckých periodikách, je již samozřejmostí. Nejen vědcům, ale i politikům je čím dál víc jasnější, že vstup těchto technologií do běžného lidského života na sebe zřejmě nedá dlouho čekat.

7 VYBRANÉ MEZNÍKY V DĚJINÁCH NANOTECHNOLOGIÍ 400 před Kristem - Démokritos použil slovo atomos", což starořecky znamená nedělitelný" Albert Einsten publikoval práci, v níž stanovil průměr molekuly cukru na cca jeden nanometr Max Knoll a Ernst Ruska vyvinuli elektronový mikroskop, umožňující zobrazit objekty menší než 1 nanometr Richard Feynman předkládá první vizi nanotechnologie ve sborníku Caltech vychází Feynmanova hypotéza o možnosti budování nanosystémů Alfred Y. Cho a John Arthur z Bell Laboratories vynalezli pomocí molekulových svazků epitaxi Norio Tamaguči navrhl používání termínu nanotechnologie pro obrábění s tolerancí menší než 1 nm první článek o nanotechnologii ve vědeckém časopise Gerd Binning a Heinrich Rohrer vytvořili skenující tunelový mikroskop, který může zobrazit i jednotlivé atomy řetězová reakce v polymeru - vytvořen první umělý chromozóm 1985 R. Smalley, H. Kroto a R. Curl - objev fullerenů poprvé zaznamenány jednotlivé kvantové skoky v atomech - založen Foresight Institute Eric Drexler vydal knihu Stroje stvoření vypracována metoda identifikace osob podle DNA z jediného vlasu pomocí tunelového skenovacího mikroskopu napsal tým vědců na niklovou destičku 35 xenonovými atomy písmena IBM metoda sériové výroby buckminsterfullerenu pomocí ohybu rentgenových paprsků vznikl první snímek molekul fullerenu - Arthur Hebard demonstroval, že molekuly fullerenu spolu s draslíkem nebo rubidiem jsou supravodivé založen Institute for Molecular Manufacturing S.Iijima objevil nanotrubice Drexlerova kniha Nanosystémy první úplné mapy struktury dvou lidských chromozomů, prototyp kvantového hradla výpočty na superpočítači potvrdily Feynmanovu a Gell-Manovu teorii kvantové chromodynamiky první nanodráty - řetízky silné pouze několik nanometrů W. Robinett a R. Stanley Williams sestavili program či spíše virtuální realitu, která ve spojení se STM umožňuje prohlížet si jednotlivé atomy hmoty, dotýkat se jich a manipulovat s nimi demonstrováno vedení elektrického proudu jednou molekulou - založena společnost Nanocor, zabývající se vývojem nanokompozitních materiálů založena společnost Zyvex - první firma zabývající se konstrukcí nanomechanismů Skupina kolem C. Dekkera z univerzity v Delftu v Nizozemsku sestrojila z uhlíkových nanotrubic tranzistor James M. Tour a Mark A. Reed předvedli, že jednotlivá molekula může fungovat jako molekulový přepínač rozluštění lidského genomu - první nanomotorek na bázi DNA (Bell Labs) americký prezident Clinton vyhlašuje program National Nanotechnology Initiative tranzistor z nanotrubiček (IBM) - první nanolaser, základ pro optický přenos dat v inteligentních nanosystémech - logický obvod v jedné molekule, tvořený dvěma tranzistory

8 začínají se prosazovat inteligentní kompozitní materiály první mezinárodní konference o nanotechnologii (R. Smalley přednesl návrh, že ideálním prostředkem pro molekulové nanotechnologie jsou fullerenové struktury) Výzkumný tým Hewlett-Packard představil první molekulární paměť na světě, ve které jsou informace zapisovány do jednotlivých molekul čipu překročena hranice 50 nm Společnost IBM vyrobila první uhlíkový světelný zdroj, miniaturní baterku v podobě trubičky krát tenčí než lidský vlas Andrei Rode, John Giapintzakis objevili pátou formu C - nanopěnu, která má feromagnetické vlastnosti

