Fyziologie živočichů. Prof. Vladimír Šimek Doc. Martin Vácha
|
|
- Ludvík Matoušek
- před 6 lety
- Počet zobrazení:
Transkript
1 Fyziologie živočichů Prof. Vladimír Šimek Doc. Martin Vácha
2 Z čeho studovat? Chodit na přednášky?
3 Test ke zkoušce 4. Které hormony mohou ovlivňovat energetický metabolizmus. Jmenujte hlavní z nich, zmiňte místo sekrece a způsob působení. Příklad správné odpovědi na plný počet bodů: A) Trijodtyronin a Tyroxin ze štítné žlázy zvyšují oxidační děje v mitochodriích a tak i metabolizmus, proteosyntézu, zrání, růst. B) Somatotropin (růstový h.) z adenohypofýzy zvyšuje využívání lipidů a růst. C) Somatostatin z D buněk pankreasu snižuje využívání živin (tlumí sekreci inzulínu a glukagonu, resorpci ve střevě). D) Katecholaminy ze dřeně nadledvin mobilizují energetické rezervy, zvyšují svalový výkon. Podobně E) kortizol z kůry nadledvin.
4 Přehled kapitol: 1. Postavení fyziologie mezi ostatními vědami 2. Fyziologické principy 3. Homeostáza, adaptace a regulace 4. Obecná neurofyziologie 5. Přeměna látek a energií metabolizmus 6. Teplota její vliv a udržování 7. Problém velikosti a proporcí těla 8. Fyziologie pohybu 9. Funkce tělních tekutin 10. Imunitní systém 11. Cirkulace 12. Fyziologie dýchacího systému 13. Fyziologie trávení a vstřebávání 14. Exkrece a osmoregulace 15. Hormonální řízení 16. Nervová soustava 17. Speciální fyziologie smyslů 18. Biorytmy
5 Fyziologie živočichů - kontext
6 Fyziologie živočichů Definice živého: odvodíme nejlépe z funkcí - dynamických procesů, které neživá příroda nemá
7 Definice živého: odvodíme nejlépe z funkcí - dynamických procesů, které neživá příroda nemá: Udržování organizovanosti a integrity, rozmnožování. Využívání látek a energie z okolí. Studium funkcí úkol pro fyziologii
8 Figure 2-37 Molecular Biology of the Cell ( Garland Science 2008)
9 Na sluneční pohon.
10 Živý organismus má svou historii: je výsledkem milionů let evoluce díky variabilitě a přírodní selekci.
11 Na fyziologické vlastnosti se lze dívat ze dvou hledisek: mechanistické vysvětlení jak to funguje (proximátní, tradiční fyziologický přístup) evoluční vysvětlení jak se to vyvinulo, teleologické hledání smyslu Např. svalový třes
12 Na biologické vlastnosti se lze dívat ze dvou hledisek: mechanistické vysvětlení jak to funguje (proximátní, tradiční fyziologický přístup) evoluční vysvětlení jak se to vyvinulo, teleologické hledání smyslu Např. svalový třes Protože znaky pravděpodobně vznikají selekcí, a ty, které překážejí, zmizí. Mluví se tedy o nich jako o adaptacích ty pomáhají zvýšit životaschopnost. Evoluční pohled nabízí teleologická vysvětlení hledání logiky věcí. Odpověď na otázku proč? K čemu dobré?
13 Živý organismus má svou historii: je výsledkem milionů let evoluce díky variabilitě a přírodní selekci. Má svou minulost, která jej limituje. Znaky tedy nemusí být nejlogičtější. Omezení termínu adaptace. Páteř suboptimální design. Inverzní oko obratlovců Proč zrovna 37 C tělesné teploty? Historie a prostředí savců. Lidský genom je zaneřáděn dříve funkčními geny a většina zřejmě nic nekóduje. Některé geny máme po virech a bakteriích!
14 Srovnávací přístup vidí vývojové a environmentální souvislosti
15 Prostředí a historie určují funkční i stavební znaky ve sladké vodě v moři
16 Morfologie a funkce Allenovo a Bergmanovo pravidlo
17 Morfologie a funkce Allenovo a Bergmanovo pravidlo
18 Chování jako adaptace
19 Chování jako adaptace
20 Různá řešení téhož problému
21 Velikost určuje stavbu těla a funkce
22 Čím větší tím úspornější
23 Nejtěžší se dostanou nejdál
24 Těžkého plavce stojí rychlost méně
25 Poměr Povrch/Objem a maximalizace povrchu
26 Velikost limituje funkce
27 Tělesné proporce a nelineární allometrické vztahy. Velký živočich nemůže být zvětšeninou malého. izometrické trojúhelníky
28 Tělesné proporce a nelineární allometrické vztahy. Velký živočich nemůže být zvětšeninou malého. allometrické vztahy
29 Tělesné proporce nelineární allometrické vztahy. Velký živočich nemůže být zvětšeninou malého. allometrické vztahy Limituje: svalový výkon pohyb a opora těla udržování stálosti uvnitř těla energetiku transport difúzí složitost stavby
30 Udržení organizovanosti navzdory chaosu - základní vlastnost živých organizmů. Udržení stálosti vnitřního prostředí - homeostázy. Od jednobuněčných k mnohobuněčným.
