Projekt realizovaný na SPŠ Nové Město nad Metují
|
|
- Štěpán Holub
- před 9 lety
- Počet zobrazení:
Transkript
1 Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr ing. Jan Šritr 2 1
2 Vodní kola pracují při větším i menším plnění takřka při stejném výkonu. U turbín při menším plnění klesá výkon a účinnost. Proto jsou vodní kola vhodná do lokalit s proměnlivým průtokem. Vodní kola jsou méně náchylná na vyšší hladinu spodní vody při větším průtoku, protože dochází k většímu plnění vodního kola, čímž se ztráta vyrovná. Navíc se poměry na vtoku vodního kola nezmění. U turbíny při vyšší hladině spodní vody klesá hodnota spádu, změní se rychlosti proudění, turbínou prochází menší průtočné množství a tím dochází ke snížení výkonu. Lze tedy konstatovat, že vodní kola jsou vhodná pro lokality s nízkým spádem (do 1,5 m) a možným proměnlivým průtokem. Výhodou vodních kol je také to, že při provozu nevadí drobné nečistoty jako listí, ledová tříšť, tráva apod. Výhodou vodního kola je také velká setrvačnost a díky převodům i stálost otáček při kolísání zatížení. A právě převody jsou velkým nedostatkem těchto strojů, protože při pohonu generátoru je třeba volit převod s vysokým převodovým stupněm. ing. Jan Šritr 3 ing. Jan Šritr 4 2
3 Nejlepší představu o rozsahu použití vodních kol vám udělá následující graf. Legenda k barvám: Kola na horní vodu, Bachovo kolo, Zuppinger s přepadem, Zuppinger s voletm, Poncelet. Tmavě vybarvená oblast je použitelná pro turbíny. ing. Jan Šritr 5 ing. Jan Šritr 6 3
4 ing. Jan Šritr 7 ing. Jan Šritr 8 4
5 - podle typu Druh Kaplanova Dériazova Francisova Peltonova skupina Přetlaková Přetlaková Přetlaková Rovnotlaká spád 1 až 75 m 40 až 120 m 1 až 500 m 100 až 2000 m průtok Velký Střední Střední Malý 1 oběžné lopatky, 2 rozváděcí lopatky, 3 tryska, 4 spirální skříň, 5 - savka ing. Jan Šritr 9 Přetlaková turbína - před OK a za ním je stejný tlak. Veškerá tlaková energie se mění v rozváděcím kole v energii kinetickou, v oběžném kole je stejný tlak a kinetické energie se mění v kroutící moment Mk. - před OK je větší tlak než za ním, část tlakové energie se mění v kinetickou energii v rozváděcím kole, zbývající část v oběžním kole. Rovnotlaká turbína ing. Jan Šritr 10 5
6 P G = g. Q T. H u. η T. η Př. η G kde: P G = výkon generátoru v kw při daném průtoku g = gravitační zrychleni, tj. 9,81 m/s 2 Q T = průtok turbínou v m 3 /s = (Q md MZP), přičemž je omezen maximálním průtokem turbínou (hltností) a minimálním průtokem turbínou H u = čistý spád MVE v m (při daném průtoku) η T = účinnost konkrétní turbíny η Př = účinnost převodu η G = účinnost generátoru ing. Jan Šritr 11 Vodním dílem "silotvorným" máme na mysli veškeré stavební i strojní zařízení, které je nutné pro využití energie vody v určitém úseku vodního toku a její přeměnu na mechanickou práci. Vodní dílo má energii přírodního toku v maximální možné míře zužitkovat. Tato přeměna se však děje pouze ve vodním motoru (vodní kolo, turbína). Úkolem ostatních částí vodního díla je dopravit k tomuto motoru bez odporu potřebné množství neznečištěné vody a při tom neztratit nic ze získaného spádu. ing. Jan Šritr 12 6
7 ing. Jan Šritr 13 ing. Jan Šritr 14 7
8 ing. Jan Šritr 15 Šikmý betonový jez s prohloubeným vývařištěm: Jez (nazývaný v místním názvosloví i stav, splav, či hatě) slouží k vzedmutí a stabilizaci vodní hladiny v říčním korytě. Díky tomu je možné určitou část vody odebírat mimo hlavní řečiště. Jez přehrazuje vodní tok v určité vzdálenosti pod bodem počátku vodního práva. Vzdálenost je zvolená tak, aby nadržená voda v tomto bodě nestoupla. U derivačního vodního díla má jez jen takovou výšku, jaká je nezbytná pro vedení vody náhonem. ing. Jan Šritr 16 8
