Schéma hladin. svrchní tón - overton fundametální přechod. fundametální přechod
|
|
- Jindřich Štěpánek
- před 6 lety
- Počet zobrazení:
Transkript
1 Schéma hladin svrchní tón - overton fundametální přechod fundametální přechod
2 Úvod - závislost spekter na periodickém pohybu Každá čára vibračního (IČ,, Ramanova) spektra je svými vlastnostmi závislz vislá na počtu a hmotě společně kmitajících ch atomů molekuly, na jejich prostorovém uspořádání a na vnitřně molekulovém silovém poli. Prof. Dr. Arnošt Okáč Výklad k základním operacím v chemické analyse JČMF 1948
3 Infračervená spektrometrie Podstata vibrační spektroskopie vibrační (vibračně-rota rotační) ) stavy -počty vibračních stavů -počet vibračních modů (stupňů volnosti) 3N-6 (3N-5 - lineární molekuly), N - počet atomů - pro každý stupeň volnosti - vibrační frekvence - potenciálová křivka - sada stavů (hladin)
4 Pohyb v prostoru volné částice translační pohyb 1 atom 3 stupně volnosti 2 atomy 2 x 3 stupně volnosti N atomů N x 3 stupně volnosti
5 Pohyb v prostoru vzájemně vázané částice 2 atomy spojené vazbou - LINEÁRNÍ MOLEKULA 2 x 3 stupně volnosti ~ 6 JEN 3 translace těžiště 2 stupně volnosti - rotace molekuly 1 stupeň volnosti vibrace periodický pohyb 3 atomy spojené vazbami - LOMENÁ MOLEKULA 3 x 3 stupně volnosti ~ 9 JEN 3 translace těžiště 3 stupně volnosti - rotace molekuly 3 stupeň volnosti vibrace
6 Pohyb v prostoru vázané částice N atomů spojených vazbou - LINEÁRNÍ MOLEKULA N x 3 stupně volnosti ~ 3 N JEN 3 translace těžiště 2 stupně volnosti - rotace molekuly 3 N - 5 stupňů volnosti - vibrace N atomů spojených vazbou - LOMENÁ MOLEKULA N x 3 stupně volnosti ~ 3 N JEN 3 translace těžiště 3 stupně volnosti - rotace molekuly 3 N - 6 stupňů volnosti - vibrace
7 Infračervená spektrometrie Podstata vibrační spektroskopie TYPY VIBRAČNÍCH MODŮ - valenční vibrace - změna délky vazby - symetrická, antisymetrická, asymetrická - deformační vibrace - změna vazebných úhlů -nůžková, deštníková, kývavá, vějířová, kroutivá - rovinná, mimorovinná - symetrická, antisymetrická, asymetrická
8 Pohyb atomů v molekule VIBRACE TYPY VIBRACÍ VALENČNÍ ZMĚNA délky vazby/vazeb» SYMETRICKÁ» ANTISYMETRICKÁ
9 Pohyb atomů v molekule VIBRACE TYPY VIBRACÍ DEFORMAČNÍ - změny úhlů (vazebné úhly, torsní úhly) nůžková, kolébavá, kývavá, kroutivá
10 Infračervená spektrometrie
11 Infračervená spektrometrie Podstata vibrační spektroskopie VIBRAČNÍ FREKVENCE - model harmonického oscilátoru plus anharmonicita - hmotnost atomů - síla vazby - vliv typu pohybu v rámci r dané skupiny atomů
12 Infračervená spektrometrie Podstata vibrační spektroskopie POTENCIÁLOV LOVÁ KŘIVKA - model harmonického oscilátoru plus anharmonicita - síla vazby - vliv typu pohybu v rámci r dané skupiny atomů
13 Infračervená spektrometrie Podstata vibrační spektroskopie ENERGIE STACIONÁRN RNÍCH STAVŮ - model harmonického oscilátoru plus anharmonicita - frekvence vibrace - tvar potenciálov lové křivky
14 Infračervená spektrometrie Podstata infračervené absorpce jednofotonový přechod mezi dvěma stacionárními vibračními (vibračně-rota rotačními) stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření o frekvenci ν abs = E 2 - E 1 / h hν abs = E 2 - E 1 hν vib = E 2 - E 1 pro fundamentální přechody
15 Infračervená spektrometrie Podstata infračervené absorpce přechody mezi vibračními (vibračně-rota rotačními) stavy - typy možných přechodp echodů při i absorpci IČI záření - v rámci jednoho vibračního modu - fundamentáln lní (změna kvantového čísla o jednotku) - vyšší harmonické - svrchní tóny - zahrnuto více vibračních modů - kombinační
16 Infračervená spektrometrie
17 Infračervená spektrometrie Oscilující dipólový moment pohyb molekuly spojený se změnou elektrického dipolového momentu vede k absorpci (nebo k emisi) záření p = p p q 0 + p - aktuální dipólový moment p 0 - dipólový moment v rovnovážné poloze q - normální souřadnice vibračního módu 0 q