31 Homeostáza, adaptace, regulace Podmínky vnitřního a vnějšího prostředí se liší. Mnohobuněčnost živočich si nese pramoře s sebou - možnost života v dalších volných nikách, větší nezávislost. nutnost vzniku infrastruktury organizmu - nutnost údržby vnitřního prostředí
32 Homeostáza, adaptace, regulace Podmínky vnitřního i vnějšího prostředí kolísají. Co je potřeba hlídat pro udržení homeostázy? Zdroje energie Dýchací plyny Odpadní produkty ph Vodu, soli a elektrolyty Objem a tlak Teplotu Sociální parametry
33 Vznik orgánových soustav u mnohobuněčných - péče o stálost vnitřního prostředí
34 Kontaktní rozhraní musí mít velkou plochu střevo ledvinný tubulus kapiláry plíce
35 Optimum a jeho hranice Homeostáza, adaptace, regulace Podmínky vnějšího prostředí kolísají:
36 Různé adaptační strategie na změnu životních podmínek a) Uteč Vyhýbači b) Akceptuj - Konforméři c) Vyreguluj - Regulátoři Volba strategie souvisí s tělní stavbou a velikostí těla.
37 Konformeři a regulátoři.
38 Konformeři a regulátoři.
39 Celková životní strategie zahrnuje mnoho faktorů Neexistuje jediné univerzální, ideální řešení
40 Celková životní strategie zahrnuje mnoho faktorů Neexistuje jediné univerzální, ideální řešení R- stratég: vyšší důraz na rozmnožování a mobilitu potomstva, přičemž kvalita a konkurenceschopnost je odsunuta do pozadí. Rychle roste, rychle se množí, jsou malí, bez péče o potomstvo. Mnoho potomků, velká mortalita. Výhodné v ranných stádiích osidlování. K-stratég je organismus, který ve své životní strategii uplatňuje vyšší důraz na kvalitu a konkurenceschopnost potomstva, přičemž jeho kvantita a mobilita je odsunuta do pozadí. Maximálně využívají stabilní prostředí.
41 Regulace Řídící a obslužné systémy
42 Regulace Kompromis mezi rychlostí a přesností
43 Negativní zpětná vazba jako základní nástroj udržení homeostázy
44 Negativní zpětná vazba jako základní nástroj udržení homeostázy Přesnost regulace: ON-OFF Proporcionální Anticipační Figure 3-57 Molecular Biology of the Cell ( Garland Science 2008)
45 Pozitivní zpětná vazba Když je rychlá změna potřeba: Akční potenciál, tvorba krevní zátky, ovulace, porod, orgasmus
46 Metody fyziologie: od genetických po behaviorální. von Frish
47 Transgenní organismus Genová terapie
48 Elektrofyziologie
49 Neuroetologie Co vidí Drosophila
50 Metabolismus Mikroskopie
51 Molekulární klasika
52 Shrnutí Živý organismus je výsledkem: konkrétního vývoje v konkrétním prostředí Určité velikosti těla Určité životní strategie např. chování, počtu potomků
53 Shrnutí Živé organismy pracují na své údržbě. Koncept homeostázy umožňuje pochopit smysl práce orgánových soustav mnohobuněčných.
54 Shrnutí Negativní zpětná vazba je základním typem homeostatické regulace
55 Udržení organizovanosti navzdory chaosu -základní vlastnost živých organizmů- -Buněčná fyziologie
56 Bariéra a brány
57 Membrána z nepropustného materiálu. Fluidní mozaika. Figure 2-22 Molecular Biology of the Cell ( Garland Science 2008)
58 Bariéra a brány
59 Hlavní membránové struktury buňky
60 Hlavní membránové struktury buňky + cytoskelet
61 Bílkoviny jako brány Bílkoviny flexibilní molekuly: -přenašeči signálů a látek -generátory pohybu -regulační enzymatická aktivita -jedinečnost vazby
62 Funkce membránových bílkovin přenos látek, signálů, fixace na extra a intracelulární struktury.
63 Protein se skládá do kompaktní konformace.
64 Vazba proteinu k jiné molekule je selektivní jedinečnost vazby Protilátka-antigen, vůně-receptor
65 Vazba proteinu (enzymu) k jiné molekule je selektivní a umožní reakci. Enzym - substrát
66 Díky slabým vazbám je možné překlápění alosterické struktury po aktivaci Po vazbě ligandu na receptorové místo Změnou elektrického napětí Mechanickou deformací Enzymatickou fosforilací (kinázou) nebo defosforilací (fosfatázou) (Základ proteinových strojů).
67 Fosforylace proteinu. Fosforylová skupina modifikuje- Zapíná nebo vypíná.
68 Typy transportu
69
70 Usnadněná difuze změna konformace ve funkci brány
71 Kanály mohou regulovat pasivní transport. Jsou mnohem rychlejší než transportéry Mohou být velmi selektivní a řízené různými podněty
72 Strukturu kanálů lze znázornit různě
73 Draslíkový kanál
74 Aktivní transport poháněno E nesenou ATP animation
75
76 Například ATP- H+ pumpa (protonová) Žaludek, lyzozóm, ledvinný tubulus Aktivní transport
77 Sekundární aktivní Transport Můžeš projít, ale vezmi náklad awhill.com/olc/dl/ /bio04.swf
78 ATP syntetáza na vnitřní membráně mitochondrie se točí obráceně Můžeš projít, ale vyrob ATP Animace
79
80 Cytóza aktivní transport velkých množství
81
82 t-snare: docking marker akceptor v-snare: docking marker Coatomer: drží zakřivenou stěnu vezikulu
83 Améboidní pohyb a úloha cytoskeletu
84 Makrofág a bakterie
85 Použité bílkoviny musí být degradovány Proteazómy Úklid vlastních signálů transkripčních faktorů a enzymů Příprava volných AK Lysozómy likvidují látky a částice z venku - animace
86 Bariéry a brány Jednobuněčný Mnohobuněčný
87 Paracelulární transport určuje děravost epitelu
88 Spolupráce buněčná spojení
89
90 Spolupráce ve tkáních buněčná spojení
91 Konexon a gap junction
92
93 Extracelulární matrix tvoří: tmel mezi buňkami (hlavně kolagen) basální membránu epitelů Napojena na cytoskelet uvnitř buněk