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava

EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM. Pracovní listy teoretická příprava EXKURZE DO NANOSVĚTA aneb Výlet za EM a SPM Pracovní listy teoretická příprava Úloha 1: První nahlédnutí do nanosvěta Novou část dějin mikroskopie otevřel německý elektroinženýr, laureát Nobelovy ceny

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Nanotechnologie a jejich aplikace ve veterinárním lékařství. RNDr. Jiří Oborný

Nanotechnologie a jejich aplikace ve veterinárním lékařství. RNDr. Jiří Oborný Nanotechnologie a jejich aplikace ve veterinárním lékařství RNDr. Jiří Oborný Co jsou to nanotechnologie Richard Feynman There is plenty room at the bottom (Tam dole je spousta místa) r. 1959 začátek

Více

Chemie kolem nás...a v nás

Chemie kolem nás...a v nás Chemie kolem nás......a v nás Popularizační přednáška o chemii RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně O čem bude reč? Setkáváme se s chemií v běžném životě? Jaké

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

PŘÍKLADY VYUŽITÍ NANOTECHNOLOGIÍV PRŮMYSLU A SPOTŘEBITELSKÉ SFÉŘE

PŘÍKLADY VYUŽITÍ NANOTECHNOLOGIÍV PRŮMYSLU A SPOTŘEBITELSKÉ SFÉŘE PŘÍKLADY VYUŽITÍ NANOTECHNOLOGIÍV PRŮMYSLU A SPOTŘEBITELSKÉ SFÉŘE ING. VÁCLAVA KŘEČKOVÁ SZÚ PRAHA Velikost Molekula vody má průměr asi jeden nanometr. Dešťovákapka obsahuje cca 10 21 atomů, /1000 000000000000000000/

Více

Uhlík a jeho alotropy

Uhlík a jeho alotropy Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)

Více

Velká věda o malých věcech

Velká věda o malých věcech Velká věda o malých věcech nanos je řecky trpaslík nano- znamená miliardtinu celku, takže 1 nanometr = 10-9 metru Co je to nanosvět? území částic a struktur přibližně o velikosti v rozmezí 1 100 nm pro

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

k a p i t O l a 1 Záhada existence

k a p i t O l a 1 Záhada existence Kapitola 1 Záhada existence Všichni existujeme jen krátkou chvíli a během ní prozkoumáme jen malou část celého vesmíru. Ale lidé jsou zvídavý druh. Žasneme a hledáme odpovědi. Žijíce v tomto obrovském

Více

Úvod do problematiky nanotechnologií

Úvod do problematiky nanotechnologií Úvod do problematiky nanotechnologií (Roman Kubínek a Vendula Stránská) Žijeme v 21. století, v době, která nám nabízí nejrůznější možnosti technického rozvoje od aplikací výpočetní techniky, přes moderní

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

N A N O F O R L I F E

N A N O F O R L I F E NANO FOR LIFE OBSAH KDO JSME? POTENCIÁL NANOVLÁKEN CO NABÍZÍME? TECHNOLOGIE NANOSPIDER KDO JSME? KDO JSME? česká technologická společnost založená v roce 2000, sídlící v Liberci v České republice (v roce

Více

Kvantové tečky a jejich využití

Kvantové tečky a jejich využití Kvantové tečky a jejich využití Truhlář Michal Masarykova Univerzita Brno 2005 Obsah: 1. Co je to nanotechnologie - 2-1. 1. Historické pozadí - 2-1. 2. Definice nanotechnologií - 2-1. 2. 1. První kritérium

Více

Atomy a molekuly. Nenechte drobotinu, aby se tak dřela

Atomy a molekuly. Nenechte drobotinu, aby se tak dřela vězda. Vzduch. Brouk. Mraky. Žhavá láva. Ledovce. Vy. Každá z těchto věcí má jiný tvar, barvu, teplotu, povrch a hustotu. Jinak jsou ale zcela stejné. Všechny jsou utvořeny z relativně málo druhů částic.