18 Infračervená spektrometrie Základní výběrové pravidlo infračervené absorpce p q 0 INTENZITA PÁSŮP ÚMĚRNÁ ZMĚNĚ DIPOLOVÉHO MOMENTU BĚHEM B VIBRAČNÍHO POHYBU
19 Infračervená spektrometrie p q = 0 NEABSORBUJÍ IČ záření O 2, N 2, H 2, O 3 práš ášková síra křemík uhlík - grafit, diamanty N N látka, která neabsorbuje IČI záření, ho můžm ůže e reflektovat, může e ho téžt rozptylovat
20 Infračervená spektrometrie p 0 SILNĚ ABSORBUJÍ IČ záření q Cl H HCl, H 2 O, CO 2, SO 2, N x O y skleníkov kové plyny alkoholy, karbonylové a karboxylové sloučeniny nitroderiváty, ty, sulfo-deriv deriváty halogenderiváty anorganické soli a komplexní sloučeniny
21 Infračervená spektrometrie ANALYZOVANÉ TYPY MATERIÁLŮ -plyny - analýza složení zemního plynu - monitoring vzdušných polutantů - kapaliny, roztoky - analýza olejů - analýza odpadních vod - analýza mléka - práškové vzorky - analýza léčiv, drog, trhavin - analýza rud, hnojiv - fázové rozhraní - povrchová analýza
22 Infračervená spektrometrie - instrumentace
23 Infračervená spektrometrie - instrumentace
24 Infračervená spektrometrie - instrumentace ČÁSTI FTIR SPEKTROMETRU ZDROJ ZÁŘENÍ MIR, FIR - keramická tyčinka žhavená na teplotu C - SiC, Globar FIR - rtuťová výbojka NIR - žárovka - wolframová, wolfram-halogenová DĚLIČ PAPRSKŮ MIR - Ge povlak na KBr, ZnSe, CsI NIR - Si povlak na CaF 2, či křemeni FIR - kovová síťka, PET-Mylar
25 Infračervená spektrometrie ČÁSTI FTIR SPEKTROMETRU DETEKTOR ZÁŘENÍ MIR - DTGS (deuteriumtriglycin sulfát) - MCT (mercury-cadmium-telurid) NIR - PbSe, PbS, InSb, Ge, MCT FIR - DTGS, GaAs-Zn DALŠÍPRVKY - instrumentace NaCl, KBr, ZnSe, CaF 2, CsI, křemík, diamant
26 Infračervená spektrometrie - instrumentace VÝHODY INTERFEROMETRIE Jacquinotova (energetická) - malé energetické ztráty při průchodu záření interferometrem - žádné štěrbiny Fellgettova (multiplexní) - celý spektrální rozsah po celou dobu měření - výhoda oproti jednokanálové detekci
27 Infračervená spektrometrie - instrumentace VÝHODY INTERFEROMETRIE Connesových - vysoká vlnočtová správnost a opakovatelnost hodnot vlnočtů (kontrola pohybu zrcadla He-Ne laserem) konstantní rozlišení - v celém spektrálním rozsahu, pravidelný vlnočtový krok
28 Infračervená spektrometrie - TRANSMISNÍ MĚŘENÍ - plyny - plynové kyvety - optická délka 1 cm - 10 m - roztoky - kapalinové kyvety - 0,01 mm - 10 mm - kapaliny - kapalinové kyvety - 0,002 mm - 0,05 mm - pevné látky - suspenze s Nujolem, Fluorolube - - tablety s KBr kapalinové kyvety
29 Infračervená spektrometrie - Reflexní techniky ATR
30 Infračervená spektrometrie - Reflexní techniky ATR - attenuated total reflection - zeslabený úplný (vnitřní) ) odraz
31 Infračervená spektrometrie - Faktory, které ovlivňují ATR spektrální analýzu POUZE ODRAZ - NIKOLI LOM! Vlnová délka infračerven erveného zářenz ení Index lomu IRE a vzorku Hloubka průniku Efektivní délka dráhy Úhel dopadu Účinnost innost kontaktu se vzorkem Materiál l IRE (ATR krystalu)
32 Infračervená spektrometrie - Vlnová délka infračerven erveného zářenz ení Hloubka proniknutí infračerveného záření je závislá na vlnové délce tohoto záření. S rostoucí vlnovou délkou infračerveného záření roste hloubka proniknutí, tj. proniknutí klesá s rostoucím vlnočtem. Oproti transmisním spektrům jsou zvýrazněny intenzity pásů v oblasti nízkých vlnočtů vůči pásům při vyšších vlnočtech.
33 Infračervená spektrometrie - Index lomu IRE a vzorku KRITICKÝ ÚHEL - pouze odraz, nikoli lom S růstem indexu lomu materiálu IRE klesá kritický úhel θ c. Kritický úhel - funkcí indexů lomu vzorku a ATR krystalu : θ = sin c 1 n n 2 1 n2 = arcsin n1 n 1 - index lomu ATR krystalu n 2 - index lomu vzorku Vysoký index lomu ATR-krystalu je nutný při analýze materiálů s vysokým indexem lomu.