94 Funkce membránových bílkovin přenos látek, signálů, fixace na extra a intracelulární struktury.
95 Extracelulární matrix tmel mezi buňkami (hlavně kolagen) Integriny kotví v membráně
96 Membrána se selektivním aktivním transportem iontů elektricky nabíjí. Nabitá membrána - Klidový potenciál Využitelný pro: sekundární transport tvorbu a přenášení signálů
97 Nabitá membrána - Klidový potenciál
98 Na/K pumpa nabíjí membránu
99 Na daleko od rovnováhy K + : K v rovnováze Na + : KONCENTRACE NÁBOJ INTRA (-) EXTRA (+)
100 Na/K pumpa
101 Na/K pumpa
102 Mechanismy udržující nízkou hladinu Ca v buňce Vápník extracelulární iont, nositel signálů
103 Vápník extracelulární iont, nositel signálů Mechanismy udržující nízkou hladinu Ca v buňce Stačí malé podráždění a Ca proudí do buňky
104 Vápník extracelulární iont, nositel signálů
105 Cytoskelet
106 Cytoskelet
107 Cytoskelet
108
109 Život v buňce Animace komentovaná
110 Život v buňce - Animace
111
112 Barvozměna také jedna důležitá úloha pro cytoskelet
113 Shrnutí Řízený transport splňuje základní podmínku udržení stálosti. Bílkoviny mají zásadní úlohu v přenosů látek i signálů. Nabitá membrána se hodí. Cytoskelet umožňuje pohyb i oporu pro buňku zásadní.
114 Přenos informací Mezibuněčná komunikace a signálová transdukce
115 Mezibuněčná komunikace a signálová transdukce Obecná chemorecepční schopnost buněk Komunikace ve společenství buněk, rozeznání poškozené nebo cizí buňky Signály: diferencuj, proliferuj, syntetizuj, zemři Porozumění = klíč k podstatě
116 Mezibuněčná komunikace a signálová transdukce Obecná chemorecepční schopnost buněk Komunikace ve společenství buněk, rozeznání poškozené nebo cizí buňky Signály: diferencuj, proliferuj, syntetizuj, zemři Porozumění = klíč k podstatě
117 Mezibuněčná komunikace a signálová transdukce Obecná chemorecepční schopnost buněk Komunikace ve společenství buněk, rozeznání poškozené nebo cizí buňky Ovariální teratom Signály: diferencuj, proliferuj, syntetizuj, zemři Porozumění = klíč k podstatě Regenerativní medicína a onkologie Na jednu stranu chceme aby už nerostly (novotvary) na druhou aby zase rostly (náhrady)
118 Chemická struktura Eikosanoidy (prostaglandiny) Plyny (NO, CO) Puriny ATP, camp Aminy od tyrozinu (adrenalin, par. histamin) Peptidy a proteiny mnoho hormonů neurohormonů Steroidy hormony a feromony Retinoidy od vit A Způsob předání signálu jeden klíč, ale různé dveře
119 Způsob předání signálu mezi buňkami
120 Způsob předání signálu mezi buňkami
121 Způsob předání signálu přes membránu Např. Tyroxin Např. Adrenalin
122 Způsob předání signálu přes membránu Polární hormon - účinek
123 Způsob předání signálu přes membránu Nepolární hormon - účinek
124
125 Univerzální mechanismy signalizace
126 Proč tolik úrovní? Způsob předání signálu za membránou Zesílení Propojení
127 Druzí poslové Animace
128 Použité bílkoviny musí být degradovány Proteazómy Úklid signálů transkripčních faktorů a enzymů Příprava volných AK
129 Obecná neurofyziologie - signály přenášené vzrušivými membránami
130 Nabitá membrána - Klidový potenciál
131 Řeč elektrických změn je typická, ale citlivost na chemické signály zůstává a je bohatě využita.
132 Základní stavební a funkční plán nervového řízení. Spolupráce s gliovými buňkami.
133 Základní stavební a funkční plán nervové soustavy.
134 Neuron a jeho součásti
135 Koncentrace hlavních iontů na membráně v klidu.
136 Rozdílné postavení Na a K iontů
137 Na daleko od rovnováhy K + : K v rovnováze Na + : KONCENTRACE NÁBOJ INTRA (-) EXTRA (+)
138 Akční potenciál
139 Jak se dnes měří a jak vypadá? rophysiology/index.html
140 Akční potenciál Buď nevznikne vůbec, nebo vzniká stále stejně velký. Informace, kterou přenáší, je zapsána do frekvence.
141 Časový záznam AP AP kanály
142 Mechanismus vzniku: Spolupráce kanálů při vzniku AP
143 Napěťově řízený Na kanál podmínka pro depolarizaci při vzniku AP 3 stavy
144
145 Převažující Na propustnost vystřídá K propustnost propustnější má větší slovo a táhne membránu ke svému rovnovážnému napětí.
146 Šíření podél membrány. Kromě příčného i podélný tok iontů. Záleží na průměru.