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. LIV. Akademické fórum, 18. 9. 2014

Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. LIV. Akademické fórum, 18. 9. 2014 Koordinuje: Ústav fyziky materiálů AV ČR, v. v. i. 1 Ústav fyziky materiálů, AV ČR, v. v. i. Zkoumat a objasňovat vztah mezi chováním a vlastnostmi materiálů a jejich strukturními charakteristikami Dlouholetá

Více

HISTORIE CHEMIE. Výukový materiál pro vybrané základní školy v rámci projektu

HISTORIE CHEMIE. Výukový materiál pro vybrané základní školy v rámci projektu HISTORIE CHEMIE Výukový materiál pro vybrané základní školy v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ Číslo projektu: CZ.1.07/1.1.16/02.0018

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

Potravinářské aplikace

Potravinářské aplikace Potravinářské aplikace Nanodisperze a nanokapsle Funkční složky (např. léky, vitaminy, antimikrobiální prostředky, antioxidanty, aromatizující látky, barviva a konzervační prostředky) jsou základními složkami

Více

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková

Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Nanotechnologie a nanomateriály ve výuce přírodovědných oborů.

Nanotechnologie a nanomateriály ve výuce přírodovědných oborů. Nanotechnologie a nanomateriály ve výuce přírodovědných oborů. Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně Březen 2014 UJEP PřF, PF, FF, FSE, FVTM, FZS, FUD Nové objekty kampusu UJEP 2012

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Symbióza světa technologií a knihoven

Symbióza světa technologií a knihoven Konference Elektronické služby knihoven III. Krajská knihovna Františka Bartoše ve Zlíně Symbióza světa technologií a knihoven Richard Papík http://www.linkedin.com/in/papik http://www.facebook.com/richard.papik

Více

Vozítko na solární pohon. Hung Pham Huy, Le Dinh Tuan, Jan Novák 7.A Gymnázium Cheb Nerudova 7

Vozítko na solární pohon. Hung Pham Huy, Le Dinh Tuan, Jan Novák 7.A Gymnázium Cheb Nerudova 7 Vozítko na solární pohon Hung Pham Huy, Le Dinh Tuan, Jan Novák 7.A Gymnázium Cheb Nerudova 7 Krátký souhrn projektu: Náš tým věří, že perspektiva lidstva leží v obnovitelných zdrojích. Proto jsme se rozhodli

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Ověření ve výuce Třída 8. A Datum: 12. 6. 2013 Pořadové číslo 20 1 Vědci Předmět: Ročník: Jméno autora: Fyzika

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_467A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí. Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

5. Materiály pro MAGNETICKÉ OBVODY

5. Materiály pro MAGNETICKÉ OBVODY 5. Materiály pro MAGNETICKÉ OBVODY Požadavky: získání vysokých magnetických kvalit, úspora drahých kovů a náhrada běžnými materiály. Podle magnetických vlastností dělíme na: 1. Diamagnetické látky 2. Paramagnetické

Více

Název školy: SPŠ Ústí nad Labem, středisko Resslova

Název školy: SPŠ Ústí nad Labem, středisko Resslova Název školy: SPŠ Ústí nad Labem, středisko Resslova Číslo projektu: CZ.1.07/1.5.00/34.10.1036 Klíčová aktivita: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Digitální učební materiály Autor:

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011 FeCoNi Prvky 8. B skupiny FeCoNi Valenční vrstva: x [vzácný plyn] ns 2 (n-1)d 6 x [vzácný plyn] ns 2 (n-1)d 7 x [vzácný plyn] ns 2 (n-1)d 8 Tomáš Kekrt 17.12.2011 SRG Přírodní škola o. p. s. 2 FeCoNi Fe

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

Kovy budoucnosti zlato, platina, titan Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost:

Kovy budoucnosti zlato, platina, titan Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_03_20

Více

Projekt realizovaný na SPŠ Nové Město nad Metují

Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Kde se vzala v Asii ropa?