34 Infračervená spektrometrie - Index lomu IRE a vzorku HLOUBKA PRŮNIKU Hloubka proniknutí - dp vzdálenost od fázového rozhraní mezi krystalem a vzorkem k vrstvě ve vzorku, kde je intenzita evanescentní vlny zeslabena až na 1/e (přibližně 37%) z její původní hodnoty. dp = 2 π n 1 λ ( 2 2 ) sin θ - n 21
35 Infračervená spektrometrie - Index lomu IRE a vzorku HLOUBKA PRŮNIKU S rostoucím indexem lomu IRE klesá hloubka proniknutí. Dále klesá efektivní dráha a tudíž klesá i absorbance. Změn se dosahuje - změnou úhlu odrazu -realizováno změnou úhlu dopadu vstupujícího infračerveného záření na krystal pomocí otáčivého zrcadla - změnou indexu lomu krystalu
36 Infračervená spektrometrie Parametry různých materiálů používaných k výrobě ATR krystalu při vlnočtu 1000 cm -1 ATR kalkulace ( pro n 2 = 1,5 při ~ ν = 1000cm -1 ) θ počet odrazů (HATR) Materiál: ZnSe Index lomu: n 1 = 2,4 Spektrální rozsah: cm -1 Materiál: Ge Index lomu: n 1 = 4 Spektrální rozsah: cm -1 Materiál: AMTIR (As, Se, Ge sklo) Index lomu: n 1 = 2,5 Spektrální rozsah: cm -1 dp EP EPL(μm) dp EP EPL(μm) dp EP EPL(μm) θ c hloubka proniknutí (dp) prům ěrný efektivní průnik (EP) efektivní délka dráhy (EPL)
37 Infračervená spektrometrie Účinnost kontaktu se vzorkem evanescentní vlna se zmenšuje (rozpadá) velmi rychle se vzdáleností od povrchu, tj. je důležité mít vzorek v dokonalém optickém kontaktu s krystalem Materiál l krystalu ZnSe, AMTIR (Se, Ge, As), Si, safír, diamant Vzorky kapaliny, povrchové vrstvy na měkkm kkém podkladu, měkkm kké pevné vzorky, odparky
38 Infračervená spektrometrie - Reflexní techniky DRIFT
39 Infračervená spektrometrie - Reflexní techniky DRIFT -rychléměření práškových vzorků - nízká opakovatelnost dat - složitý fyzikální popis jevu tvar částic, zhutnění vzorku index lomu částic reflektivita a absorpční vlastnosti částic
40 Infračervená spektrometrie - Reflexní techniky SPEKULÁRN RNÍ REFLEXE
41 Infračervená spektrometrie - Reflexní techniky SPEKULÁRN RNÍ REFLEXE -měření tenkých vrstev až monomolekulárních - pravý odraz na reflexním podkladu - otázka úhlu dopadu - délka dráhy záření vrstvou - index lomu vrstvy
42 Infračervená spektrometrie - INTERPRETACE SPEKTER a IDENTIFIKACE LÁTEK - důkazy funkčních skupin - charakteristické pásy - interpretační tabulky - síla vazby, hmotnosti atomů, typ vibrace - identifikace látekl - otisk palce - knihovny spekter - tištěné - elektronické
43 Infračervená spektrometrie - INTERPRETACE SPEKTER a IDENTIFIKACE LÁTEK 1,1 1, CYCLOHEPTANE, 98% 0,9 0,8 0,7 Absorbance 0,6 0,5 0,4 0, ,2 0, Wavenumbers (cm-1) 1000
44 Infračervená spektrometrie - INTERPRETACE SPEKTER a IDENTIFIKACE LÁTEK 1,1 1,0 0,9 1-Heptene, 99+% ,8 Absorbance 0,7 0,6 0, ,4 0, ,2 0, Wavenumbers (cm-1) 1000
45 Infračervená spektrometrie - INTERPRETACE SPEKTER a IDENTIFIKACE LÁTEK 1,1 1,0 0,9 1-Hexyne, 99% ,8 0, Absorbance 0,6 0, ,4 0,3 0, , Wavenumbers (cm-1) 1000
46 Schéma hladin svrchní tón - overton fundametální přechod fundametální přechod
47 Ramanova spektrometrie Sir Chandrasekhara Venkata Raman Nobel Prize in Physics 1930 A New Type of Secondary Radiation C. V. Raman and K. S. Krishnan, Nature, 121(3048), 501, March 31, 1928 The experiments we have made have confirmed this anticipation, and shown that in every case in which light is scattered by the molecules in dust-free liquids or gases, the diffuse radiation of the ordinary kind, having the same wave-length as the incident beam, is accompanied by a modified scattered radiation of degraded frequency.
48 Principy Ramanovy a FT Ramanovy spektroskopie Podstata Ramanova jevu ROZPTYL ZÁŘENÍ - rozptýlený foton má odlišnou energii oproti dopadajícímu zářivý dvoufotonový přechodp mezi dvěma stacionárn rními vibračními stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího zářenz ení o frekvenci ν 0 > E 2 - E 1 / h, provázený vyzářen ením m rozptýleného fotonu o energii h hν R = hν 0 ± ( E 2 - E 1 ), kde h hν vib = E 2 - E 1
49 Schéma dvoufotonových přechodů Ramanův a Rayleighův rozptyl při excitaci normální a rezonanční Principy Ramanovy a FT Ramanovy spektroskopie
50 p Principy Ramanovy a FT Ramanovy spektroskopie Základní výběrové pravidlo Ramanova rozptylu změna polarizovatelnosti během b vibračního pohybu 1 α E cos( 2πν0 t) + q E cos[ 2π( ν0 νvib ) t] + cos 2π ν + 2 q { [ ( ν ) t]} = α 0 vib α q 0
51 Principy Ramanovy a FT Ramanovy spektroskopie Vibrační frekvence molekul jsou nezávislé na tom, zda je studujeme infračervenou nebo Ramanovou spektroskopií, avšak intenzity spektrálních linií budou pro obě spektroskopické techniky zřetelně odlišné.
52 Principy Ramanovy a FT Ramanovy spektroskopie V Ramanově spektru je intenzita pásů úměrná druhé mocnině změny polarizovatelnosti během vibračního pohybu (δα/δq) 2, zatímco v infračerveném spektru je úměrná druhé mocnině změny dipólového momentu.