147 Šíření podél membrány. Záleží také na myelinizaci. Šíření AP1 Šíření AP2
148 Synapse Přerušení elektrického vedení po membráně. Proč? Plasticita, zpracování Chemický prostředník
149 Chemický prostředník: Exocytóza mediátoru
150 Superrychlá cytóza Klatrin tvoří vesikuly
151 Receptor na postsynaptické straně je součástí kanálu ionotropní signalizace nebo spojen s kanálem kaskádou signálů metabotropní signalizace Synapsin váže vesikuly k cytoskeletu
152 Metabotropní signál: Intracelulární předání signálu jde vyzkoušenou cestou G proteinové signalizace univerzální mechanismus
153 Látková signalizace na synapsi Metabotropní: Látková signalizace1 Látková signalizace2 Látková signalizace3 Ionotropní: Nervosvalová ploténka
154 Mediátory - neurotransmittery
155
156 Nemusí být jen excitační, jsou i inhibiční transmitery.
157 Vzácně i elektrická synapse.
158 Jak spolu neurony komunikují.
159 Dva druhy kanálů dva druhy kódování Elektricky a chemicky
160 Dva druhy kódování informace Dálkové šíření digitálně Zpracování - analogově
161 Smysl: Zpracování - analogově Časová sumace
162 Smysl: Zpracování - analogově Časová sumace Prostorová sumace
163 Některé synapse inhibiční Některé excitační Facilitace Inhibice
164 Smysl: A) Zpracování: sčítání, syntéza, porovnávání signálů. Integrace vstupů. Časová a prostorová sumace B) Plasticita NS základ paměti
165 Neuronální signalizace
166 Divergence, konvergence
167 Synapse vytvářejí dynamickou síť spojů, základem reflexů. Monosynaptické x Polysynaptické Nepodmíněné x Podmíněné
168 Synaptická plasticita základem paměti. Rychlá potenciace. Pomalá přestavba.
169 Přestavba dentritických trnů
170 Shrnutí Látkové signály doprovázejí buňky po celý život a určují jejich funkci a osud. Nervové buňky kromě látkových signálů používají i elektrické. Akční potenciál je vhodnou řečí na dálkové digitální vysílání. Místní potenciály umožňují zpracování signálu. Synaptická spojení umožňují plasticitu a paměť
171 Život v buňce
172 Obecná fyziologie smyslů Co se děje na membránách. Receptorové buňky jsou brány, kterými vstupují signály do NS Exteroreceptory x interoreceptory
173 Svět smyslů úloha mozku. Paralelní dráhy specializované na určitou vlastnost (kvalitu). V rámci dráhy ještě specializace na konkrétní hodnotu.
174 Receptorová buňka převádí energii podnětu na změnu iontové propustnosti. Transdukce Transformace
175 Vlastnosti membrány jsou klíčem pro transdukci.
176 Intenzita podnětu a intenzita odpovědi. Weber-Fechnerův zákon
177 Trvání podnětu a trvání odpovědi. Většina receptorů pracuje jako diferenční
178 Laterální inhibice: vyšší rozlišovací schopnost zesílení kontrastů
Prof. Vladimír Šimek Doc. Martin Vácha
Biologie živočichů Prof. Vladimír Šimek Doc. Martin Vácha Biologie živočichů Anatomie a morfologie Fyziologie Ekologie Etologie Genetika Taxonomie Vývojová a evoluční biologie atd. Fyziologie živočichů
Doc. Martin Vácha Doc. Pavel Hyršl Dr. Jiří Pacherník Dr. Monika Dušková. Biologie živočichů
Doc. Martin Vácha Doc. Pavel Hyršl Dr. Jiří Pacherník Dr. Monika Dušková Biologie živočichů Biologie živočichů Anatomie a morfologie (cytologie, histologie, organologie) Fyziologie Ekologie Etologie Genetika
Obecná fyziologie smyslů. Co se děje na membránách.
Obecná fyziologie smyslů Co se děje na membránách. Svět smyslů úloha mozku. Paralelní dráhy specializované na určitou vlastnost (kvalitu). V rámci dráhy ještě specializace na konkrétní hodnotu. Transformace
Obecná fyziologie smyslů. Co se děje na membránách.
Obecná fyziologie smyslů Co se děje na membránách. Svět smyslů úloha mozku. Paralelní dráhy specializované na určitou vlastnost (kvalitu). V rámci dráhy ještě specializace na konkrétní hodnotu. Transformace
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Buňka Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA
TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA 1 VÝZNAM TRANSPORTU PŘES MEMBRÁNY V MEDICÍNĚ Příklad: Membránový transportér: CFTR (cystic fibrosis transmembrane regulator) Onemocnění: cystická fibróza
Úvod do preklinické medicíny NORMÁLNÍ FYZIOLOGIE. Jan Mareš a kol.
Úvod do preklinické medicíny NORMÁLNÍ FYZIOLOGIE Jan Mareš a kol. Praha Univerzita Karlova v Praze 3. lékařská fakulta 2013 Úvod do preklinické medicíny: Normální fyziologie Vedoucí autorského kolektivu
LÉKAŘSKÁ BIOLOGIE B52 volitelný předmět pro 4. ročník
LÉKAŘSKÁ BIOLOGIE B52 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie a Člověk a zdraví.
glukóza *Ivana FELLNEROVÁ, PřF UP Olomouc*
Prezentace navazuje na základní znalosti Biochemie, stavby a transportu přes y Doplňující prezentace: Proteiny, Sacharidy, Stavba, Membránový transport, Symboly označující animaci resp. video (dynamická
Nervová soustává č love ká, neuron r es ení
Nervová soustává č love ká, neuron r es ení Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0110 Nervová soustava člověka je pravděpodobně nejsložitěji organizovaná hmota na Zemi. 1 cm 2 obsahuje 50 miliónů
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Sylabus přednášky 230 Fyziologie živočichů a člověka Část přednášená Daliborem Kodríkem
Sylabus přednášky 230 Fyziologie živočichů a člověka Část přednášená Daliborem Kodríkem 1. Nervováčinnost Neuron, jeho stavba a typy, gliové buňky a jejich funkce, sodno-draslíková pumpa, elektrochemický
Toxikologie PřF UK, ZS 2016/ Toxikodynamika I.