Kde se vzala v Asii ropa? I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 24 Kde se vzala v Asii ropa? Pro

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

Přírodní radioaktivita

Přírodní radioaktivita Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají

Více

Nano a mikrotechnologie v chemickém inženýrství. Energie VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ

Nano a mikrotechnologie v chemickém inženýrství. Energie VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Nano a mikrotechnologie v chemickém inženýrství Energie VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Energie Nano a mikro technologie v chemickém inženýrství vyvíjí: Úložiště

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ

1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1.1 SVAŘOVACÍ DRÁTY Jako přídavný materiál se při plamenovém svařování používá drát. Svařovací drát podstatně ovlivňuje jakost svaru. Drát se volí vždy podobného

Více

Profil knihovního fondu Státní technické knihovny

Profil knihovního fondu Státní technické knihovny Profil knihovního fondu Státní technické knihovny Stupeň Druhy informačních pramenů Retrospektiva Tematické vymezení MDT úplnosti Počet exemplářů - domácí/zahraniční doplňování doplň. I. TECHNICKÉ OBORY

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 78-42-M/01 Technické lyceum STROJNICTVÍ 1. Mechanické vlastnosti materiálů 2. Technologické vlastnosti materiálů 3. Zjišťování

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

Fysika a zkoumání živého

Fysika a zkoumání živého XIII. VALNÉ SHROMÁŽDĚNÍ UČENÉ SPOLEČNOSTI ČESKÉ REPUBLIKY KAROLINUM 15. KVĚTNA 2007 Fysika a zkoumání živého B. Velický, MFF KU Několik poznámek fysika, který se sám zkoumání živého nikdy neúčastnil Základní

Více

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2)

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) KLÍČOVÁ SDĚLENÍ Studie WETO-H2 rozvinula referenční projekci světového energetického systému a dvouvariantní scénáře, případ omezení uhlíku

Více

Organická chemie. Organická chemie, modifikace uhlíku

Organická chemie. Organická chemie, modifikace uhlíku Šablona č. I, sada č. 2 Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Člověk a příroda Chemie Organická chemie Uhlík Ročník 8. Anotace Aktivita slouží k upevnění učiva na téma uhlík. Určeno pro

Více

optické vlastnosti polymerů

optické vlastnosti polymerů optické vlastnosti polymerů V.Švorčík, vaclav.svorcik@vscht.cz Definice světelného paprsku světlo se šíří ze zdroje podél přímek (paprsky) Maxwell: světlo se šířív módech (videch) = = jediná možná cesta

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 25. 7. 2002, č. j. 23 852/2002-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

Přírodopis 9. Přehled minerálů PRVKY

Přírodopis 9. Přehled minerálů PRVKY Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),

Více

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH

ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Projekt ÚSTAV FYZIKÁLNÍ BIOLOGIE JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PŘIHLÁŠKA STUDENTSKÉHO PROJEKTU Název projektu: Návrh a implementace procesu zpracování dat, formát MzXML Uchazeč Hlavní řešitel

Více

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu Subjekt Speciální ZŠ a MŠ Adresa U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu OP Vzdělávání pro konkurenceschopnost Číslo výzvy 21 Název výzvy Žádost o fin. podporu

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice Životní prostředí a doprava Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Martin Weiter vedoucí 2. výzkumného programu, proděkan

Martin Weiter vedoucí 2. výzkumného programu, proděkan Martin Weiter vedoucí 2. výzkumného programu, proděkan Název projektu: Centra materiálového výzkumu na FCH VUT v Brně Cíl projektu: Vybudování špičkově vybaveného výzkumného centra s názvem Centrum materiálového

Více

Český výzkum v evropském měřítku české know-how v CERN

Český výzkum v evropském měřítku české know-how v CERN Český výzkum v evropském měřítku české know-how v CERN Jiří Chýla místopředseda Výboru pro spolupráci ČR s CERN Fyzikální ústav Akademie věd České republiky Základní fakta o CERN Charakter výzkumu v CERN

Více

Koloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti?

Koloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Koloidní zlato Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Dominika Jurdová Gymnázium Velké Meziříčí, D.Jurdova@seznam.cz Tereza Bautkinová Gymnázium Botičská, tereza.bautkinova@gybot.cz

Více

Vědci se zabývali nanotechnologiemi i reakcemi bakterií a virů na extrémní prostředí stratosféry

Vědci se zabývali nanotechnologiemi i reakcemi bakterií a virů na extrémní prostředí stratosféry Vědci se zabývali nanotechnologiemi i reakcemi bakterií a virů na extrémní prostředí stratosféry Dne 15. května 2015 se v Žilině setkal realizační tým projektu SPOLEČNĚ PRO VÝZKUM, ROZVOJ A INOVACE (SpVRI)

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Střední odborné učiliště Domažlice, škola Stod, Plzeňská 322, 33301 Stod

Střední odborné učiliště Domažlice, škola Stod, Plzeňská 322, 33301 Stod Střední odborné učiliště Domažlice, škola Stod, Plzeňská 322, 33301 Stod Registrační číslo projektu : Číslo DUM : CZ.1.07./1.5.00/34.0639 VY_32_INOVACE_04.02 Tématická oblast : Inovace a zkvalitnění výuky

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Prognóza budoucnosti. RNDr.Bohumír Štědroň,CSc.