53 Rozdíly IČ a Ramanovy spektrometrie 100 V-6j-ATR %T IR Vanillin vzorek V6 - Raman Int cm
54 Principy Ramanovy a FT Ramanovy spektroskopie 0,7 vz. 16 IR Abs Int 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0,12 0,10 0,08 0,06 0,04 vz. 16 Raman 2248 C N 2248 C N 0, Wavenumbers (cm-1) 1000
55 Principy Ramanovy a FT Ramanovy spektroskopie Vztah intenzity pásů - možnost měření teploty vzorku I anti-stokes I Stokes ν 0 = ν 0 + ν ν vib vib 4 e h ν k T vib
56 Principy Ramanovy spektroskopie
57 Experimentální výhody možnost měření ve vodném prostředí nízká intenzita Ramanova rozptylu pro vodu používané optické materiály nejsou citlivé na vlhkost možnost měření ve skleněných nádobách měření v uzavřených ampulích - např. pod vakuuem snadné využití skelné vláknové optiky minimální požadavky na úpravu pevných vzorků intenzivní pásy -C=C-, -N=N-, -S-Sa dalších symetrických vibrací
58 Ramanova spektrometrie Zdroj záření oči fotografické desky Slunce a filtry rtuťová výbojka LASERY monochromatické koherentní Detekce světla fotonásobiče CCD čipy
59 Instrumentace The following experiment seems to us to be decisive: between the scattering quartz crystal and the spectrograph slit we placed a quartz vessel which was filled with mercury vapors and totally absorbed light with a wavelength of 2536 A. We did not obtain this line in the spectrogram, but obtained only the satellites. G.S. Landsberg, L.I. Mandelstam, 1928 zdroj excitujícího záření excitační optika vzorkový prostor sběrná optika odlišení záření o různé energii detekce záření akviziční elektronika ukládání a zpracování dat
60 Instrumentace přenosné přístroje ruční, mobilní stolní kompaktní spektrometry stolní spektrometry s volbou excitační vlnové délky stolní mikrospektrometry vědecké systémy průmyslové univerzální systémy aplikačně přizpůsobené (jednoúčelové) systémy
61 ANALÝZA kůže jednoúčelové zařízení River Diagnostics Model 3510 Skin Analyzer River Diagnostics Model 3510 Skin Analyzer -
62 Instrumentace Lasery pro excitaci Ramanova jevu TYP laseru vlnová délka [nm] He-Ne 632,8 Ar + 514,5 Ar + 488,0 Ar + 457,9 Kr + 568,2 Kr + 647,1 Kr + 676,4 Kr + 752,6 Nd-YAG 1064 Nd-YAG - 2f 532 diodové 780, NIR barvivové UV, vis
63 Schéma Ramanova disperzního přístroje
64 Schéma Ramanova mikroskopu
65 Ramanova mikrospektroskopie dispersní viditelná excitace možnost konfokálního režimu pro lepší prostorové rozlišení FT Ramanova NIR excitace horší prostorové rozlišení menší riziko fotorozkladu a fluorescence
66 Instrumentace Vzorkování - makroskopické vialky, skleněné kyvety (NMR, UV-vis ), možnost měřit přes tenkou vrstvu polymeru Vzorkování -příklady -Nicolet
67 Externí sondy připojené pomocí vláknové optiky Křemenná vlákna Fokusační zrcadla Vysoce světelné objektivy z kvalitního optického skla Mobilní přístroje
68 Principy FT Ramanovy spektroskopie Schéma FT Ramanova spektrometru s NIR excitací
69 Instrumentace Materiály pro dělič paprsků Propustný materiál Polopropustný povlak rozsah použití [cm -1 ] křemen Si (Fe 2 O 3 ) CaF 2 Si (Fe 2 O 3 ) KBr Ge CsI Ge
70 Speciální techniky rezonanční - RR povrchem zesílený - SERS rezonanční povrchem zesílený - SERRS fotoakustický - PARS hyperraman koherentní anti-stokes - CARS koherentní Stokes - CSRS
71 Studované materiály VZORKY anorganické - korozní vrstvy - povrchy pevných disků, křemík - amorfní uhlík, diamanty organické - supramolekulární systémy - systémy na nosičích polymery - fotolabilní materiály biologické - in vitro, in vivo geologické - minerály, horniny archeologické - od paleolitu po novověk
72 Studované materiály GEMMORAMAN drahokamy FRESCORAMAN anorg. barviva ICONORAMAN org. barviva PETRORAMAN kameny RESINORAMAN amorf. org. m. TISSUERAMAN tkáně CERAMORAMAN keramika METALLORAMAN koroze kovů VITRORAMAN skelný stav CLIMATORAMAN vlivy klimatu na m.