Toxikodynamika toxikodynamika (řec. δίνευω = pohánět, točit) interakce xenobiotika s cílovým místem (buňkou, receptorem) biologická odpověď jak xenobiotikum působí na organismus toxický účinek nespecifický
9. Léčiva CNS - úvod (1)
9. Léčiva CNS - úvod (1) se se souhlasem souhlasem autora autora ál školy koly -techlogic techlogické Jeho Jeho žit bez bez souhlasu souhlasu autora autora je je ázá Nervová soustava: Centrální nervový
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách
Membránový potenciál, zpracování a přenos signálu v excitabilních buňkách Difuze Vyrovnávání koncentrací látek na základě náhodného pohybu Osmóza (difuze rozpouštědla) Dva roztoky o rúzné koncentraci oddělené
Biologické membrány a bioelektrické jevy
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Rozdělení svalových tkání: kosterní svalovina (příčně pruhované svaly) hladká svalovina srdeční svalovina (myokard)
Fyziologie svalstva Svalstvo patří ke vzrušivým tkáním schopnost kontrakce a relaxace veškerá aktivní tenze a aktivní pohyb (cirkulace krve, transport tráveniny, řeč, mimika, lidská práce) 40% tělesné
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně
Přednášky z lékařské biofyziky Lékařská fakulta Masarykovy univerzity v Brně Biologické membrány a bioelektrické jevy Autoři děkují doc. RNDr. K. Kozlíkové, CSc., z LF UK v Bratislavě za poskytnutí některých
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
M A T U R I T N Í T É M A T A
M A T U R I T N Í T É M A T A BIOLOGIE ŠKOLNÍ ROK 2017 2018 1. BUŇKA Buňka základní strukturální a funkční jednotka. Chemické složení buňky. Srovnání prokaryotické a eukaryotické buňky. Funkční struktury
LÁTKOVÉ ŘÍZENÍ ORGANISMU
LÁTKOVÉ ŘÍZENÍ ORGANISMU PhDr. Jitka Jirsáková, Ph.D. LÁTKOVÉ ŘÍZENÍ ORGANISMU je uskutečňováno prostřednictvím: hormonů neurohormonů tkáňových hormonů endokrinní žlázy vylučují látky do krevního oběhu
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Živočišné tkáně II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis a charakteristika nervové
Membránové potenciály
Membránové potenciály Vznik a podstata membránového potenciálu vzniká v důsledku nerovnoměrného rozdělení fyziologických iontů po obou stranách membrány nestejná propustnost membrány pro různé ionty různá
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Nervová soustava Společná pro celou sadu oblast
Zpracování informace v NS Senzorická fyziologie
Zpracování informace v NS Senzorická fyziologie doc. MUDr. Markéta Bébarová, Ph.D. Fyziologický ústav, Lékařská fakulta, Masarykova univerzita Tato prezentace obsahuje pouze stručný výtah nejdůležitějších
Vnitřní prostředí organismu. Procento vody v organismu
Vnitřní prostředí organismu Procento vody v organismu 2 Vnitřní prostředí organismu Obsah vody v různých tkáních % VODY KREV 83% SVALY 76% KŮŽE 72% KOSTI 22% TUKY 10% ZUBNÍ SKLOVINA 2% 3 Vnitřní prostředí
- je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného dělení)
FYZIOLOGIE BUŇKY Buňka -základní stavební a funkční jednotka těla - je nejmenší jednotkou živého organismu schopnou nezávislé existence (metabolismus, pohyb,růst, rozmnožování, dědičnost = schopnost buněčného
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno
Co nás učí nádory? Prof. RNDr. Jana Šmardová, CSc. Ústav patologie FN Brno Přírodovědecká a Lékařská fakulta MU Brno Brno, 17.5.2011 Izidor (Easy Door) Osnova přednášky 1. Proč nás rakovina tolik zajímá?
ŽLÁZY S VNIT SEKRECÍ
ŽLÁZY S VNITŘNÍ SEKRECÍ - žláz s vnitřní sekrecí - neurohormony - tkáňové hormony endokrinní žláza exokrinní žláza vývod žlázy sekreční buňky sekreční buňky krevní vlásečnice Žlázy s vnitřní sekrecí endokrinní
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK
Fyziologie srdce I. (excitace, vedení, kontrakce ) Milan Chovanec Ústav fyziologie 2.LF UK Fyziologie srdce Akční potenciál v srdci (pracovní myokard) Automacie srdeční aktivity a převodní systém Mechanismus
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky.