Prognóza budoucnosti. RNDr.Bohumír Štědroň,CSc. Prognóza budoucnosti RNDr.Bohumír Štědroň,CSc. 2012 Myslíte si, že je to scifi? V roce 1905 vypadalo scifi takto: Televize Video Počítače Lety do vesmíru Mobilní telefon Mikrovlnná trouba Internet Roboti

Více

ROBOTICKÝ POPELÁŘ. Jan Dimitrov, Tomáš Kestřánek. VOŠ a SPŠE Františka Křižíka Na Příkopě 16, Praha 1

ROBOTICKÝ POPELÁŘ. Jan Dimitrov, Tomáš Kestřánek. VOŠ a SPŠE Františka Křižíka Na Příkopě 16, Praha 1 Středoškolská technika 2014 Setkání a prezentace prací středoškolských studentů na ČVUT ROBOTICKÝ POPELÁŘ Jan Dimitrov, Tomáš Kestřánek VOŠ a SPŠE Františka Křižíka Na Příkopě 16, Praha 1 Anotace Cílem

Více

Diamonds are forever

Diamonds are forever Diamonds are forever technologie spojuje čistotu a hygienu klasické úpravy vody s příjemným pocitem bezchlorové úpravy vody. Inovativní AQUA DIAMANTE soda technologie je založená na aktivaci kyslíku z

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

Uhlík a síra CH_102_Uhlík a síra Autor: PhDr. Jana Langerová

Uhlík a síra CH_102_Uhlík a síra Autor: PhDr. Jana Langerová Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Metody studia morfologie nanokompozitů polymer/jíl. Martin Bětík

Metody studia morfologie nanokompozitů polymer/jíl. Martin Bětík Metody studia morfologie nanokompozitů polymer/jíl Martin Bětík Bakalářská práce 2006 Tímto b y c h c h těl p o děkovat především mé v e d o u c í b akalářské p r á ce I n g. Lucii Kovářové, Ph.D. z

Více

Pouliční LED lampy nové generace

Pouliční LED lampy nové generace FUN LIGHT AMUSEMENTS, s.r.o. Bubenská 1536, Praha 7 Pracoviště : Pražská 298, Brandýs nad Labem Pouliční LED lampy nové generace 2012 1. Pouliční LED osvětlení Pouliční LED lampa Ledcent Pouliční osvětlení

Více

Evropský inovační prostor versus globální inovace

Evropský inovační prostor versus globální inovace Evropský inovační prostor versus globální inovace Josef F. Palán Bankovní institut vysoká škola Cíl a metodika zpracování Cílem příspěvku je poukázat na inspirativní inovační modelové přístupy uplatňované

Více

1. VÍTEJTE V NANOSVĚTĚ

1. VÍTEJTE V NANOSVĚTĚ 1. VÍTEJTE V NANOSVĚTĚ Oblast nanosvěta je území částic a struktur, které se nachází mezi světem jednotlivých atomů a makrosvětem. Rozsah velikostí, o němţ je zde řeč, je v intervalu mezi asi 1 nm aţ 100

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2. 10 Základní části strojů Kapitola 29

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

1. přednáška Úvod do nanomateriálů a nanotechnologie, úvod do textilních nanomateriálů

1. přednáška Úvod do nanomateriálů a nanotechnologie, úvod do textilních nanomateriálů 1. přednáška Úvod do nanomateriálů a nanotechnologie, úvod do textilních nanomateriálů Eva Košťáková KNT, FT, TUL eva.kostakova@tul.cz NAVAZUJÍCÍ MAGISTERSKÝ PŘEDMĚT Název předmětu: Fyzikální principy

Více