73 Analýza uhlíkatých materiálů x DLC sp 3 sp 2 Intensity (a.u.) uhlíková vrstva 1330 diamant sp Wavenumber (cm -1 )
74 Analýza supramolekulárních materiálů - interkaláty VOPO 4 2H 2 O
75 Analýza interkalátů
76 Identifikace drog
77 Identifikace léčiv
78 FT Ramanova spektra tkání
79 Použití spektrálních dat Interpretace spekter strukturní analýza, identifikace látek spektrální knihovny Intenzita pásů kvantitativní analýza Časově rozlišená spektra kinetické studie Teplotně závislá spektra Analýza směsí identifikace subspekter faktorová analýza
80 NIR MOLEKULOVÁ absorpční/reflexní spektrometrie - blízká infračervená oblast - velmi široké pásy - obtížné korektní přiřazení pásů - často používána v reflexním módu - často používána vláknová optika -překryv pásů různých komponent - NUTNÉ MULTIVARIAČNÍ KALIBRAČNÍ MODELY - NEDESTRUKTIVNÍ PROCESNÍ ANALYTICKÁ METODA - automatizovatelná
81 NIR MOLEKULOVÁ absorpční/reflexní spektrometrie - blízká infračervená oblast - velmi široké pásy
82 NIR MOLEKULOVÁ absorpční/reflexní spektrometrie nedestruktivní metoda používaná v procesní analýze, QC/AC praktická metoda, která může nahradit dražší, časově náročnější či pracnější metody, např. GC, HPLC, odměrná analýza relativně rychlá metoda pro rutinní použití v technologických aplikacích
83 NIR kvalitativní informace NIR knihovny identifikace čistých látek a/nebo kontrola definovaných směsí léčiva, polymery atd. kvantitativní analýza multivariátní kalibrační modely vícesložková analýza
84 NIR od cm nm cm nm cm nm od cm nm do cm nm do 400 cm nm 200cm nm
85
86 NIR spektra kombinační overton overton 0.6 Log(1/R) overton Wavenumbers (cm-1)
87 NIR spektra 1 fundamentální přechody (MIR) Absorbance 0.5 NIR oblast kombinační 1. overton 2. overton 3. overton Wavenumber, cm -1
88 intenzity NIR/MIR spekter intenzity klesají s rostoucí frekvencí / vlnočtem 4,5 4,0 Polystyren NIR Polystyrene measured as a film Polystyrene - MIR Polystyrene NIR Společná stupnice intenzit 3,5 3,0 Absorbance 2,5 2,0 1,5 1,0 0, Wavenumbers (cm-1)
89 NIR spektrometrie transmisní měření kyvety - různé typy skla INFRASIL, SUPRASIL (kritická oblast ~ 4000 cm -1 )
90 NIR spektrometrie transmisní měření kyvety - různé typy skla délka kyvety 1 5 (10) mm vliv absorpce rozpouštědla otázka vybraných podoblastí (kombinační pásy, řád overtonů) vliv koncentrací sledovaných analytů sondy s vláknovou optikou Fixovaná nebo nastavitelná optická dráha vzorkem
91 NIR spektrometrie transmisní měření Kyvety polární i nepolární vzorky organické kapaliny (oleje, benziny, nafty ) vodné roztoky (nápoje obsah cukrů, ethanolu) Absorbance Aceton_5mmDV Aceton_1mmDV Aceton_2mmDV Aceton různá tloušťka vrstvy 5 mm 2 mm 1 mm cm
92 NIR spektrometrie transmisní měření Kyvety polární i nepolární vzorky organické kapaliny (oleje, benziny, nafty ) vodné roztoky (nápoje obsah cukrů, ethanolu) Absorbance Voda_5mmDV Voda_1mmDV Voda_2mmDV Voda 5 mm 2 mm 1 mm cm
93 NIR spektrometrie transmisní měření vodné roztoky kalibrační model obsah cukru v nealkoholických nápojích
94 NIR spektrometrie transmisní měření vodné roztoky kalibrační model pro alkoholické nápoje
95 NIR spektrometrie transmisní měření vodné roztoky kalibrační model pro alkoholické nápoje Absorbance NIR MP NIR-1-01-MP NIR-1-02-MP NIR-2-01-MP NIR-2-02-MP NIR-3-01-MP NIR-3-02-MP NIR-4-01-MP NIR-4-02-MP NIR-5-01-MP NIR-5-02-MP NIR-6-01-MP NIR-6-02-MP NIR-7-01-MP NIR-7-02-MP NIR-8-01-MP NIR-8-02-MP NIR-9-01-MP NIR-9-02-MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP 4480 NIR MP NIR MP range of combination bands Wavenumbers (cm-1)
96 NIR spektrometrie transmisní Absorbance NIR MP NIR-1-01-MP NIR-1-02-MP NIR-2-01-MP NIR-2-02-MP NIR-3-01-MP NIR-3-02-MP NIR-4-01-MP NIR-4-02-MP NIR-5-01-MP NIR-5-02-MP NIR-6-01-MP NIR-6-02-MP NIR-7-01-MP NIR-7-02-MP NIR-8-01-MP NIR-8-02-MP NIR-9-01-MP NIR-9-02-MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP NIR MP 6000 NIR MP NIR MP NIR MP 5900 měření vodné roztoky kalibrační model pro alkoholické nápoje 5800 range of 1-st ovetones 5700 Wavenumbers (cm-1)
97 NIR spectrometry transflectance measurement transflectance cells defined pathlength Zrcadlo Mirror Petriho dish miska Sample Vzorek Drážka Groove pro for odstranění vzduchu air removal Definovaná Defined optická dráhaoptical path transmission/ reflection viscous liquids, pastes
98 NIR spectrometry transflectance transflectance cells various pathlengths transmission/ reflection measurement viscous liquids, pastes MIRRORS
99 NIR spectrometry transflectance transflectance cells fat in the butter measurement
100 NIR spectrometry TABLET Analyzer (Diffuse) Transmission Tablet Diffuse Reflectance
101 NIR spectrometry TABLET Analyzer tablet analyzer determination of active substance in a capsule
102 NIR spectrometry diffuse reflectance measurement UpDRIFT absorption and reflections on irregular particles reflected radiation collected Sample area
103 UpDRIFT NIR spectrometry diffuse reflectance measurement background measurement with Spectralon (ceramics) direct measurement of pellets, powders measurement in rotational cell (glass bottom) powders, granular materials, pulps
104 NIR spectrometry fibre optics remote sensing probes