Anotace: Materiál je určen k výuce přírodopisu v 6. ročníku ZŠ. Seznamuje žáky se základní stavbou rostlinné a živočišné buňky. Materiál je plně funkční pouze s použitím internetu. základní projevy života
Mechanismy hormonální regulace metabolismu. Vladimíra Kvasnicová
Mechanismy hormonální regulace metabolismu Vladimíra Kvasnicová Osnova semináře 1. Obecný mechanismus působení hormonů (opakování) 2. Příklady mechanismů účinku vybraných hormonů na energetický metabolismus
(VIII.) Časová a prostorová sumace u kosterního svalu. Fyziologický ústav LF MU, 2016 Jana Svačinová
(VIII.) Časová a prostorová sumace u kosterního svalu Fyziologický ústav LF MU, 2016 Jana Svačinová Kontrakce příčně pruhovaného kosterního svalu Myografie metoda umožňující registraci kontrakce svalů
Hořčík. Příjem, metabolismus, funkce, projevy nedostatku
Hořčík Příjem, metabolismus, funkce, projevy nedostatku Příjem a pohyb v rostlině Příjem jako ion Mg 2+, pasivní, iont. kanály Mobilní ion v xylému i ve floému, možná retranslokace V místě funkce vázán
Monitorování léků. RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK. ls 1
Monitorování léků RNDr. Bohuslava Trnková, ÚKBLD 1. LF UK ls 1 Mechanismus působení léčiv co látka dělá s organismem sledování účinku léčiva na: - orgánové úrovni -tkáňové úrovni - molekulární úrovni (receptory)
- hormony ovlivňují - celkový metabolismus, hospodaření s ionty a vodou, růst, rozmnožování
Otázka: Hormonální soustava Předmět: Biologie Přidal(a): Petra - endokrinní žlázy - humorální regulace - vytvářejí hormony - odvod krví k regulovanému orgánu - hormony ovlivňují - celkový metabolismus,
Regulace metabolických drah na úrovni buňky
Regulace metabolických drah na úrovni buňky EB Obsah přednášky Obecné principy regulace metabolických drah na úrovni buňky regulace zajištěná kompartmentací metabolických dějů změna absolutní koncentrace
Biologie - Septima, 3. ročník
- Septima, 3. ročník Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence sociální a personální Kompetence komunikativní Kompetence občanská Kompetence k podnikavosti Kompetence
Obecná charakteristika živých soustav
Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují
Mendělejevova tabulka prvků
Mendělejevova tabulka prvků V sušině rostlin je obsaženo přibližně 45% uhlíku, 42% kyslíku, 6,5% vodíku, 1,5% dusíku a 5% minerálních prvků. Tzv. organogenní prvky (C, O, H, N) představují tedy 95% veškerých
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
FYZIOLOGIE BUŇKY BUŇKA 5.3.2015. Základní funkce buněk: PROKARYOTICKÁ BUŇKA. Funkce zajišťují základní životní projevy buněk: EUKARYOTICKÁ BUŇKA
FYZIOLOGIE BUŇKY BUŇKA - nejmenší samostatná morfologická a funkční jednotka živého organismu, schopná nezávislé existence buňky tkáně orgány organismus - fyziologie orgánů a systémů založena na komplexní
HORMONY Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
HORMONY Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 21.9. 2009 Mgr. Radka Benešová Obecné zásady řízení a regulací: V organismu rozlišujeme dva základní
Propojení metabolických drah. Alice Skoumalová
Propojení metabolických drah Alice Skoumalová Metabolické stavy 1. Resorpční fáze po dobu vstřebávání živin z GIT (~ 2 h) glukóza je hlavní energetický zdroj 2. Postresorpční fáze mezi jídly (~ 2 h po
Projekt realizovaný na SPŠ Nové Město nad Metují
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty Hana Gajdušková 1 Viry
Mozek a chování, vnější prostředí neuronu
Mozek a chování, vnější prostředí neuronu Studijní literatura SILBERNAGL, Stefan a Agamemnon DESPOPOULOS. Atlas fyziologie člověka. 6. přepracované vydání. Praha: Grada, 2004. GANONG, William F. Přehled
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Univerzita Karlova v Praze - 1. lékařská fakulta. Buňka. Ústav pro histologii a embryologii
Univerzita Karlova v Praze - 1. lékařská fakulta Buňka. Stavba a funkce buněčné membrány. Transmembránový transport. Membránové organely, buněčné kompartmenty. Ústav pro histologii a embryologii Doc. MUDr.
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz)
Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze (http://www.lf2.cuni.cz) Biochemie Napsal uživatel Marie Havlová dne 8. Únor 2012-0:00. Sylabus předmětu Biochemie, Všeobecné lékařství, 2.
FYZIOLOGIE ROSTLIN. Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz
FYZIOLOGIE ROSTLIN Přednášející: Doc. Ing. Václav Hejnák, Ph.D. Tel.: 224382514 E-mail: hejnak @af.czu.cz Studijní literatura: Hejnák,V., Zámečníková,B., Zámečník, J., Hnilička, F.: Fyziologie rostlin.
Vlastnosti neuronových sítí. Zdeněk Šteffek 2. ročník 2. LF UK v Praze
Vlastnosti neuronových sítí Zdeněk Šteffek 2. ročník 2. LF UK v Praze 7. 3. 2011 Obsah Neuronální pooly Divergence Konvergence Prolongace signálu, kontinuální a rytmický signál Nestabilita a stabilita
Fyziologie buňky. RNDr. Zdeňka Chocholoušková, Ph.D.