9 Vodní dílo využívá rozdíl hladin mezi body A a B. Celý spád se získá vzdutím vody na jezu. Strojovna u tohoto typu díla stojí přímo na břehu hlavního toku. Voda je odebírána hned na jezu a zpět se vrací za jeho vývařiště. Jez musí být vysoký. Všechny stavby stojí přímo v hlavním toku. Odpadá dlouhý náhon i odpadní kanál. Toto dílo je vhodné pro malé spády a velké průtoky. ing. Jan Šritr 17 ing. Jan Šritr 18 9
10 1-Strojovna 2-Turbína 3-Sací roura 4-Deskový uzávěr 5-Kulový uzávěr 6-Hradící deska 7-Přivaděč 8-Hráz (přehradní zeď) ing. Jan Šritr Přiváděcí potrubí 2. Vyrovnávací nádrž 3. Strojovna 4. Pojišťovací ventily ing. Jan Šritr 20 10
11 ing. Jan Šritr 21 ing. Jan Šritr 22 11
12 ing. Jan Šritr 23 Horní nádrž ing. Jan Šritr 24 12
13 Dolní nádrž ing. Jan Šritr 25 Část reverzního soustrojí elektrárny ing. Jan Šritr 26 13
14 ing. Jan Šritr 27 Oběžné kolo při montáži ing. Jan Šritr 28 14
15 Originál kresby z patentu (rok 1880) ing. Jan Šritr 29 ing. Jan Šritr 30 15
16 ing. Jan Šritr 31 ing. Jan Šritr 32 16
17 ing. Jan Šritr 33 Francisova turbína HYDROHROM Je určena pro spády od 20m do 100m. Vyrábí se v horizontálním a vertikálním provedení a to výhradně s přímým spojením na generátor. Turbina má vlastní uložení, nebo je oběžné kolo přímo na hřídeli generátoru. Oběžné kolo je vyrobeno pomocí technologie přesného lití a digitálně zpracovaný model vytvořen pomocí CNC technologie. ing. Jan Šritr 34 17
18 ing. Jan Šritr 35 Má vyšší účinnost než Francisova turbína, ale je výrazně složitější a dražší. Používá se pro spády od 1 do 70 m (což je spád na vodní elektrárně na Orlíku) a průtoky 0,15 až několik desítek m 3 /s. Největší hltnost na světě mají Kaplanovy turbíny na vodní elektrárně Gabčíkovo na Dunaji a to až 636 m 3 /s, při spádu 12,88 24,20 m. Obecně se dá říct, že se používá především na malých spádech při velkých průtocích, které nejsou konstantní. V závislosti na rozdílu hladin může být instalována buď se svislou nebo s vodorovnou osou otáčení. ing. Jan Šritr 36 18
19 ing. Jan Šritr 37 ing. Jan Šritr 38 19
20 ing. Jan Šritr 39 ing. Jan Šritr 40 20
21 Odolnost proti kavitaci: - vhodné materiály lopatek popř. navařování nebo plátování exponovaných míst jakostním materiálem. ing. Jan Šritr 41 21
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ_20.7. Autor: Ing. Luboš Veselý Datum vytvoření: 13. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
pevné, přivádí-li vodu do oběžného kola na celém obvodě, nazývá se rozváděcí kolo,
1 VODNÍ TURBÍNY Zařízení měnící energii vody v energii pohybovou a následně v mechanickou práci. Hlavními částmi turbín jsou : rozváděcí ústrojí oběžné kolo. pevné, přivádí-li vodu do oběžného kola na
Rotační výsledkem je otáčivý pohyb (elektrické nebo spalovací #5, vodní nebo větrné
zapis_energeticke_stroje_vodni08/2012 STR Ga 1 z 5 Energetické stroje Rozdělení energetických strojů: #1 mění pohyb na #2 dynamo, alternátor, čerpadlo, kompresor #3 mění energii na #4 27. Vodní elektrárna
Elektroenergetika 1. Vodní elektrárny
Vodní elektrárny Využití vodního toku Využití potenciální (polohové a tlakové) a čátečně i kinetické energie vodního toku Využití hydroenergetického potenciálu vodních toků má výhody oproti jiným zdrojům
Víte, jak funguje malá vodní elektrárna?