105 NIR spectrometry fibre optics remote sensing probes SMA connectors Light beam Optical fibres Immersion probe Optical pathlength Source of radiation Detector
106 NIR spectrometry fibre optics probes IMMERSION PROBES standard type Window Light path in sample Prism Light beam
107 NIR spectrometry fibre optics probes IMMERSION PROBES types for small sampling volumes Window Light path in sample Prism Light beam Window Light path in sample Light beam Mirror
108 NIR spectrometry fibre optics probes IMMERSION PROBES types for process analysis Window Light path in sample Prism Light beam
109 NIR spectrometry fibre optics probes IMMERSION PROBES ATR probe Sapphire prism Light beam
110 NIR spectrometry fibre optics probes Multiplexer System set of probes
111 NIR MOLEKULOVÁ absorpční/reflexní spektrometrie - blízká infračervená oblast - velmi široké pásy - ANALÝZA POTRAVIN, FARMAK, PLASTŮ atd. - stanovení alkoholu a cukru v nápojích analýza sýrů - obsah tuků, cukrů, proteinů, obsah vody stanovení aktivní látek v tabletách (paracetamol, ibuprofen) stanovení oktanového čísla a obsahu aromátů - petrochemie stanovení aditiv v plastech stanovení obsahu celulosy - papírenský průmysl
112 Kvantitativní spektrometrie NIR MOLEKULOVÁ spektrometrie - blízká infračervená oblast
113 Kvantitativní spektrometrie NIR MOLEKULOVÁ spektrometrie - blízká infračervená oblast
114
115
116
117
118
119 PLS
120
121 Měření IR/NIR spekter v nanosvětě technika blízkého pole Pavel Matějka Pavel.Matejka@vscht.cz VŠCHT Praha
122 Nanospektroskopie Chemické obrazy vzorků s nanorozlišením pod difrakční limitou Generování obrazů z výšek píků, jejich ploch, poměru intenzit, korelačních koeficientů, výsledků analýzy hlavních komponent atd. sledování změn v chemickém složení vzorku nehomogenity, poruchy, nanokompozitní materiály, supramolekulární objekty
123 Infračervená/Ramanova nanospektroskopie vs. mikrospektroskopie Mikrospektroskopie - techniky vzdáleného pole Nanospektroskopie techniky blízkého pole
124 Nanospektroskopie vs. mikrospektroskopie Mikrospektroskopie maximální prostorové rozlišení v případě kvalitně zkonstruovaného mikroskopu je limitováno difrakcí záření (kritický parametr vlnovádélka) Nanospektroskopie maximální prostorové rozlišení je pod difrakční limitou, je limitováno především aperturou sondy (jejím průměrem)
125 Infračervená nanospektroskopie vs. nanomikroskopie Nanospektroskopie možnost nedestruktivního přístupu nevyžaduje složitou přípravu vzorku nevyžaduje vakuum
126 Infračervená nanospektroskopie Techniky blízkého pole sonda v blízkosti povrchu ( blízké pole ) Spektroskopie blízkého pole (near-field spectroscopy) Mikroskopie blízkého pole SNOM scanning near-field optical microscopy UV-vis, IR (IR-SNOM), Ramanova spektroskopie - TERS fotoluminiscence, fluorescence rozlišení lepší než 50 nm spektroskopie jedné molekuly
127 Infračervená nanospektroskopie Techniky blízkého pole konstrukce spektroskopického obrazu rastrováním sonda skenuje povrch bod po bodu kritická je apertura sondy a její vzdálenost od povrchu
128 Infračervená nanospektroskopie vzdálenost sondy 10 nm apertura sondy režimy snímání transmisní (jen transparentní vzorky) reflexní ostrá sonda vysílač, přijímač
129 Infračervená nanospektroskopie vzdálenost sondy 10 nm apertura sondy optické spřažení mezi špičkou sondy a vzorkem sonda reaguje na změny dielektrické funkce v jejím okolí
130 Infračervená nanospektroskopie
131 Výhody a problémy SNOM VÝHODY překonání difrakční limity nanorozlišení nedestruktivní metoda flexibilní režimy snímání PROBLÉMY technologické nároky na konstrukci SNOM sondy nízká intenzita detekovaného záření nároky na citlivost detektoru
132 Výhody IR SNOM kombinace SNOM a IR záření prostorové rozlišení SNOM jednotky nanometrů chemické rozlišení - chemická specificita IR spekter chemická charakterizace nanomateriálů nanodomény
133 Příklady použití organické nanokompozitní materiály domény polystyren poly- 2-vinylpyridin kontrast při 2950 cm -1
134 Příklady použití organické nanokompozitní materiály domény polystyren poly-2-vinylpyridin
135 Příklady použití buněčné kultury 20 x 20 μm IR SNOM obrazy 1515 cm cm -1
136 Příklady použití NIR SNOM
137 Příklady použití NIR SNOM
138 Příklady použití NIR SNOM
139 Kombinace TERS, AFM
140 Kombinace MicroRaman, SNOM enhanced Raman, AFM Paralelní zobrazení křemíkového polovodiče AFM image 9 x 7 μm Raman instensity image 520 cm -1, the same area
Infračervená spektrometrie
Podstata infračervené absorpce jednofotonový přechod mezi dvěma vibračními (vibračně-rotačními) rotačními) stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
Metody spektrální. Metody molekulové spektroskopie. vibrační spektroskopie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Metody molekulové spektroskopie vibrační spektroskopie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Schéma hladin svrchní tón - overton fundametální přechod fundametální
Metody strukturní analýzy NMR, IČ, Raman. Pavel Matějka
Metody strukturní analýzy NMR, IČ, Raman Pavel Matějka Metody strukturní analýzy NMR, IČ, Raman 1. NMR 1. Princip metody a základy instrumentace 2. Základy pro interpretaci spekter 3. NMR pevné fáze 4.