Fyziologie buňky RNDr. Zdeňka Chocholoušková, Ph.D. Přeměna látek v buňce = metabolismus Výměna látek mezi buňkou a prostředím Buňka = otevřený systém probíhá výměna látek i energií s prostředím Některé
5. Lipidy a biomembrány
5. Lipidy a biomembrány Obtížnost A Co je chybného na často slýchaném konstatování: Biologická membrána je tvořena dvojvrstvou fosfolipidů.? Jmenujte alespoň tři skupiny látek, které se podílejí na výstavbě
Zkušební okruhy k přijímací zkoušce do magisterského studijního oboru:
Biotechnologie interakce, polarita molekul. Hydrofilní, hydrofobní a amfifilní molekuly. Stavba a struktura prokaryotní a eukaryotní buňky. Viry a reprodukce virů. Biologické membrány. Mikrobiologie -
TEST:Bc-1314-BLG Varianta:0 Tisknuto:18/06/2013 ------------------------------------------------------------------------------------------ 1.
TEST:Bc-1314-BLG Varianta:0 Tisknuto:18/06/2013 1. Genotyp je 1) soubor genů, které jsou uloženy v rámci 1 buněčného jádra 2) soubor pozorovatelných vnějších znaků 3) soubor všech genů organismu 4) soubor
Elektrofyziologické metody a studium chování a paměti
Elektrofyziologické metody a studium chování a paměti EEG - elektroencefalogram Skalpové EEG Intrakraniální EEG > 1 cm < 1 cm Lokální potenciály Extracelulární akční potenciály ~ 1 mm ~ 1 um EEG - elektroencefalogram
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Energetický metabolizmus buňky
Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ
BUŇKA ZÁKLADNÍ JEDNOTKA ORGANISMŮ SPOLEČNÉ ZNAKY ŽIVÉHO - schopnost získávat energii z živin pro své životní potřeby - síla aktivně odpovídat na změny prostředí - možnost růstu, diferenciace a reprodukce
Srovnávací fyziologie bezobratlých
Srovnávací fyziologie bezobratlých Podpořeno FRVS 1555/2009 Poněkud umělá skupina Význam vědecký, praktický Proč bezobratlých? Nesmírně početní a heterogenní Mimořádné postavení hmyzu Srovnávací fyziologie
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Zdravotně sociální fakulta. Fyziologie (podpora pro kombinovanou formu studia) MUDr.
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Zdravotně sociální fakulta Fyziologie (podpora pro kombinovanou formu studia) MUDr. Aleš Hejlek Cíle předmětu: Seznámit studenty s fyziologií všech systémů s
Obecná citlivost neuronů i na chemickou modulaci. Neurony nekomunikují pouze synapticky, ale i mimosynapticky. Informační polévka.
Šířen ení signálů a synapse Synapse, místa přerušení elektrického vedení. Zpomalení, převod na chemickou řeč. Neurony tedy nekomunikují pouze AP, ale i chemicky. Prostor pro zpracování informací. Plasticita
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA NADLEDVINY dvojjediná žláza párově endokrinní žlázy uložené při horním pólu ledvin obaleny tukovým
Fyziologie AUTOFAGIE. MUDr. JAN VARADY KARIM FNO
Fyziologie AUTOFAGIE MUDr. JAN VARADY KARIM FNO 29.1.2019 Autofagie?? Autofagie Self-eating Regulovaný katabolický jev Degradace a recyklace buněčných cytoplasmatických komponent: malfunkční a staré proteiny,
Vstup látek do organismu
Vstup látek do organismu Toxikologie Ing. Lucie Kochánková, Ph.D. 2 podmínky musí dojít ke kontaktu musí být v těle aktivní Působení jedů KONTAKT - látka účinkuje přímo nebo po přeměně (biotransformaci)
Charakteristika epitelů. Epitelová tkáň. Bazální membrána. Bazální lamina. Polarita. Funkce basální laminy. buňky. Textus epithelialis
Charakteristika epitelů Epitelová tkáň Textus epithelialis buňky podkladem je bazální lamina těsně nahloučené s minimem mezibuněčné hmoty množství pevných mezibuněčných spojů různé tvary určující pro klasifikaci
VY_32_INOVACE_11.14 1/6 3.2.11.14 Hormonální soustava Hormonální soustava
1/6 3.2.11.14 Cíl popsat stavbu hormonální soustavy - charakterizovat její činnost a funkci - vyjmenovat nejdůležitější hormony - uvést onemocnění, úrazy, prevenci, ošetření, příčiny - žlázy s vnitřním
FYZIOLOGIE VYLUČOVÁNÍ - exkrece
FYZIOLOGIE VYLUČOVÁNÍ - exkrece Ex. látek narušující stálost vnitřního prostředí - zbytky a zplodiny metabolizmu - látky momentálně nadbytečné - látky cizorodé (léky, drogy, toxiny...) Ex. fce několika
Učební osnovy předmětu Biologie
(kvinta a sexta) Učební osnovy předmětu Biologie Charakteristika předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacích oborů Biologie a Geologie. Integruje část vzdělávacího
ATC hormony. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. Mgr. Helena Kollátorová
ATC hormony Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Březen 2011 Mgr. Helena Kollátorová Hormony jsou sloučeniny, které slouží v těle mnohobuněčných
Maturitní témata Biologie MZ 2017
Maturitní témata Biologie MZ 2017 1. Buňka - stavba a funkce buněčných struktur - typy buněk - prokaryotní buňka - eukaryotní buňka - rozdíl mezi rostlinnou a živočišnou buňkou - buněčný cyklus - mitóza
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.
Schéma epitelu a jeho základní složky
Schéma epitelu a jeho základní složky Těsný spoj Bazální membrána Transcelulární tok Paracelulární tok LIS - Laterální intercelulární prostor Spojovací komplexy epiteliálních buněk Spojovací komplexy epiteliálních
METABOLISMUS SACHARIDŮ
METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV
CHEMICKÉ ZNAKY ŽIVÝCH SOUSTAV a) Chemické složení a. biogenní prvky makrobiogenní nad 0,OO5% (C, O, N, H, S, P, Ca.) - mikrobiogenní pod 0,005%(Fe,Zn, Cu, Si ) b. voda 60 90% každého organismu - 90% příjem
Maturitní témata - BIOLOGIE 2018
Maturitní témata - BIOLOGIE 2018 1. Obecná biologie; vznik a vývoj života Biologie a její vývoj a význam, obecná charakteristika organismů, přehled živých soustav (taxonomie), Linného taxony, binomická
Imunitní systém člověka. Historie oboru Terminologie Členění IS
Imunitní systém člověka Historie oboru Terminologie Členění IS Principy fungování imunitního systému Orchestrace, tj. kooperace buněk imunitního systému (IS) Tolerance Redundance, tj. nadbytečnost, nahraditelnost
Exkrece = Exkrety Exkrementy
Vylučovací soustava Vylučovací soustava Exkrece = vylučování vylučování odpadních produktů tkáňového metabolismu z těla ven Exkrety tekuté odpadní látky x Exkrementy tuhé odpadní látky Hlavní exkrety:
Živé systémy v ekotoxikologii - úvod - Luděk Bláha, PřF MU
Živé systémy v ekotoxikologii - úvod - Luděk Bláha, PřF MU Co by si student(ka) měl(a) odnést? Znát a vysvětlit pojmy a chápat význam v ekotoxikologii pro - úrovně a hierarchie biologické organizace -
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
VÁPNÍK A JEHO VÝZNAM
VÁPNÍK A JEHO VÝZNAM MUDr. Barbora Schutová, 2009 Ústav normální, patologické a klinické fyziologie, 3. LF UK Pozn.: Obrázky byly z důvodu autorských práv odstraněny nebo nahrazeny textem VÁPNÍK A JEHO
Specifická imunitní odpověd. Veřejné zdravotnictví
Specifická imunitní odpověd Veřejné zdravotnictví MHC molekuly glykoproteiny exprimovány na všech jaderných buňkách (MHC I) nebo jenom na antigen prezentujících buňkách (MHC II) u lidí označovány jako
Glykolýza Glukoneogeneze Regulace. Alice Skoumalová
Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza
BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY JADÉRKO ENDOPLASMATICKÉ RETIKULUM (ER)
BUNĚČNÉ JÁDRO FYZIOLOGIE BUŇKY Buněčné jádro- v něm genetická informace Úkoly jádra-1) regulace dělení, zrání a funkce buňky; -2) přenos genetické informace do nové buňky; -3) syntéza informační RNA (messenger
OBOROVÁ RADA Fyziologie a patofyziologie člověka
OBOROVÁ RADA Fyziologie a patofyziologie člověka Předseda Prof. MUDr. Jaroslav Pokorný, DrSc. Fyziologický ústav 1. LF UK, Albertov 5, 128 00 Praha 2 e-mail: jaroslav.pokorny@lf1.cuni.cz Členové Prof.
Prokaryota x Eukaryota. Vibrio cholerae
Živočišná buňka Prokaryota x Eukaryota Vibrio cholerae Dělení živočišných buněk: buňky jednobuněčných organismů (volně žijící samostatné jednotky) buňky mnohobuněčných větší morfologické i funkční celky
7. Nervová soustava člověka
7. Nervová soustava člověka anatomie nervové soustavy a stavba neuronu Nervová soustava člověka je rozlišena na: 1. CNS - centrální nervovou soustavu (hlava - řídící centrum, mícha zprostředkovává funkce)
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 10. Struktury signálních komplexů Ivo Frébort Typy hormonů Steroidní hormony deriváty cholesterolu, regulují metabolismus, osmotickou rovnováhu, sexuální funkce
EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY
EXTRACELULÁRNÍ SIGNÁLNÍ MOLEKULY 1 VÝZNAM EXTRACELULÁRNÍCH SIGNÁLNÍCH MOLEKUL V MEDICÍNĚ Příklad: Extracelulární signální molekula: NO Funkce: regulace vazodilatace (nitroglycerin, viagra) 2 3 EXTRACELULÁRNÍ
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Prameny Určeno pro 8. třída (pro 3. 9. třídy) Sekce Základní / Nemocní /
Regulace metabolizmu lipidů
Regulace metabolizmu lipidů Principy regulace A) krátkodobé (odpověď s - min): Dostupnost substrátu Alosterické interakce Kovalentní modifikace (fosforylace/defosforylace) B) Dlouhodobé (odpověď hod -
Bílkoviny = proteiny
Bílkoviny Bílkoviny = proteiny Jsou nejdůležitější přírodní látky Vytvářejí makromolekuly složené z několika tisíc aminokyselin počet, druh a pořadí vázaných aminokyselin určuje vlastnosti bílkovin Aminokyseliny
Jaro 2010 Kateřina Slavíčková
Jaro 2010 Kateřina Slavíčková Obsah: 1. Biologické vědy. 2. Chemie a fyzika v biologii koloběh látek a tok energie. 3. Buňka, tkáně, pletiva, orgány, orgánové soustavy, organismus. 4. Metabolismus. 5.
ŽLÁZY S VNITŘNÍ SEKRECÍ. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
ŽLÁZY S VNITŘNÍ SEKRECÍ Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Srpen 2010 Mgr. Radka Benešová ŽLÁZY S VNITŘNÍ SEKRECÍ Hormony jsou produkty
Eva Benešová. Dýchací řetězec
Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