Víte, jak funguje malá vodní elektrárna? Malými vodními elektrárnami rozumíme vodní elektrárny o výkonu menším než 10 MW. Používají se k výrobě elektřiny pro osobní potřebu, pro průmyslové účely i k dodávkám
Hydroenergetika (malé vodní elektrárny)
Hydroenergetika (malé vodní elektrárny) Hydroenergetický potenciál ve světě evaporizace vody (¼ solární energie) maximální potenciál: roční srážky 10 17 kg prum výška kontinetálního povrchu nad mořem =
Inovace a zkvalitnění výuky prostřednictvím ICT Lopatkové stroje VODNÍ TURBÍNY - ROZDĚLENÍ Ing. Petr Plšek Číslo: VY_32_INOVACE_ Anotace:
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Lopatkové stroje VODNÍ TURBÍNY - ROZDĚLENÍ Ing. Petr
Předmět: Stavba a provoz strojů Ročník: 4.
Předmět: Stavba a provoz strojů Ročník: 4. Anotace: Tento digitální učební materiál poskytuje ucelený přehled o základních typech lopatkových strojů, v tomto díle o turbínách. Diskutovány jsou jednotlivé
Pro rozlišování různých typů hydraulických turbín se vžilo odvozené kritérium tzv. hydraulické podobnosti měrné otáčky
Hydroenergetika Rozvoj prvních civilizací byl spojen s využíváním vodní energie. Stagnující vývoj vodních strojů výrazně urychlila první průmyslová revoluce. V 19. století se začala prosazovat Francisova
Využití vodní energie Doc. Ing. Aleš Havlík, CSc.
Využití vodní energie Doc. Ing. Aleš Havlík, CSc. Historie využití vodní energie Starověk čerpání vody do závlahových kanálů pomocí vodního kola. 6. století vodní kola ve Francii 1027 mlýnský náhon vytesaný
Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s.
Malé vodní elektrárny - proč, kde a jak? ALTERNATIVNÍ ENERGIE 6/2001 Libor Šamánek, Česká asociace pro obnovitelné energie, o.p.s. Brno Česká republika je svou geografickou polohou (leží na rozvodí tří
2. Vodní dílo HORKA. MĚSTSKÝ ÚŘAD OSTROV Starosta města. Příl. č.1k části B4.10 Krizového plánu určené obce Ostrov č. j.: 9-17/BR/09 Počet listů: 3
2. Vodní dílo HORKA POLOHA Tok Libocký potok říční km 10,4 hydrologické pořadí 1-13-01-080 Obec Krajková, Habartov, Nový Kostel Okres Cheb, Sokolov Kraj Karlovarský Vodní dílo (VD) je vybudováno jako samostatné
LOPATKOVÉ STROJE LOPATKOVÉ STROJE
Předmět: Ročník: Vytvořil: Datum: STROJÍRENSTVÍ ČTVRTÝ BIROŠČÁKOVÁ I. 22. 11. 2013 Název zpracovaného celku: LOPATKOVÉ STROJE LOPATKOVÉ STROJE Lopatkové stroje jsou taková zařízení, ve kterých dochází
Malá vodní elektrárna
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT Malá vodní elektrárna Tomáš Bubeníček Vyšší odborný škola a střední průmyslová škola stavební Praha Dušní 17 Praha
8. Vodní dílo STANOVICE
8. Vodní dílo STANOVICE POLOHA Tok Lomnický potok říční km 3,2 hydrologické pořadí 1-13-02-030 Obec Stanovice Okres Karlovy Vary Kraj Karlovarský Vodní dílo (VD) je součástí vodohospodářské soustavy Stanovice
Účel vodního díla. Kategorie vodního díla. Základní technické parametry vodního díla
Přehrada Seč na Chrudimce v ř.km 50,722 Stručná historie výstavby vodního díla Řeka Chrudimka má při své celkové délce téměř 109 kilometrů výškový rozdíl pramene a ústí 470 m, tj, 4,7, a průtoky před výstavbou
VYUŽITÍ ENERGIE VODNÍHO SPÁDU
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 VYUŽITÍ ENERGIE VODNÍHO SPÁDU
STREN turbína typu NTR je náporová točivá parní redukce určena k redukci tlaku páry a následné výrobě elektrické energie.
STREN turbína typu NTR je náporová točivá parní redukce určena k redukci tlaku páry a následné výrobě elektrické energie. STREN turbína automaticky redukuje tlak středotlaké páry na požadovanou hodnotu
Přehrada Křižanovice na Chrudimce v ř. km 37,150
Přehrada Křižanovice na Chrudimce v ř. km 37,150 Stručná historie výstavby vodního díla Řeka Chrudimka má při své celkové délce téměř 109 kilometrů výškový rozdíl pramene a ústí 470 m, tj, 4,7, a průtoky
Malé vodní elektrárny PLZEŇSKO
Malé vodní elektrárny PLZEŇSKO Darová Řeka Berounka, největší vodní tok na Plzeňsku, byla využívána už ve středověku k pohonu mlýnů a pil. Řeka má poměrně malý spád, ale po větší část roku dost velký průtok
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_52_INOVACE_ SZ_20. 8 Autor: Ing. Luboš Veselý Datum vytvoření: 14. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
Technologie výroby elektrárnách. Základní schémata výroby
Technologie výroby elektrárnách Základní schémata výroby Kotle pro výroby elektřiny Získávání tepelné energie chemickou reakcí fosilních paliv: C + O CO + 33910kJ / kg H + O H 0 + 10580kJ / kg S O SO 10470kJ
MALÉ VODNÍ ELEKTRÁRNY KAŠNOVÉHO TYPU.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE MALÉ VODNÍ ELEKTRÁRNY KAŠNOVÉHO TYPU. SMALL
Ústav zemědělské, potravinářské a environmentální techniky. Ing. Zdeněk Konrád Energie vody. druhy, zařízení, využití
Ústav zemědělské, potravinářské a environmentální techniky Ing. Zdeněk Konrád 17.4.2008 Energie vody druhy, zařízení, využití Kapitola 1 strana 2 Voda jako zdroj mechanické energie atmosférické srážky
ALTERNATIVNÍ ZDROJE ENERGIE - průtočné, přílivové a přečerpávací elektrárny, vodíkový palivový článek (interaktivní tabule)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 ALTERNATIVNÍ ZDROJE ENERGIE - průtočné, přílivové a přečerpávací elektrárny, vodíkový palivový článek (interaktivní tabule)
Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ
21 HYDROENERGETICKÉ VYUŽITÍ VELMI MALÝCH SPÁDŮ V ZÁVISLOSTI NA EKONOMICKÉ EFEKTIVITĚ Stanislav Hes ČVUT v Praze Fakulta elektrotechnická Katedra elektroenergetiky 1. Úvod do problematiky V dnešní době
Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla
Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla M. Jahoda Lopatkové stroje - rozdělení 2 a) Dle způsobu práce generátory turbíny potenciální, kinetická energie mechanická energie na hřídeli
NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ. Revolvingový fond Ministerstva životního prostředí. Výukové materiály projektu VODNÍ ENERGIE
Výukové materiály projektu NAUČÍME VÁS, JAK BÝT EFEKTIVNĚJŠÍ VODNÍ ENERGIE Výukové materiály vznikly za finanční pomoci Revolvingového fondu Ministerstva životního prostředí. Za jejich obsah zodpovídá
Osnova kurzu. Výroba elektrické energie. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie větru Slunce
11. Hydraulické pohony
zapis_hydraulika_pohony - Strana 1 z 6 11. Hydraulické pohony Převádí tlakovou energii hydraulické kapaliny na #1 Při přeměně energie dochází ke ztrátám ztrátová energie se mění na #2 Rozdělení: a) #3
Vodohospodářské stavby BS001. Přehrady a využití vodní energie
CZ.1.07/2.2.00/15.0426 Posílení kvality bakalářského studijního programu Stavební Inženýrství Vodohospodářské stavby BS001 Přehrady a využití vodní energie Harmonogram přednášek 1. Úvod a základní informace
MALÁ VODNÍ ELEKTRÁRNA NOVÉ MLÝNY - OSTROV
Středoškolská technika 2018 Setkání a prezentace prací středoškolských studentů na ČVUT MALÁ VODNÍ ELEKTRÁRNA NOVÉ MLÝNY - OSTROV Adéla Platilová, David Jirásek Střední odborná škola a Střední zdravotnická
ČVUT v Praze, FSV VN SOBĚNOV Tomáš Vaněček, sk. V3/52 VODNÍ NÁDRŽ SOBĚNOV. Tomáš Vaněček Obor V, 3. ročník, 2007-2008. albey@seznam.
VODNÍ NÁDRŽ SOBĚNOV Tomáš Vaněček Obor V, 3. ročník, 2007-2008 albey@seznam.cz 1 Obsah: ÚVOD...3 HISTORIE VÝSTAVBY...3 TECHNICKÉ PARAMETRY...4 NÁDRŽ...4 HRÁZ...4 ELEKTRÁRNA...4 ČÁSTI VODNÍHO DÍLA...5 PŘEHRADA...6
VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ
ENERSOL 2016 VZDĚLÁVACÍ PROJEKT NA TÉMATA OBNOVITELNÝCH ZDROJŮ ENERGIE, ÚSPORY ENERGIÍ A SNIŽOVÁNÍ EMISÍ V DOPRAVĚ Kategorie projektu: Enersol a praxe STŘEDOČESKÝ KRAJ Jméno, příjmení žáka: Anna Hlavničková
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 2.část KOMÍNSKÝ JEZ - NÁVRH RYBÍHO PŘECHODU A VODÁCKÉ PROPUSTI SO 03.3.2 - TECHNICKÁ ZPRÁVA 1.1. NÁVRH UMÍSTĚNÍ RYBÍHO PŘECHODU...
Kde se MVE Bělov nachází?
Kde se MVE Bělov nachází? MVE Bělov leží nedaleko obce Bělov, která se nachází ve Zlínském kraji, nedaleko od města Zlína a Otrokovic. Leží na levém břehu řeky Moravy, přesněji na ř.km 166,77. Řeka Morava
ZADÁNÍ ROZSAHU DÍLA. Výpustná a odběrná zařízení. Základní údaje:
ZADÁNÍ ROZSAHU DÍLA Základní údaje: Název stavby : VD HORNÍ BEČVA optimalizace provozu MVE Číslo akce : 513 147 TEC Vodní tok : Rožnovská Bečva v km 32,1 Číslo hydrologického pořadí: 4-11-01-094 Kraj:
Využití vodní energie Pracovní list
Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Ročník 2. Autor Datum výroby
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Energie větru 2 1 Energie
Zásady křížení vodních toků a komunikací Doc. Ing. Aleš Havlík, CSc.
Zásady křížení vodních toků a Doc. Ing. Aleš Havlík, CSc. Respektování vodohospodářských zájmů Návrh křížení musí respektovat : Bezpečnost ochranných hrází. Splaveninový režim toku a stabilitu koryta toku.
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje MODUL 03- TP ing. Jan Šritr 1) Hydrodynamický měnič
PŘESTAVBA MLÝNA NA MALOU VODNÍ ELEKTRÁRNU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PŘESTAVBA MLÝNA NA MALOU VODNÍ ELEKTRÁRNU
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektromechaniky a výkonové elektroniky BAKALÁŘSKÁ PRÁCE Návrh malé vodní elektrárny David Ranc 2014 Prohlášení Prohlašuji, že jsem tuto
11. Obnovitelné zdroje energie, energie vody a větru 11.1 Obnovitelný a neobnovitelný zdroj energie
11. Obnovitelné zdroje energie, energie vody a větru 11.1 Obnovitelný a neobnovitelný zdroj energie K velkým problémům lidstva v současné době patří zajišťování jeho energetických potřeb. Energetická potřeba
ALTERNATIVNÍ ZDROJE ENERGIE
ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Technická fakulta ČZU Praha Autor: Jan Chyba Semestr: letní Vodní elektrárna za pomoci Peltonovy turbíny (s malým výkonem)
Technická fakulta ČZU Praha Autor: Jan Chyba Semestr: letní 2007 Vodní elektrárna za pomoci Peltonovy turbíny (s malým výkonem) Peltonova turbína Peltonova turbína je rovnotlaká tangenciální turbína. Voda
SO JEZ KOMÍN REKONSTRUKCE v ř. km 44,334 (TPE km 52,700 SVITAVA)
PŘÍRODĚ BLÍZKÁ POP A REVITALIZACE ÚDOLNÍ NIVY HLAVNÍCH BRNĚNSKÝCH TOKŮ 3.část SO 03.3.1. JEZ KOMÍN REKONSTRUKCE v ř. km 44,334 (TPE km 52,700 SVITAVA) Rok výstavby 1923 Vlastník jezu: Povodí Moravy, s.p.,
Středoškolská technika Přečerpávací vodní elektrárna
Středoškolská technika 2019 Setkání a prezentace prací středoškolských studentů na ČVUT Přečerpávací vodní elektrárna Eva Hlavová Gymnázium Botičská Botičská 1, Praha 2 Prohlášení Poděkování Anotace
Elektrárny A1M15ENY. přednáška č. 10. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6
Elektrárny A1M15ENY přednáška č. 10 Jan Špetlík spetlij@fel.cvut.cz -v předmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická, 166 7 Praha 6 Množství paliva: Množství síry
Model a animace Kaplanovy přímoproudé turbíny
Středoškolská technika 2016 Setkání a prezentace prací středoškolských studentů na ČVUT Model a animace Kaplanovy přímoproudé turbíny Pavel Imlauf Integrovaná střední škola, 2.ročník Kumburská 846, 509
Malá vodní elektrárna Kamenný Přívoz
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor SOČ: 7. Zemědělství, potravinářství, lesní a vodní hospodářství Malá vodní elektrárna Kamenný Přívoz Jan Jícha Kraj: Středočeský Neveklov 2015 STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST
Návrh malé vodní elektrárny Salavice
Návrh malé vodní elektrárny Salavice Petr Volný Analýza potravin, 3. ročník SSOŠ Jihlava, K. Světlé 2, Jihlava, 586 01 Úvod Z mnoha témat, která jsem zvažoval, jsem nakonec vybral malé vodní elektrárny
Mohelenská hadcová step - národní přírodní rezervace tyčící se nad meandrem řeky Jihlavy nazývaným Čertův ocas. Rezervace má rozlohu 59,23 ha, z
Mohelenská hadcová step - národní přírodní rezervace tyčící se nad meandrem řeky Jihlavy nazývaným Čertův ocas. Rezervace má rozlohu 59,23 ha, z čehož 50,34 ha tvoří zvláště chráněné území. Hadcová step
MVE Hrubá Voda. Projekt na prodej. Popis projektu
Popis projektu 31.3.2015 Č. dokumentu 12030 Vypracoval: Ing. Karel Kraml MVE Hrubá Voda s.r.o. Na Květnici 13 Praha 4, PSČ 140 00 gsm +420 774 859 089 karelkraml@gmail.com PARÉ... Obsah 1. Popis projektu...
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE POSOUZENÍ PROBLEMATIKY PŘEČERPÁVACÍCH VODNÍCH
LAMELOVÁ ČERPADLA V3/25
Q-HYDRAULIKA LAMELOVÁ ČERPADLA V3/25 velikost 25 do 10 MPa 25 dm 3 /min WK 102/21025 2004 Lamelová čerpadla typu PV slouží jako zdroj tlakového oleje v hydraulických systémech. VÝHODY snadné spuštění díky
DOOSAN ŠKODA POWER. pro jaderné elektrárny ŠKODA POWER. Jiří Fiala Ředitel Globálního R&D centra Doosan Škoda Power
DOOSAN ŠKODA POWER pro jaderné elektrárny Jiří Fiala Ředitel Globálního R&D centra Doosan Škoda Power 12.5.2016 ŠKODA POWER Historie turbín ŠKODA Významné osobnosti historie parních turbín ŠKODA Prof.
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Posouzení možnosti stavby malé vodní elektrárny vedoucí práce: Prof. Ing. Jan Mühlbacher, CSc.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE ANALÝZA PROVOZU MVE KNÍNIČKY A MVE KOMÍN ANALYSIS
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ Katedra elektroenergetiky a ekologie DIPLOMOVÁ PRÁCE Návrh rekonstrukce vodní elektrárny vedoucí práce: Prof. Ing. Jan Mühlbacher, CSc. 2013 autor:
TC BQO SIGMA PUMPY HRANICE 426 2.98 81.03
SIGMA PUMPY HRANICE ČERPADLOVÉ TURBÍNY SIGMA PUMPY HRANICE, s.r.o. Tovární 605, 753 01 Hranice tel.: 0642/261 111, fax: 0642/202 587 Email: sigmahra@sigmahra.cz TC BQO 426 2.98 81.03 Použití Čerpadlové
Využití vodní energie vodní elektrárny. Dr. Ing. Petr Nowak ČVUT v Praze Fakulta stavební Katedra hydrotechniky
Využití vodní energie vodní elektrárny Dr. Ing. Petr Nowak ČVUT v Praze Fakulta stavební Katedra hydrotechniky Typy energetických zdrojů klasické fosilní - uhlí, plyn, ropa jaderné obnovitelné vodní energie
KATALOGOVÝ LIST KM b PODAVAČ ROTAČNÍ PRD 400 Vydání: 5/02 Strana: 1 Stran: 5
KATALOGOVÝ LIST KM 12 1336b PODAVAČ ROTAČNÍ PRD 400 Vydání: 5/02 Strana: 1 Stran: 5 Rotační podavač typu PRD velikosti 400 (dále jen podavač) je v protivýbušném provedení. Slouží k podávání dřevního odpadu
3. Vodní dílo JESENICE
3. Vodní dílo JESENICE POLOHA Tok Odrava říční km 4,17 hydrologické pořadí 1-13-01-066 Obec Cheb Okres Cheb Kraj Karlovarský Vodní dílo (VD) Jesenice je nedílnou součástí vodohospodářské soustavy Skalka
21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing.jan Šritr ing.jan Šritr 2 1 Lopatkové
Elektrárny. Malé vodní elektrárny ve vodárenských provozech
Elektrárny Malé vodní elektrárny ve vodárenských provozech Malé vodní elektrárny Výhody MVE jednoduchost, spolehlivost, dlouhá životnost nízké provozní náklady plně automatizované rozptýlenost - omezení
Malé zdroje elektrické energie Vodní energie
1 Vodní energie Vodní energie je považována za energii obnovitelnou. Jejím zdrojem jsou déšť a sníh v koloběhu, udržovaným sluneční energií. Vodní energie se projevuje jako energie potenciální, tlaková
KATALOGOVÝ LIST. Tab. 1 PROVEDENÍ VENTILÁTORU První doplňková číslice
KATALOGOVÝ LIST VENTILÁTOR AXIÁLNÍ PŘETLAKOVÝ APJ 2800 pro větrání silničních tunelů KM 2063/94 Vydání: 12/10 Strana: 1 Stran: 5 Ventilátor axiální přetlakový APJ 2800 (dále jen ventilátor) je určen speciálně
Hydraulické mechanismy 21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03-TP ing.jan Šritr ing.jan Šritr 2 1 ing.jan
Plavební stupeň Děčín Ing. Michael Trnka, CSc.
Plavební stupeň Děčín 4.4.2016 Ing. Michael Trnka, CSc. PLAVEBNÍ STUPEŇ DĚČÍN Projektové sdružení: VPÚ Deco a.s. SWECO Hydroprojekt a.s. Pöyry Environment a.s. (nyní Aquatis a.s.) Vizualizace: Aquatis
Konstrukční řešení generátoru vodní elektrárny. Design Solution of Hydroelectric Power Plant Generator
VŠB Technická univerzita Ostrava Fakulta strojní Katedra zemních, těžebních a stavebních strojů Konstrukční řešení generátoru vodní elektrárny Design Solution of Hydroelectric Power Plant Generator Student:
Sborník technických řešení malých vodních elektráren
Sborník technických řešení malých vodních elektráren 1. Úvod 1.1 Historie malých vodních elektráren (MVE) Vodní energie patří k nejdéle využívaným obnovitelým zdrojům primární energie. První zmínky o využití
VĚTRNÉ ELEKTRÁRNY Tomáš Kostka
VĚTRNÉ ELEKTRÁRNY Tomáš Kostka VĚTRNÁ ELEKTRÁRNA Větrná elektrárna (větrná turbína) využívá k výrobě elektrické energie kinetickou energii větru. Větrné elektrárny řadíme mezi obnovitelné zdroje energie.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV VODNÍCH STAVEB FACULTY OF CIVIL ENGINEERING INSTITUTE OF WATER STRUCTURES STUDIE MVE V LOKALITĚ PARDUBICE SVÍTKOV STUDY
ČKD Blansko Engineering, a.s., Čapkova 2357/5, 678 01 Blansko, Czech Republic, www.cbeas.com SLAVNOSTNÍ OTEVŘENÍ HYDRAULICKÉ LABORATOŘE
zpravodaj 04/2008 ČKD Blansko Engineering, a.s., Čapkova 2357/5, 678 01 Blansko, Czech Republic, www.cbeas.com SLAVNOSTNÍ OTEVŘENÍ HYDRAULICKÉ LABORATOŘE V pátek 29. srpna 2008 byla za účasti ministra
Projection, completation and realisation. MVH Vertikální odstředivá kondenzátní článková čerpadla
Projection, completation and realisation Vertikální odstředivá kondenzátní článková čerpadla Vertikální kondenzátní čerpadla řady Čerpadla jsou určena k čerpání čistých kondenzátů do teploty 220 C s hodnotou
Posouzení provozu plánované MVE Hostěnice
Posouzení provozu plánované MVE Hostěnice Zpracoval: Dr. Ing. Petr Nowak Fakulta stavební Katedra hydrotechniky České vysoké učení technické v Praze V Praze, srpen 2013 1 OBSAH: 1 OBJEDNATEL...3 2 ZADÁNÍ...3
MOŽNOSTI VYUŽITÍ VODNÍ ENERGIE V ČR VODNÍ ELEKTRÁRNY NA LABI
Univerzita Hradec Králové Pedagogická fakulta MOŽNOSTI VYUŽITÍ VODNÍ ENERGIE V ČR VODNÍ ELEKTRÁRNY NA LABI 2015 Jakub Vach Univerzita Hradec Králové Pedagogická fakulta Katedra technických předmětů Možnosti
MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST
MODERNÍ TECHNOLOGIE A DLOUHOLETÁ ZKUŠENOST SVA SAMONASÁVACÍ ČERPADLA SIGMA PUMPY HRANICE, s.r.o. Tovární č.p. 605, 753 01 Hranice I - Město, Česká republika tel.: 581 661 111, fax: 581 661 782 e-mail:
Popis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_ SZ _ 20. 12. Autor: Ing. Luboš Veselý Datum vypracování: 28. 02. 2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu
Vertikální diagonální čerpadla BQDV, BQTV, BQCV
Vertikální diagonální čerpadla,, BQCV Použití Vertikální čerpadla,, BQCV jsou určena pro dopravu čisté užitkové vody nebo jen mírně zněčištěné povrchové a říční vody. Maximální teplota čerpané vody...
21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - TP ing. Jan Šritr 1 ing. Jan Šritr 2 1 Potrubí
Kondenzátní horizontální nízkotlaká čerpadla CJE, CJT
Řez čerpadlem s dvouvtokovým sacím oběžným kolem.1.1 0.1 17.1 17...1 171 0.. 107 91. 1 1 9 1.1 07.1 07. 0 0 91.1 1.1. 1.1 10.1 0.1 1. 10.1 10. 0.1. 0 07. 11 10. 0. 10.1 Sací těleso S 90 10. Sací těleso
NÁVRH MALÉ VODNÍ ELEKTRÁRNY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE. Využití vodních kol pro výrobu elektřiny
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE Využití vodních kol pro výrobu elektřiny vedoucí práce: Ing. Viktor Majer 2012 autor: Ondřej Choleva
KATALOGOVÝ LIST. Tab. 1 PROVEDENÍ VENTILÁTORU První doplňková číslice
KATALOGOVÝ LIST VENTILÁTOR AXIÁLNÍ PŘETLAKOVÝ APB 2240 pro větrání silničních tunelů KM 2064/94 Vydání: 12/10 Strana: 1 Stran: 5 Ventilátor axiální přetlakový APB 2240 (dále jen ventilátor) je určen speciálně
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov. Budovy a energie Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Budovy a energie Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Energie větru 2 1 Energie
ŠROUBOVÝ ODVODŇOVACÍ LIS KALOVÝCH VOD MP-DW
ŠROUBOVÝ ODVODŇOVACÍ LIS KALOVÝCH VOD MP-DW Katalogový list Výrobce: MIVALT s. r. o. Prokofjevova 23, Brno 623 00, Česká republika, IČ:28262239 Tel.: +420 513 036 228 Mob.: +420 775 660 062 e-mail: mivalt@mivalt.eu
Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc.
Vodní cesty a plavba Doc. Ing. Aleš Havlík, CSc. Vnitrozemská vodní doprava Výhody : Nejméně energeticky náročná. Velké ložné plochy, velká nosnost. Malý poměr hmotnosti lodi k hmotnosti nákladu. Malý
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PŘESTAVBA HISTORICKÉ TECHNICKÉ PAMÁTKY NA
MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE
MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2012 ROMANA ZAČALOVÁ Mendelova univerzita v Brně Agronomická fakulta Ústav aplikované a krajinné ekologie Název bakalářské práce Hodnocení
VENTILÁTORY AXIÁLNÍ PŘETLAKOVÉ
KATALOGOVÝ LIST KM 12 2465 VENTILÁTORY AXIÁLNÍ PŘETLAKOVÉ Vydání: 12/10 APC 1400 a 1800 Strana: 1 pro větrání metra Stran: 8 Ventilátory se používají pro větrání metra a všude tam, kde je požadována reverzace
Masarykovo zdymadlo Střekov na Labi v ř. km 767,679 Stručná historie výstavby vodního díla
Masarykovo zdymadlo Střekov na Labi v ř. km 767,679 Stručná historie výstavby vodního díla Masarykovo zdymadlo pod Střekovem v Ústí nad Labem bylo vybudováno v rámci výstavby vodní cesty na Vltavě a Labi
KATALOGOVÝ LIST KM 2055/93 VENTILÁTOR AXIÁLNÍ PŘETLAKOVÝ APL 6000 Vydání: 12/10 pro chladící věže Strana: 1 Stran: 6
KATALOGOVÝ LIST KM 2055/93 VENTILÁTOR AXIÁLNÍ PŘETLAKOVÝ APL 6000 Vydání: 12/10 pro chladící věže Strana: 1 Stran: 6 Axiální přetlakový ventilátor APL 6000 pro chladící věže (dále jen ventilátor) se používá
Projection, completation and realisation. MHH Horizontální odstředivá kondenzátní článková čerpadla
Projection, completation and realisation Horizontální odstředivá kondenzátní článková čerpadla Horizontální kondenzátní čerpadla řady Čerpadla jsou určena k čerpání čistých kondenzátů a horké čisté vody