Techniky měření a interpretace IČ a Ramanových spekter (základy vibrační spektroskopie trochu jinak)
Techniky měření a interpretace IČ a Ramanových spekter (základy vibrační spektroskopie trochu jinak) Pavel Matějka Pavel.Matejka@vscht.cz Ústav analytické chemie Úvod - závislost spekter na periodickém
Využití UV/VIS a IR spektrometrie v analýze potravin
Využití UV/VIS a IR spektrometrie v analýze potravin Chemické laboratorní metody v analýze potravin MVDr. Zuzana Procházková, Ph.D. MVDr. Michaela Králová, Ph.D. Spektrometrie: základy Interakce záření
SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
8. Detekce a identifikace aktivních složek a pomocných látek infračervená spektrometrie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 8. Detekce a identifikace aktivních složek a pomocných látek infračervená spektrometrie Vadym Prokopec Vadym.Prokopec@vscht.cz 8. Detekce
Základy NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Infračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
Techniky mikroskopie povrchů
Techniky mikroskopie povrchů Elektronové mikroskopie Urychlené elektrony - šíření ve vakuu, ovlivnění dráhy elektrostatickým nebo elektromagnetickým polem Nepřímé pozorování elektronového paprsku TEM transmisní
Základy NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
Spektrometrie v blízké infračervené oblasti. Pavel Matějka
Spektrometrie v blízké infračervené oblasti Pavel Matějka NIR spectrometry molecular absorption/reflection spectrometry non-destructive method used in process analysis, QC/AC practical method that can
STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE
STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE Úvod Infračervená spektrometrie v blízké oblasti (Near-Infrared Spectrometry NIR spectrometry) je metoda molekulové spektrometrie, která
Vybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I Spektroskopické metody: atomové vs molekulové atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením pouze
Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka
Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická
IDENTIFIKACE NEZNÁMÉ ORGANICKÉ LÁTKY POMOCÍ INFRAČERVENÉ SPEKTROMETRIE
Úvod Infračervená spektrometrie (IR) je analytická technika určená především k identifikaci a strukturní charakterizaci organických sloučenin a anorganických látek. Tato nedestruktivní analytická technika
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá 0,78 1000 µm. DĚLENÍ: blízká IR oblast 13000 5000 cm -1
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá λ 0,78 1000 µm. DĚLENÍ: blízká IR oblast
INFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ
INFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ Úvod: Infračervená spektrometrie (IR) je analytická technika molekulové vibrační spektrometrie, která se zabývá studiem pohybů atomů v
10A1_IR spektroskopie
C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá 0,78 1000 µm. DĚLENÍ: blízká IR oblast 13000
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Pokročilé spektroskopické metody analýzy léčiv
Pokročilé spektroskopické metody analýzy léčiv Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com VŠCHT Praha Sylabus předmětu - výchozí 1. Principy optické mikro- a nano- spektroskopie 2. Infračervená
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
10.Spektrální metody pro identifikaci a kvantifikaci NIR spektrometrie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 10.Spektrální metody pro identifikaci a kvantifikaci NIR spektrometrie Vadym Prokopec Vadym.Prokopec@vscht.cz 10.Spektrální metody pro
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
Absorpční fotometrie
Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody
Spektrometrické metody. Reflexní a fotoakustická spektroskopie
Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření
Nicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. Typické aplikace těchto technik. The world leader in serving science
Nicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. The world leader in serving science Typické aplikace těchto technik. Základní princip Infračervená a Ramanova spektroskopie nedestruktivní
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
9. Detekce a identifikace aktivních složek a pomocných látek Ramanova spektrometrie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 9. Detekce a identifikace aktivních složek a pomocných látek Ramanova spektrometrie Vadym Prokopec Vadym.Prokopec@vscht.cz 9. Detekce
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
Příslušenství k FT-IR spektrometrům: ATR vláknová optika Seminář Molekulová Spektroskopie 2011 Hotel Jezerka Seč Říjen 2011
The world leader in serving science Příslušenství k FT-IR spektrometrům: ATR vláknová optika Seminář Molekulová Spektroskopie 2011 Hotel Jezerka Seč Říjen 2011 IR Spektrum NIR (blízká IR) Overtonové vibrace
Identifikace barviv pomocí Ramanovy spektrometrie
Identifikace barviv pomocí Ramanovy spektrometrie V kriminalistických laboratořích se provádí technická expertíza písemností, která se mimo jiné zabývá zkoumáním použitých psacích prostředků: tiskových
Infračervená a Ramanova spektrometrie
Infračervená a Ramanova spektrometrie Infračervené záření Záření v oblasti vlnočtů 12500 10 cm -1 které se dále dělí na 3 podskupiny: - blízká IČ oblast: 12500 5000 cm -1 (Near Infrared, NIR) -střední
Metody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
INTERPRETACE INFRAČERVENÝCH SPEKTER
INTERPRETACE INFRAČERVENÝCH SPEKTER Obecné základy nedestruktivní metoda strukturní analýzy měření přechodů mezi vibračními hladinami změna dipólového momentu během vibrace v=3 v=2 v=1 v=0 fundamentální
Ramanova spektroskopie
Ramanova spektroskopie Připomentuní elmag. záření Princip Neelastický rozptyl monochromatického záření Ramanův rozptyl je jev vznikající při interakci mezi fotony dopadajícího světla s atomy, kdy se předává
Jak vibrují atomy v molekulách
Jak vibrují atomy v molekulách Doc. RNDr. Miroslava Trchová, CSc. Ústav makromolekulární chemie Akademie věd ČR trchova@imc.cas.cz Vibrační spektroskopie se zabývá studiem pohybů jader v molekulách, tj.
Spektroskopické é techniky a mikroskopie. Spektroskopie. Typy spektroskopických metod. Cirkulární dichroismus. Fluorescence UV-VIS
Spektroskopické é techniky a mikroskopie Spektroskopie metody zahrnující interakce mezi světlem (fotony) a hmotou (elektrony a protony v atomech a molekulách Typy spektroskopických metod IR NMR Elektron-spinová
Viková, M. : ZÁŘENÍ II. Martina Viková. LCAM DTM FT TU Liberec, (hranol, mřížka) štěrbina. Přednášky z : Textilní fyzika
Záření II Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz kolimátor dalekohled štěrbina (hranol, mřížka) SPEKTRA LÁTEK L I Zářící zdroje vysílají záření závislé na jejich chemickém složení
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Spektroskopické metody. Ramanova spektroskopie
Spektroskopické metody Ramanova spektroskopie p Objev Ramanova jevu Sir Chandrasekhara ase a a Venkata Raman a spolu s K.S. Krisnanem v roce 1928 v Kalkatě v Indii a nezávisle také v roce 1928 G. Landsberg
Infračervená spektroskopie (Infrared spectroscopy)
INFRAERVENÁ ˇ A RAMANOVA SPEKTROSKOPIE Teorie Instrumentace Pracovní techniky IR spektroskopie MIR identifikace látek MIR rozbor spekter MIR kvantitativní analýza Ramanova spektroskopie: teorie, odlišnosti
Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE
IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara
CZ.1.07/2.2.00/ AČ (RCPTM) Spektroskopie 1 / 24
MĚŘENÍ SPEKTRA SVĚTLA Antonín Černoch Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/15.0147 AČ (RCPTM) Spektroskopie 1 / 24 Úvod Obsah 1 Úvod 2 Zobrazovací spektrometry Disperzní
FOTOAKUSTIKA. Vítězslav Otruba
FOTOAKUSTIKA Vítězslav Otruba 2010 prof. Otruba 2 The spectrophone 1881 A.G. Bell návrh a Spektrofonu (spectrophone) pro účely posouzení absorpčního spektra subjektů v těch částech, které jsou neviditelné.
Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti
Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace
Infračervená spektrometrie
Infračervená spektrometrie Obsah kapitoly Teorie Instrumentace Pracovní techniky IR spektrometrie MIR Identifikace látek Kvantitativní analýza Aplikace v analýze potravin NIR Vlastnosti metody Aplikace
Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)
Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)
Mikroskopie se vzorkovací sondou. Pavel Matějka
Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití
Techniky prvkové povrchové analýzy elemental analysis
Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded
Metody spektrální. Metody molekulové spektroskopie. UV-vis oblast. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Metody molekulové spektroskopie UV-vis oblast Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Absorpční spektro(foto)metrie - v ultrafialové (UV) a viditelné (VIS)
METODY ANALÝZY POVRCHŮ
METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější
3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).
PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta technologie ochrany prostředí Ústav technologie ropy a alternativních paliv INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV Laboratorní cvičení ÚVOD V několika
Příklady biochemických metod turbidimetrie, nefelometrie. Miroslav Průcha
Příklady biochemických metod turbidimetrie, nefelometrie Miroslav Průcha Příklady optických technik Atomová absorpční spektrofotometrie Absorpční spektrofotometrie Absorpční spektrofotometrie kinetická
METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM
METODY BEZ VÝMĚNY ENERGIE MEZI ZÁŘENÍM A VZORKEM REFRAKTOMETRIE POLARIMETRIE SPEKTROMETRIE VYUŽÍVAJÍCÍ ROZPTYL MĚŘENÍ VELIKOSTI ČÁSTIC (c) -2012 REFRAKTOMETRIE Metoda založená na měření indexu lomu látek
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )
7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state ) Steady-state měření Excitujeme kontinuálním světlem, měříme intenzitu emise (počet emitovaných fotonů) Obvykle nedetekujeme všechny
Metody analýzy povrchu
Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie
Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen
Pavel Matějka
Pavel Matějka Pavel.Matejka@vscht.cz Pavel.Matejka@gmail.com www.vscht.cz/anl/matejka Strukturní a povrchová analýza Analýza struktury (pevných látek) a analýza povrchu, resp. fázového rozhraní pevných
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie
Refraktometrie, interferometrie, polarimetrie, nefelometrie, turbidimetrie Refraktometrie Metoda založená na měření indexu lomu Při dopadu paprsku světla na fázové rozhraní mohou nastat dva jevy: Reflexe
11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv Vadym Prokopec Vadym.Prokopec@vscht.cz 11.Metody molekulové spektrometrie
Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm
Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový
HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth edition, Blackie Academic & Professional 1996 Colin F. Poole and Salwa K.
Vysokoúčinná kapalinová chromatografie - Detektory - I Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Analýza vrstev pomocí elektronové spektroskopie a podobných metod
1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek
6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 6. Metody molekulové spektroskopie spektrofotometrie, luminiscenční metody Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
Glass temperature history
Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka
Charakterizace koloidních disperzí. Pavel Matějka
Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití
Metody charakterizace
Metody y strukturní analýzy Metody charakterizace nanomateriálů I Význam strukturní analýzy pro studium vlastností materiálů Experimentáln lní metody využívan vané v materiálov lovém m inženýrstv enýrství:
METODY - spektrometrické
Analýza Analýza - prvková METODY - spektrometrické atomová emisní/absorpční spektrometrie rentgenová fluorescenční analýza emise elektronů - povrchová analýza ESCA (elektronová spektroskopie pro chemickou
Přehled technik molekulová analýza
Přehled technik molekulová analýza Techniky Ramanovy spektroskopie Normální RS Resonanční RS SERS, SERRS, TERS Ramanova mikrospektroskopie Disperzní FT Ramanova TERS SNOM Ramanova spektrometrie Úvod k
2. Zdroje a detektory světla
2. Zdroje a detektory světla transmitance (%) Spektrální rozsah Krátkovlné limity: Absorpce vzduchu (O 2,N 2,vodní pára) - 190 nm Propustnost optiky Spektrální rozsah zdroje vlnová délka (nm) http://www.hellma-analytics.com/text/283/en/material-and-technical-information.html
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
INTERAKCE IONTŮ S POVRCHY II.
Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených