Viktor Kanický Laboratoř atomové spektrochemie Ústav chemie Přírodovědecké fakulty Masarykovy univerzity
|
|
- Jaroslava Benešová
- před 6 lety
- Počet zobrazení:
Transkript
1 Spektrometrie s indukčně vázaným plazmatem ICP Principy a analytické vlastnosti Viktor Kanický Laboratoř atomové spektrochemie Ústav chemie Přírodovědecké fakulty Masarykovy univerzity
2 1. Plamen Atomová emisní spektroskopie v chemick cké analýze 2. Elektrické výboje a) Elektrodové výboje i. Elektrický oblouk (střídavý, stejnosměrný) ii. Elektrická jiskra ( Hz, nn, vn) b) Stejnosměrný plazmový výboj (DCP) c) Výboje za sníženého tlaku i. Stejnosměrný doutnavý výboj GDL (Grimm) ii. Radiofrekvenční (RF-GDL) doutnavý výboj d) Radiofrekvenční plazmata i. Indukčně vázané plazma ICP (za atmosférického tlaku) ii. RF kapacitně vázané plazma (plasma jet) e) Mikrovlnná plazmata i. Mikrovlnné indukčně vázané plazma (MIP) ii. Kapacitně vázané mikrovlnné plazma (CMP) 3. Laserem indukované plazma (LIBS, LIPS)
3 ICP-AES Sběr a zpracování dat Detektor Spektrální přístroj Zdroj ICP Zavádění vzorku zmlžovač Vysokofrekvenční generátor
4 ICP-OES Jobin Yvon 170 Ultrace
5 ICP-OES Jobin Yvon 170 Ultrace
6 ICP-OES Varian - Vista MPX TM Thermo - icap 6300 Perkin Elmer - OPTIMA 7000 Spectro - CirosVision
7 ICP-OES Leeman Labs Teledyne - Profile
8 Inductively Coupled Plasma Iniciace výboje: ionizace jiskrou Analytická zóna Záření do spektrometru vf e - + Ar e - + e - + Ar + Indukční cívka 3-5 závitů Plazmová hlavice křemen 3 koncentrické trubice Střední plazmový plyn L/min Ar Vnější plazmový plyn 12 L/min Ar Nosný plyn (aerosolu) L/min Ar Elektromagnetické pole, frekvence 27 MHz, 40 MHz výkon 1-2 kw
9 ICP výboj plazmová hlavice
10 Plazmová hlavice ICP A B A- argon/argonové plazma, B argon/dusíkové plazma. Trubice: 1 vnější (plazmová), 2 prostřední, 3 injektor. Konfigurační faktor plazmové hlavice = a/b, kde a je vnější průměr prostřední trubice, b je vnitřní průměr vnější (plazmové) trubice. Toky plynů: A: 5 vnější plazmový (8-15 l/min Ar), 6 střední plazmový (0-1 l/min Ar), nosný (0,5-1,0 l/min Ar); B: 5 chladicí (15-20 l/min N2), 6 plazmový (5-10 l/min Ar), 7 nosný (1-3 l/min Ar); 4 indukční cívka, 5 chladicí voda.
11 Plazmová hlavice ICP
12 Plazmová hlavice ICP Plazmová hlavice je uložena koaxiálně v indukční cívce a má tyto funkce: 1. izoluje plazma od indukční cívky 2. usměrňuje tok vnějšího plazmového plynu podmínky pro iniciaci a udržení stabilního výboje 3. umožňuje ovlivnění polohy výboje v axiálním směru pomocí středního plazmového plynu 4. umožňuje zavádění vzorku do plazmatu pomocí nosného plynu vytékajícího z trysky injektoru.
13 Plazmová hlavice s indukční cívkou Cívka Perkin-Elmer,, OPTIMA, zlacená Cívka Perkin-Elmer,, OPTIMA
14 Plazmová hlavice ICP Toky plynu a jejich funkce Prostor mezi plazmovou a prostřední trubicí mezi prostřední trubicí a injektorem injektor Označení plynu vnější plazmový střední plazmový nosný Funkce plynu vytváří výboj stabilizuje výboj vytváří analytický kanál a vnáší aerosol
15 Plazmová hlavice ICP Plazmové hlavice jsou konstruovány jako: kompaktní, kdy všechny tři trubice tvoří pevný celek, rozebiratelné, kdy jednotlivé trubice jsou samostatně fixovány v plastovém nebo keramickém bloku opatřeném přívody argonu, kombinované, kdy prostřední a vnější trubice tvoří celek a injektor je samostatný.
16 Kompaktní: Plazmová hlavice ICP fixní symetrie, při poškození nutná výměna jako celek, Rozebiratelná: symetrie závislá na výměně, při poškození vyměnitelné jednotlivé trubice Kombinovaná: fixní symetrie vnější a prostřední trubice možnost výměny injektoru (korund, křemen, různé průměry trysky.
17 Kompaktní plazmové hlavice Spectro EOP; 2,5 mm injektor Varian Vista AX, pro vysoký obsah TDS, injektor 2,3 mm Perkin Elmer PE 5500
18 Rozebiratelné plazmové hlavice (Jobin-Yvon) Vnější plazmová trubice, křemen Prostřední plazmová trubice, křemen Prostřední plazmová trubice, korund límec na vnější tr. Fixace polohy trubic Injektor křemenný, 2,5 mm Injektor korundový, 2,5 mm Centrování injektoru Sheath gas stínící Ar
19 Kombinované plazmové hlavice Varian Vista AX Spectro EOP Perkin-Elmer Plasma 40 Perkin-Elmer Optima 3000
20 Kombinované plazmové hlavice Perkin-Elmer Optima 3000 DV Výřez pro laterální (radiální) pozorování)
21 Plazmová hlavice ICP Prodloužená plazmová trubice extended extended sleeve zvýšení stability výboje snížení pronikání atm. plynů do výboje zvýšené opotřebení pro laterální pozorování nutný výřez analytická zóna uvnitř trubice Horizontální hlavice pro axiální pozorování: významné lokální poškození gravitační usazování nevypařeného vzorku v hlavici na spodní straně
22 Plazmová hlavice ICP Horizontální hlavice pro axiální pozorování: proud horkého Ar směřuje proti vstupní optice spektrometru: nutnost izolovat optiku od ICP: odstřihnutí chvostu výboje a horkého Ar proudem vzduchu kolmo na výboj (shear gas) rozfukováním chvostu protiproudem plynu vnořením kovového kuželu s aperturou ve vrcholu do plazmatu (jako ICP-MS)
23 Axiální pozorování
24 Plazmová hlavice Čištění plazmové hlavice - provádí se nejlépe každodenně: minimalizuje se kontaminace, prodlužuje se životnost hlavice. Čisticí lázně HNO 3 zředěná 1:1, směs HNO 3 + HCl v poměru 1:1, H 2 SO 4 + H 2 O 2 pro odstranění zbytků organiky (tuky). Pro čištění plazmové hlavice je možno použít ultrazvukovou lázeň
25 Vysokofrekvenční generátor ICP Vysokofrekvenční (vf) generátor dodává výboji ICP energii potřebnou k vykonání ionizační práce. Generátor se skládá ze tří základních částí: i. zdroje stejnosměrného napětí, ii. vyskofrekvenčního (vf) oscilátoru a iii.obvodu impedančního přizpůsobení s indukční cívkou pro generování ICP.
26 Vysokofrekvenční generátor Generátory ICP (1-2 kw) pracují na kmitočtech vyhrazených pro průmyslové použití v pásmech 27, 36, 40, 50 a 64 MHz. Byla také studována plazmata s frekvencí oscilátoru 80 a 100 MHz. Vyšší frekvence poskytují: vyšší poměry signálu k pozadí, nižší meze detekce, menší nespektrální interference, snadnější zavádění vzorku snížení spotřeby argonu i energie.
27 Vysokofrekvenční generátor ICP Oscilátor je zdroj elektrických kmitů s ustálenou amplitudou a určitou frekvencí a je tvořen resonančním (laděným) obvodem a zesilovačem. Výkonové vf zesilovače generátorů ICP: elektronkové, polovodičové (cca od1995).
28 Vysokofrekvenční generátor ICP Při zavedení vzorku do ICP se změní impedance výboje, což vyžaduje impedanční přizpůsobení vf generátoru. Podle způsobu, jak se generátor vyrovnává se změnou zátěže plazmatu, rozeznáváme 2 typy oscilátorů: volně kmitající (s plovoucí frekvencí, free- running), krystalově řízené (s pevnou frekvencí, fixed frequncy).
29 Vysokofrekvenční generátor ICP Generátor s volně kmitajícím oscilátorem přizpůsobí svou resonanční frekvenci komplexnímu odporu zátěže; je stabilizován výkonově při změně zátěže (aerosoly koncentrovaných roztoků solí, organická rozpouštědla) se: změní frekvence oscilátoru (velmi málo), zůstane stabilní výkon předávaný do ICP.
30 Vysokofrekvenční generátor ICP Generátor s oscilátorem řízeným krystalem: se dolaďuje rychlou změnou impedance přizpůsobovacího členu (změnou kapacity proměnného kondenzátoru řízeného servomotorem) tak, aby zůstaly zachovány podmínky pro resonanci vazebního obvodu při frekvenci krystalu. Generátor - měření odraženého výkonu: rozdíl mezi výstupním výkonem oscilátoru a výkonem absorbovaným plazmatem. Doladěním se odražený výkon minimalizuje a dosahuje se opět maximální účinnosti vazby.
31 Generátor, spotřeba a využití energie Do plazmové hlavice je dodáno asi % vf výkonu generátoru. Zbývající výkon je rozptýlen v obvodech oscilátoru a v indukční cívce v podobě tepla. Výkon dodaný do plazmové hlavice je jen částečně využit pro udržení výboje, atomizaci, ionizaci a excitaci. V závislosti na konstrukci plazmové hlavice je část výkonu odváděna: konvekcí proudem argonu a kondukcí stěnou vnější plazmové trubice.
32 Generátor, spotřeba a využití energie Výkonová bilance je vyjádřena vztahem 0,75 P g = P t = P p + P s + P c + P w P g je výkon generátoru, P t je příkon do plazmové hlavice, P p je příkon potřebný na udržení kinetické teploty plynu 3500 K (65 W) a na spojité záření plazmatu (25 W), P s je příkon potřebný na odpaření, disociaci, atomizaci, ionizaci a excitaci vzorku (25 W pro vodné roztoky, 200 W pro org. rozpouštědla).
33 Generátor, spotřeba a využití energie Při výkonu generátoru 1000 W připadá celkem 450 W až 600 W na ztráty : P c - konvekcí proudem Ar a P w - přestupem tepla stěnou hlavice, Teoreticky na udržení výboje stačí pouze 100 až 300 W příkonu do plazmové hlavice, tj. asi W výkonu generátoru. Skutečnost: 1300 W při průtoku nosného plynu 0,6 L Ar/min
34 Plazmová hlavice a spotřeba argonu Pro udržení stabilního výboje je třeba, aby vnější plazmový plyn dosahoval při daném příkonu do plazmatu alespoň určité minimální lineární rychlosti proudění v c (kritická rychlost). Průtok F p plazmového plynu je potom určen vztahem F p v c S P kde S p je průřez, kterým proudí vnější plazmový plyn (plocha mezikruží vymezená vnějším průměrem prostřední plazmové trubice a vnitřním průměrem vnější plazmové trubice).
35 Plazmová hlavice a spotřeba argonu Snížit spotřebu lze tedy zmenšením šířky anulární štěrbiny e mezi prostřední a vnější plazmovou trubicí. Konfigurační faktor: = a/b,, kde a je vnější průměr prostřední trubice, b je vnitřní průměr vnější (plazmové) trubice. e a b
36 Plazmová hlavice a spotřeba argonu Minimální rychlost pro 27,12 MHz a 40,68 MHz generátory: v c = 3.3 m s -1 a s rostoucí frekvencí klesá. Trendy ve snižování spotřeby argonu: 1. Vysoká symetrie hlavice umožňující dosažení konfiguračního faktoru blízkého jedné. Historické snahy, v současné době neprosazované: 2. Miniaturizace hlavic (ARL mm vs 18 mm, spotřeba 5-77 l/min Ar) 3. Externí chlazení hlavic: voda, vzduch 4. Použití vzduchu místo Ar 5. Odolnější konstrukční materiály než křemen radiační chlazení hlavic
37 Fyzikální vlastnosti ICP Excitační zdroj - energie pro vypaření, disociaci, atomizaci a excitaci (ionizaci) se získá jako: energie chemické reakce hoření plamene energie procesů v plazmatu udržovaného vysokofrekvenčním elektromagnetickým polem, nejedná se o hoření = oxidační procesy (proto nelze nazývat plazmovou hlavici ICP hořákem), primárně se jedná o kinetickou energii elektronů a iontů Ar urychlených vf polem vf e - + Ar e - + e - + Ar +
38 Fyzikální vlastnosti ICP Vzácné plyny vs molekulární plyny Přednosti vzácných plynů jednoduchá spektra netvoří stabilní sloučeniny v plazmatu se nespotřebovává energie na disociaci plazmového plynu vysoká ionizační energie excitace a ionizace většiny prvků Nevýhoda vzácných plynů vysoká cena
39 Fyzikální vlastnosti ICP Helium je zajímavé díky nejvyšší 1. ionizační energii (24,6 ev) vysoké tepelné vodivosti (140,5 mw. m - 1 K - 1 při 293 K). Helium přináší vysoké provozní náklady Argon představuje kompromis z hlediska fyzikálních vlastností ceny
40 Fyzikální vlastnosti ICP Argon: 1. ionizační energie 15,8 ev ionizace všech prvků kromě He, Ne a F ICP-MS nevýhoda Ar: nízká tepelná vodivost (16,2 mw.m - 1 K - 1 při 293 K), 9 x nižší než He omezená účinnost atomizačních procesů. Lze zlepšit přídavkem: vodíku - nejvyšší tepelná vodivost ze všech plynů (169,9 mw.m - 1 K - 1 při 293 K) Přídavek kyslíku umožňuje dokonalé spálení uhlíku při rozkladu organických látek (např. rozpouštědel), čímž se zabrání usazování uhlíku v plazmové hlavici
41 Stupeň ionizace (%) Závislost stupně ionizace na ionizační energii % n e = 1.475x10 14 cm -3 T ion (Ar) =6680 K 50% Ar Ionizační energie (ev)
42 Fyzikální vlastnosti ICP Argonové plazma Viskozita plazmatu: Viskozita vzácných plynů roste významně s teplotou. Při zvýšení teploty z 293 K na 6000 K vzroste viskozita Ar o jeden řád, což klade značné nároky na zavádění aerosolu do výboje.
43 Fyzikální vlastnosti ICP Koncentrace elektronů v ICP: m -3 v tzv. analytické zóně plamen ( m - 3 ) stupeň ionizace ICP je přibližně 0,1 %. Důsledkem vysoké elektronové hustoty je malý vliv i vysoké koncentrace snadno ionizovatelných prvků na ionizační rovnováhy, významné pozadí v UV a Vis oblasti spektra, vyvolané zářivou rekombinací argonu Ar + + e - Ar 0 + hν cont
44 Fyzikální vlastnosti ICP Ar + + e - Ar 0 + hν cont Toto spojité pozadí prochází maximem při 450 nm, což vysvětluje modrou barvu argonového plazmatu Teplota plazmatu: závisí na pozorované oblasti výboje. plazmatu nelze přiřadit jedinou termodynamickou teplotu.
45 Teplota plazmatu Fyzikální vlastnosti ICP Mezi střední kinetickou energií E st částic s maxwellovským rozdělením rychlostí a kinetickou teplotou T kin platí pro jednorozměrný pohyb E 1 k st T kin 2 Hmotnost iontů a elektronů je značně rozdílná rozdílná je i jejich kinetická energie.
46 Fyzikální vlastnosti ICP Základní teploty definované v plazmatu jsou: Kinetická teplota těžkých částic T g Kinetická teplota elektronů T e Excitační teplota T exc Ionizační teplota T ion Teplota záření T Jsou li si tyto teploty rovny, pak je systém v termodynamické rovnováze (TE) není to případ laboratorních plazmat
47 Fyzikální vlastnosti ICP Maxwellovo trojrozměrné rozdělení F(v) rychlostí v všech druhů částic je dáno vztahem F v n dn 0 dv m 4 (2 k T 3 2 kin ) 3 2 v 2 exp mv 2kT 2 kin kde T kin je kinetická teplota T g nebo T e, n 0 je počet částic v jednotkovém objemu a m je hmotnost těžké částice nebo elektronu.
48 Fyzikální vlastnosti ICP Excitační teplota T exc vystupuje v Boltzmannově rozdělení,, které vyjadřuje distribuci populace excitovaných hladin atomů a iontů: n n p q g g p q exp E p kt kde n p a n q jsou počty atomů nebo iontů v horním (p) a dolním (q) energetickém stavu, g p a g q jsou statistické váhy stavů dané multiplicitou g = 2J + 1, kde J = S + L,, přičemž J, S a L jsou v uvedeném pořadí celkové, spinové a orbitální kvantové číslo a E p a E q jsou energie horní a dolní hladiny přechodu. exc E q
49 Fyzikální vlastnosti ICP Ionizační teplota T ion je parametrem Sahovy rovnice,, která popisuje ionizační rovnováhu: n i n n a e 3 2 πm kt 2 e ion h 3 2 Z Z i a exp E kt i ion kde n i,n e, n a jsou koncentrace iontů, elektronů a neutrálních atomů, m e je hmotnost elektronu a Z i a Z a jsou partiční funkce iontového a atomového stavu daného prvku, E i je ionizační energie atomu.
50 Fyzikální vlastnosti ICP Jsou-li výše uvedené procesy včetně disociace molekul popsány jedinou teplotou a je-li rozdělení zářivé energie ve spektru exaktně popsáno Planckovým vyzařovacím zákonem u 8hν c 3 3 exp 1 hν kt kde u je hustota zářivé energie, je daný systém v termodynamické rovnováze TE. 1
51 Fyzikální vlastnosti ICP Laboratorní plazmové zdroje s omezenými rozměry Planckův zákon obecně nesplňují a mohou být proto v nejlepším případě v tzv. částečné termodynamické rovnováze: pte-partial partial Thermodynamic Equilibrium. Částečná termodynamická rovnováha je tedy stav, kdy existuje chemická rovnováha mezi všemi druhy částic včetně iontů a elektronů, rovnovážné rozdělení mezi kinetickou a vnitřní energií částic.
52 Fyzikální vlastnosti ICP Je-li změna teploty v plazmatu podél střední volné dráhy částice zanedbatelná ve srovnání se střední teplotou v odpovídajícím objemovém elementu plazmatu, je vliv teplotního gradientu na rovnovážné podmínky nevýznamný a plazma se nachází ve stavu Částečné lokální termodynamické rovnováhy partial Local Thermodynamic Equilibrium = plte
53 Fyzikální vlastnosti ICP Topografie výboje ICP rozlišuje dvě zásadně odlišné oblasti: indukční zónu (plazmový prstenec, annulus),, v níž dochází k přenosu energie elektromagnetického pole cívky do plazmatu, analytický kanál,, v němž je soustředěn vzorek transportovaný nosným plynem. odchylky od plte jsou především na rozhraní plazmového prstence s teplotou K a analytického kanálu s tokem chladného argonu, v němž je kinetická teplota T g atomů a iontů přibližně 3500 K.
54 Fyzikáln lní vlastnosti ICP chladnější centrální kanál se vzorkem je obklopen horkým anulárním plazmatem a vzorek neproniká do indukční oblasti excitované atomy v kanálu nejsou obklopeny atomy v nižších energetických stavech Indukční oblast Centrální kanál v indukční oblasti je minimální samoabsorpce (nebo s. nenastává) linearita kalibračních závislostí je 5-6 řádů
55 Fyzikální vlastnosti ICP Podle procesů probíhajících v analytickém kanálu a podle prostorového rozdělení emise čar se člení na předehřívací zónu (PreHeating eating Zone - PHZ), počáteční zářivou zónu (Initial Radiation Zone - IRZ), analytickou zónu (Normal Analytical Zone - NAZ) chvost výboje (Tailflame - T)
56 Laterální pozorování Výška pozorování Tailflame Iontové čáry Normal Analytical Zone Atomové čáry Initial Radiation Zone Preheating Zone
57 ICP hlavice, výboj Chvost výboje Analytická zóna PV 8490 Philips (r. 1978) Mg Y
58 Laterální (radiální) pozorování
59 Axiální pozorování Delší optická dráha 3-10x lepší meze detekce Záření do spektrometru
60 Axiální pozorování
61 Axiální pozorování
62 Fyzikální vlastnosti ICP NAZ je oblastí preferenční excitace iontů: supratermická koncentrace iontů a tedy i výrazná emise iontových čar, poměry intenzity iontové čáry k intenzitě atomové čáry téhož prvku převyšují rovnovážné hodnoty až o 3 řády, teploty jednotlivých procesů klesají v pořadí T e > T ion > T exc > T g
63 Prostorové rozdělení emise v ICP Energie [J] emitovaná excitovanými atomy nebo ionty při přechodu z horního stavu p na dolní hladinu q za jednotku času [s] z jednotkového objemu [m 3 ] do jednotkového prostorového úhlu [sr] je emisivita [W sr - 1 m - 3 ] J pq h pq 4 A pq n p hc 4 pq A pq n p kde ν pq a λ pq jsou frekvence a vlnová délka, 4π je plný prostorový úhel, A pq je pravděpodobnost spontánní emise pq (za sekundu), n p je koncentrace atomů a iontů na hladině p [m - 3 ], h je Planckova konstanta a c je rychlost světla.
64 Prostorové rozdělení emise v ICP Emisivita J pq rozměrově vystihuje pojem radiální rozdělení intenzity ; Je to energie vyzářená excitovanými atomy nebo ionty z jednotkového objemu [m 3 ] za jednotku času [s] do jednotkového prostorového úhlu [sr] při přechodu z horní hladiny přechodu p na dolní hladinu q. r 1 Emisivita Element J pq (W sr -1 m -3 ) ICP kanál
65 Prostorové rozdělení emise v ICP I pq J pq d d vrstva plazmatu (m) Intenzita vyzařování I pq (W sr -1 m -2 ) d r 1 Emisivita= Element J pq (W sr -1 m -3 ) ICP kanál Energie vyzářená za jednotku času do jednotkového prostorového úhlu vrstvou plazmatu s jednotkovým průřezem a s tloušťkou d představuje: výkon vyzářený do do jednotkového prostorového úhlu jednotkovou plochou povrchu plazmatu a označuje se jako intenzita vyzařování I pq a představuje laterální a axiální rozdělení intenzity emise
66 Prostorové rozdělení emise v ICP Výkon vyzářený určitým povrchem plazmatu se měří v čase (integrace signálu) intenzita signálu je odpovídající elektrická veličina (fotoelektrický proud, napětí, náboj). Výboj ICP je prostorově nehomogenní útvar Koncentrace částic v daném energetickém stavu je v různých místech výboje různá. Prostorové rozdělení částic vychází: z prostorového rozdělení hustoty energie ze zavádění vzorku do výboje.
67 Prostorové rozdělení emise v ICP Frekvence oscilátoru ovlivňuje rozdělení i hodnoty koncentrace elektronů excitační teploty Pro danou frekvenci generátoru má na emisi vliv: Geometrie plazmové hlavice Příkon do plazmatu, P Průtoky plynů (vnější F p, střední F a, nosný F c ) Režim pozorování ICP (axiální, laterální/radiální výška pozorování) ionizační E i, E i+1 a excitační energie E exc prvků a přechodů Množství a složení vzorku vnášeného do ICP
68 Prostorové rozdělení emise v ICP Měřený analytický signál závisí na pozorované oblasti výboje. Dva směry pozorování vzhledem k rotační ose symetrie ICP kolmo k ose výboje, neboli side-on view, radiální nebo laterální plazma podél osy výboje, neboli end-on view, axiální plazma
69 Topografie výboje ICP 1analytický kanál 2 předehřívací zóna 3 počáteční zářivá zóna 4 analytická zóna 5 chvost výboje 6 indukční zóna annulus 7 aerosol 8 základna výboje h p výška pozorování r vzdálenost od osy výboje
70 Prostorové rozdělen lení emise v ICP LATERÁLN LNÍ POZOROVÁNÍ Axiální rozdělení intenzity 30 mm Laterální rozdělení intenzity 4mm Směr pozorování Intenzita čáry Intenzita pozadí Ar Indukční cívka T NAZ IRZ PHZ 0 mm Intenzita čáry Intenzita pozadí Ar Směr pozorování
71 Prostorové rozdělení emise v ICP AXIÁLNÍ POZOROVÁNÍ Intenzita pozadí Ar PHZ IRZ NAZ T 12 mm Intenzita čáry Směr pozorování
72 PHZ: Prostorové rozdělení emise v ICP desolvatace aerosolu vypařování pevných částic atomizace molekul a radikálů IRZ: Excitace atomových čar s nízkou až střední 1. excitační energií, tyto zde vykazují maxima emise axiálního rozdělení Méně intenzivní iontové čáry (II),, nízké hodnoty S/B Nespektrální (matriční) interference zesílení emise atomových i iontových čar v přítomnosti nadbytku snadno ionizovatelných prvků excitační interference
73 NAZ: T: Prostorové rozdělení emise v ICP Vyšší koncentrace elektronů a teplota než v IRZ Maxima axiálního rozdělení emise iontových čar a také maxima jejich S/B Dostatečná emise atomových čar s nízkými až středními ionizačními energiemi, vyšší poměry S/B proti IRZ Jen minimální matriční interference kombinace efektů zmlžování a transportu aerosolu s interferencemi v plazmatu, obvykle snížení emise o < 5% prvkově nespecifické Nižší teplota a koncentrace elektronů než v NAZ Rekombinační reakce, ionizační interference, intenzivní emise alkalických kovů
74 Axiální rozdělení emise v ICP Populace částic n ap na hladině p se řídí Boltzmannovým vztahem, kde na je koncentrace atomů, g p statsitická váha stavu p, Z a partiční funkce, E k, E p jsou excitační energie stavů p, k n ap n a g Z a p a exp E a p kt Kde partiční funkce (součet po k stavech ) je Z a k g a k exp E a k kt
75 I pq Axiální rozdělení emise v ICP hc d pq 4 A pq n a g Z a p a exp E a p kt Energie fotonu Počet fotonů za 1 s do 1 sr jednotkovou plochou povrchu plazmatu z objemu 1 d Intenzita emise (intenzita vyzařování) atomové čáry závisí na koncentraci atomů (bez náboje) n a, vlnové délce λ pq, přechodové pravděpodobnosti A pq, statistické váze stavu a partiční funkci g pa, Z a excitační energii E a p Teplotě T
76 Axiální rozdělení emise v ICP Sahova rovnice popisuje úbytek neutrálních atomů s rostoucí teplotou ve prospěch iontů n i n n a e 2 m h e kt 3 ion 3 / 2 2 Z Z i a exp E kt i ion Stupeň ionizace je vyjádřen zlomkem n a n i n i
77 Axiální rozdělení emise v ICP Intenzita emise atomové čáry je pak ovlivněna nejen populací atomů excitovaných na horní hladinu přechodu, ale také stupněm ionizace I pq hc pq d A 4 pq n 0 ( 1 ) exp kde n 0 = n a + n i je celková koncentrace částic (atomů i iontů) pro daný prvek. Atomová emise: roste s teplotou podle Boltzmannova členu, ale současně klesá podle Sahovy rovnice. Závislost emise na teplotě prochází maximem normová teplota. g Z a p a E a p kt
78 Axiální rozdělení emise v ICP Axiální rozdělení intenzity emise atomové čáry vykazuje maximum při určité výšce pozorování h v závislosti na koncentraci elektronů a specií Ar +, Ar* and Ar m, a dále E i, E i+1 and E exc kdy je dosaženo normovéové teploty pro danou čáru. U stabilních sloučenin hraje důležitou úlohu i disociační energie.
79 Axiální rozdělení emise v ICP Intenzita emise iontové čáry je popsána Boltzmannovým vztahem, v němž vystupuje součet ionizační a excitační energie; koncentrace iontů je dána Sahovou rovnicí I pq hc pq d 4 g i p A Z pq i n i.exp E i kt E exc hc pq d 4 g i p A pq Z i n 0.exp E i kt E exc
80 I Axiální rozdělení emise v ICP Emise pozadí v důsledku rekombinace (Ar) Intenzita emise rekombinačního kontinua je n n úměrná součinu koncentrací e i I K elektronů a iontů Ar +, L kt nezávisí na frekvenci tohoto e záření pro frekvence nižší než je určitá limitní hodnota ν L K zahrnuje energii fotonu, prostorový úhel,objem L K n e n kt i e exp h( L kt ) a exponenciálně klesá pro frekvence vyšší než ν L směrem ke kratším vlnovým délkám e
81 Axiální rozdělení emise v ICP Platí přibližně n i n Ar n e I L K n 2 e kt e I L K n 2 e kt e exp h( L kt ) e intenzita rekombinačního kontinua roste proto se druhou mocninou koncentrace elektronů a ta roste s teplotou, t.j. s příkonem. Intenzita emise pozadí Ar se zvyšuje s rostoucím příkonem rychleji než intenzita emise čáry.
82 Rekombinační kontinuum Pozadí v ICP Ar + + e - =Ar* + hν cont λ max 450 nm Ca + /Ca*: > 302 nm, 202 nm; Mg + /Mg*: nm, <255nm, <162 nm; Al + /Al*: 210 nm Molekulová pásová emise Čarová (I, II) emise Bremsstrahlung Stabilní oxidy nad/pod NAZ; OH ( nm); NH 336 nm; NO ( nm); C 2, CN, CO, PO, SO 205 Ar čar mezi nm, většinou u 430 nm, žádné v oblasti nm Ar + + e - =Ar + + e - hν brems λ>500 nm
83 Vzdálená UV oblast spektra ICP
84 Pás NH 336 nm Vliv odsínění zobrazení periferní oblasti výboje na mřížku na pozorovanou emisi molekulového pásu z atmosféry. 1 - clona o šířce 2 mm vymezuje část 4 mm širokého kanálu výboje, emise molekulového pásu snížena, snížena také emise čar (a) z kanálu 2 - clona 3 mm, emise pásu i čar (b) vyšší 3 zobrazena celá šířka výboje (clona 40 mm), emise čar(d) Při cloně 4 mm je emise čar mírně snížena (c)
85 Chování spektrálních čar Rozdíly v prostorovém rozdělení intenzity různých spektrálních čar a jejich odlišnosti v chování při změně pracovních podmínek ICP Měkké čáry (soft lines) - atomové čáry prvků s nízkými a středními prvními ionizačními energiemi Tvrdé čáry (hard lines) - atomové čáry prvků s vysokými prvními ionizačními energiemi a převážná většina iontových čar
86 Axiální a radiální rozdělení emise v ICP Axiální rozdělení emise čar Radiální rozdělení emise čar
87 Excitační procesy v ICP V excitačních mechanismech se uplatňují zejména částice e -, Ar +, Ar * Elektrony mají význam pro vytváření plazmatu. Jsou urychlovány vf polem a ionizují atomy Ar. vf e - + Ar e - + e - + Ar + Elektrony musí mít kinetickou energii rovnou minimálně ionizační energii Ar (15,8 ev).
88 Excitační procesy v ICP Změna rychlosti elektronů v elektrickém poli iontů Ar + je spojena s nekvantovaným energetickým přechodem, který je označován jako přechod volně-volnývolný (free-free)) a projevuje se emisí při vlnových délkách nad 500 nm. Zářivá rekombinace je přechod elektronu z nekvantovaného stavu na některou energetickou hladinu (přechod volně-vázaný, free-bound) ) při němž se uvolňuje spojité rekombinační záření
89 Excitační procesy v ICP Ar + e - Ar*+ hν cont Maximální intenzita Ar kontinua je při 450 nm. Excitované atomy argonu podléhají zářivé deexcitaci Ar* (2) Ar* (1) + hν line2 Ar* (1) Ar (0) + hν line1 kde ν cont a ν line jsou frekvence spojitého záření a čárové emise a dolní indexy (2), (1) různé excitované stavy, případně základní stav (0). Intenzivní atomové čáry argonu se nacházejí v oblasti vlnových délek 400 až 450 nm, ve vzdálené UV oblasti 100 nm se nacházejí další resonanční čáry argonu
90 Excitační procesy v ICP Ar + + X Ar + X +* E přenos náboje Ar m + X Ar + X +* Penningův efekt e - + X e - + e - + X + srážková ionizace e - + X e - + X * srážková excitace (X - atom analytu) supratermická koncentrace X + * a X + preferenční excitace iontových čar
91 Fyzikální vlastnosti ICP Anulární (toroidální)) plazma Indukční oblast ( K), skin-efekt Centrálníní analytický kanál ( K) Vysoká teplota a dostatečná doba pobytu vzorku v plazmatu (3 ms) účinná atomizace Vysoká koncentrace Ar +, Ar *, Ar m účinná ionizace / excitace (E i(ar) = 15.8 ev) Vysoká koncentrace elektronů m -3 (0.1% ionizace Ar) >> v plameni ( m - 3 ) malý vliv ionizace osnovy vzorku na posun ionizačních rovnováh absence ionizačních interferencí typických pro plamen nebo oblouk
92 Analytické vlastnosti ICP-AES Stanovení 73 prvků včetně P, S, Cl, Br, I Simultánní a rychlé sekvenční stanovení Vysoká selektivita (rozlišení spektrometru) Nízké meze detekce ( ng/ml) Lineární dynamický rozsah 5-6 řádů Minimální interference osnovy (< Přesnost (0.5-2 % rel.) Správnost ( 1 % rel.) 10 % rel.) Vnášení kapalných, plynných a pevných vzorků Běžné průtoky (ml/min) i mikrovzorky (l/min) Rychlost stanovení /hod. Automatizace provozu
93 Pracovní parametry zdroje ICP Frekvence generátoru f Příkon do plazmatu P Průtoky plynů F: vnější plazmový F p střední plazmový F a nosný aerosolu F c Průtok roztoku vzorku v Výška pozorování h Integrační doba t i
94 Vliv výšky pozorování a průtoku nosného plynu na emisi tvrdé čáry a molekulového pásu
95 Vliv podmínek na pozadí tvořené rekombinací Ar (A) a kombinované pozadí s molekulovým pásem (B) Ar B A NH Axiální rozdělení intenzity emise pozadí čáry Y II 371,030 nm v závislosti na průtoku nosného plynu Fc (l/min Ar); 1-0,79; 2 0,92; 3 1,06; 4 1,19; 5 1,32; 6 1,45; 7 1,58; 8 1,72; Pozadí čar Gd II 335,862 nm a Gd II 336,2233 nm tvořené emisí pásu NH 336,0 nm a spojitým rekombinačním zářením argonu, naměřené při různých výškách pozorování h; křivka č. h (mm): 1-28; 2 24; 3 20; 4 16; 5 12; 6-8; P = 1,1 kw, průtoky plynů (l/min Ar) Fc = 1,06; Fa = 0,43; Fp =18,3; 2 mg/l Gd v 1,4 mol/l HNO3
96 Vliv průtoku nosného plynu a výšky pozorování na emisi čáry a pozadí a jejich poměr Poměr signál/pozadí (S/B) Intenzita emise čáry S/B Intenzita emise čáry Intenzita emise pozadí Intenzita emise pozadí F c (L/min) Výška pozorování (mm)
97 Vliv příkonu a výšky pozorování na emisi atomové a iontové čáry Ca II nm Ca I nm P(kW) Výška pozorování (mm) Výška pozorování (mm) P(kW)
98 Vliv integrační doby na RSD emise Integrační doba 1 ~1 s 2 ~ 3 s 3 ~ 5 s 4 ~10 s 5 ~15 s 6 ~ 20 s 7 ~ 30 s Závislost relativní směrodatné odchylky s r celkové intenzity emise I L+B čáry Nd II 430,358 nm na koncentraci Nd pro různé délky integračních časů
99 Závislost standardní odchylky celkové intenzity čáry a pozadí s L+B a relativní (s L+B ) r na koncentraci analytu. s L,r s B.r s L+B =stand. odchylka L,r = 0,38% B.r = 0,60% s L+B L+B = rel. stand. odchylka c B = koncentrace ekvivalentní pozadí Obr.39
100 Závislost směrodatné s L+B a relativní směrodatné odchylky (s L+B ) r intenzity celkové emise čáry a pozadí I L+B na koncentraci
101 I L+B = I L + I B s L+B2 = s L2 + s B 2 Závislost standardní a relativní standardní odchylky čisté intenzity emise čáry I L a korigovaní intenzity emise čáry I N na koncentraci I N = I L+B - I B s N 2 =s L+B2 + s B2 = s L2 + 2s B 2
102 Závislost standardní a relativní standardní odchylky čisté intenzity emise čáry IL a korigovaní intenzity emise čáry IN na koncentraci
103 Analytické parametry Mez detekce Mez detekce je důležitý parametr, který umožňuje charakterizaci metody a srovnání různých analytických technik. Mez detekce je definována jako nejmenší možná koncentrace c L, kterou lze s předem stanovenou pravděpodobností odlišit od náhodných fluktuací pozadí. Ve spektroskopii neměříme přímo koncentraci, ale signál. Vztah mezi signálem a koncentrací je určen kalibrací. Za předpokladu, že fluktuace pozadí mají Gaussovské rozdělení, je šum vyjádřen jako standardní odchylka rozdělení σ.
104 Analytické parametry Mez detekce Mezi detekce odpovídá nejmenší hrubý signál X L, který lze statisticky odlišit od spektrálního pozadí X L = B + ks B kde B je průměrná hodnota měření pozadí, s B je odhad standardní odchylky měření pozadí B a k je konstanta závislá na hladině spolehlivosti. IUPAC doporučuje k = 3 Čistý signál S L odpovídající mezi detekce c L je vyjádřen jako: S L = X L - B = ks B Hrubý signál je lineárně vázán na koncentraci c
105 Analytické parametry X = b 0 + b 1. c X L = B + ks B = b 0 + b 1.c L c L = k.s B /b 1 b 1 = (X-B)/c = S/c c L = k s B. c /S c L = k.c.rsd b /SBR
106 Koncentrace ekvivalentní pozadí a mez detekce Δλ Spektrální čára I L RSD L S = I L /c A Pozadí BEC = 1/(S/B) c L = 3RSD B BEC B (= I B ) RSD B Nulová linie
107 Optimalizační kritéria Signál S při jednotkové koncentrací = citlivost Poměr signálu k pozadí S/B, SBR Poměr signálu k šumu S/N, SNR Relativní standardní odchylka pozadí RSD B Přesnost (opakovatelnost) RSD S = (S/N) -1 Mez detekce c L c RSD L 3s B s B 1 B B 3 3 RSD B S B B S SBR s B 1 B B S SBR B
108 Analytické parametry Vliv rozlišení na mez detekce Efektivní šířka spektrální čáry ovlivňuje: Intenzitu emise čáry Intenzitu spojitého záření pozadí SBR Poměr signál/pozadí je nepřímo úměrný efektivní šířce spektrální čáry Δλ eff, poněvadž intenzita emise čáry roste lineárně s šířkou štěrbiny, kdežto intenzita emise pozadí vzrůstá s druhou mocninou šířky štěrbiny. RSD b Efektivní šířka čáry eff zahrnuje příspěvek fyzikální šířky, L a instrumentální šířky čáry Δλ ins eff = ( L2 + ins2 ) 1/2
109 Nespektrální interference Přes veškeré pozitivní vlastnosti, kterými se budicí zdroj ICP odlišuje od řady dalších, v něm existují nespektrální interference (interference osnovy vzorku) Nespektrální interference se často vyjadřuje jako poměr X kde I L je čistá, tj. na pozadí korigovaná intenzita čáry analytu naměřená s čistým roztokem a I LM je čistá intenzita naměřená za přítomnosti interferentu o určité koncentraci. Běžné je také vyjádření rozdílu (zvýšení, snížení) v %: X I I M L L I I M L L 1 100
110 Nespektrální interference Podle místa vzniku: Zmlžovací systém, Plazmová hlavice. Podle interferentu: Snadno ionizovatelné prvky Kyseliny, rozpouštědla Podle mechanismu: Excitační Ionizační Zmlžovací a transportní (povrch. napětí, viskozita, hustota, elektrostatický náboj, změna rozdělení obsahu látek v závislosti na velikosti částic, frakcionace)
111 Nespektrální interference Axiální rozdělení nespektrální interference vliv průtoku nosného plynu Axiální rozdělení nespektrální interference (matrix efektu) X na čáře Nd II 430,358 nm v přítomnosti 0,1 mol/l NaNO3 v závislosti na průtoku nosného plynu Fc; ; křivka č. Fc (l/min): 1-0,79; 2 0,92; 3 1,06; 4 1,19; 5 1,32; 6 1,45; 7 1,58; 8 1,72; 9 1,85; P = 1,1 kw, průtoky plynů (l/min Ar) Fc = 1,06; Fa = 0,43; Fp =18,3; 16 mg/l Nd v 1,4 mol/l HNO3
112 Nespektrální interference Radiální rozdělení nespektrální interference Laterální rozdělení nespektrální interference (matrix efektu) X na čarách Y II 371,030 nm (1) a Y I 410,238 nm (2); Polohy maxim laterálních rozdělení emise čar Y II a,, Y I b (rozdělení zde nejsou uvedena); P = 1,1 kw; Fc = 1,06; Fa = 0,43; Fp =18,3; 0,1 mol/l NaNO3 v 1,4 mol/l HNO3
113 Nespektrální interference 1,3 X 1,1 1,0 0,9 0, Na (mg/l) Axiální rozdělení nespektrální interference (matrix efektu) X na čáře Nd II 430,358 nm v16 mg/l Nd v 1,4 mol/l HNO3 závislosti na koncentraci Na ( mg/l Na) pro různé výšky pozorování; křivka č. h (mm): 1 8; 2 16; 3 20; 4 24; P = 1,1 kw; Fc = 1,06; Fa = 0,43; Fp =18,3; ; měřítko na obou osách je logaritmické
114 Nespektrální interference Závislost nespektrální interference (matrix efektu) X na koncentraci kyseliny chlorovodíkové pro Nd II 430,358 nm; 16 mg/l Nd; podmínky: křivka č. 1: h = 16 mm, Fc = 1,06 l/min, křivka č. 2: h = 20 mm, Fc = 1,45 l/min; P = 1,1 kw; Fa = 0,43 a Fp =18,3 l/min Ar
115 RSD: dlouhodobá opakovatelnost, reálné vzorky silikátů
116 RSD: dlouhodobá opakovatelnost, reálné vzorky silikátů, drift přístroje, diagnostika
117 Zavádění vzorku do výboje ICP Viktor Kanický Kurs ICP 2009
118 Zavádění vzorku do výboje požadavky na systém nezávislost účinnosti generování aerosolu na vlastnostech vzorku, stejné chemické složení aerosolu a vzorku, dominantní podíl malých částic aerosolu (< 1 μm), stabilitu generování a transportu aerosolu do výboje, dobrou účinnost transportu aerosolu, minimální interference osnovy vzorku.
119 Zavádění vzorku do výboje A) Vnášení kapalných vzorků do ICP Zmlžování roztoků Pneumatické zmlžovače zmlžování závislé na průtoku nosného plynu (Pro plamenovou spektrometrii zkonstruoval první zmlžovač tohoto typu Gouy v roce 1879) Kapilární zmlžovače - se sacím účinkem / bez sacího účinku:» koncentrický zmlžovač (Concentric nebulizer) se sacím účinkem (Meinhard 1977),» pravoúhlý zmlžovač (Cross-flow nebulizer) s/bez sacího účinku (Kniseley 1974). Zmlžovače na Babingtonově principu - bez sacího účinku (Babington 1973):» žlábkový (Vee-groove nebulizer; Wolcott a Sobel 1978),» síťkový (Grid nebulizer; Hildebrand),» fritový (Fritted disc nebulizer; Apel a Bieniewski 1977).
120 Zavádění vzorku do výboje Zmlžování nezávislé na průtoku nosného plynu: vysokotlaká tryska (Jet-impact nebulizer, Doherty a Hieftje 1984), hydraulický vysokotlaký zmlžovač (Hydraulic high-pressure nebulizer; Berndt a Schaldach, 1989, Knauer), tepelný zmlžovač - termosprej (Koropchak 1988), ultrazvukový zmlžovač (Ultrasonic nebulizer; Dunken a Pforr 1963). Elektrotermické vypařování Kovové vaporizátory:» odporově vyhřívané tantalové vlákno (Tantalum filament vaporizer; Nixon, Fassel a Kniseley 1974),» wolframová páska jako katoda mikro-oblouku oblouku (Tungsten loop cathode of microarc; Keilson, Deutsch a Hieftje 1983). Grafitové vaporizátory:» grafitová tyčka (Graphite rod; Gunn, Millar a Kirkbright 1978),» grafitový kelímek (Graphite cup; Ng a Caruso 1982),» grafitová trubice (Graphite furnace; Aziz, Broekaert a Leis 1982).
121 Zavádění vzorku do výboje Přímé vsouvání vzorku do ICP spojené s indukčním nebo kontaktním ohřevem (Direct sample insertion device): grafitová elektroda (graphite electrode; Salin a Horlick 1979), grafitový kelímek (graphite crucible; Sommer a Ohls 1980). B) Vnášení pevných vzorků do ICP Práškové vzorky: zmlžování suspenzí (nebulization of slurries; Mohamed, Brown a Fry 1981), fluidní lože (Fluidized bed; Nimalasiri, de Silva a Guevermont 1986), elektrotermické vypařování (jako v případě roztoků), přímé vsouvání vzorku do ICP (Direct sample insertion device, jako v případě roztoků) laserová ablace (laser ablation; Abercrombie, Silvester a Stoute 1977). Kompaktní vzorky: eroze/abraze (ablace) elektrickým obloukem (Dahlquist 1975), eroze/abraze (ablace) elektrickou jiskrou (Electric spark erosion/ablation; Human, Oakes, Scott a West 1976), laserová ablace.
122 Zmlžování roztoků
123 Zmlžovače a mlžné komory
124 Generování aerosolu z roztoku Primární proces: generování polydispersního aerosolu ve zmlžovači: Kinetická energie proudícího plynu nebo vibrující destičky. Primární distribuce velikostí částic aerosolu Sekundární/terciární procesy: další modifikování aerosolu v transportní trase: odpařováním rozpouštědla, gravitačním usazováním, ztrátami nárazem na stěny mlžné komory / na překážku odstředivými ztrátami, ztrátami v turbulentním toku. Sekundární/terciární distribuce velikostí částic aerosolu.
125 Generování aerosolu z roztoku Další ztráty aerosolu (méně významné zachycení částic na stěnách transportní trasy (mezi mlžnou komorou a plazmovou hlavicí; v injektoru) depozice v důsledku difuse depozice elektrostatickými silami precipitace v závislosti na teplotě aglomerace částic v důsledku akustických efektů Nejvýznamnější procesy jsou však: 1. Gravitační usazování 2. Inerciální ztráty nárazem 3. Turbulence
126 Transportní a zmlžovací systém Přívod roztoku Nasávací PTFE kapilára (s fritou, filtrem) Peristaltická pumpa s pružnou hadičkou PTFE kapilára do zmlžovače Mlžná komora Připojení na plazmovou hlavici Odpad z mlžné komory PTFE kapilára Peristalitcká pumpa s pružnou hadičkou Kapilára do sběrné nádoby na odpadní roztok
127 Fungování transportně zmlžovacího Těsnost: systému spojů PTFE kapilár a peristaltické hadičky na vstupu a výstupu napojení kapiláry na zmlžovač, mlžné komory na plazmovou hlavici mlžné komory na odvod odpadu Funkčnost zmlžovače: koncentrický zmlžovač volné sání bez pumpy, pravidelná tvorba aerosolu Odvod roztoku z mlžné komory bez jeho hromadění v komoře a bez průsaku na spoji mezi komorou a odpadní kapilárou
128 Fungování transportně zmlžovacího systému Paměťové efekty a kontaminace mezi vzorky: kapky nebo kapalinový film předchozího vzorku na vnějším povrchu konce nasávací kapiláry sorpce/desorpce analytů v hadičkách mrtvý objem transportní trasy včetně mlžné komory tvorba kapalinového filmu na stěnách mlžné komory kapalinový film/kapka při trysce zmlžovače tvorba kapalinového filmu na vnitřní stěně injektoru x sheath gas vliv změny koncentrace kyselin / solí v jednotlivých vzorcích adaptation effect
129 Fungování transportně zmlžovacího systému Funkce peristaltického čerpadla: zajišťuje konstantní průtok roztoku přiváděného do zmlžovače a to i v případě zmlžovačů s vlastním sáním (koncentrické, cross- flow křížové, úhlové, pravoúhlé (kompenzace vlivu změny viskozity, změny výšky hladiny v rezervoáru, změny hustoty). zajišťuje odvod přebytečného roztoku do odpadu. Podmínky správné funkce: správná volba materiálu peristaltické hadičky podle rozpouštědla správná volba průměru hadičky dle požadovaného průtoku správná volba přítlaku čelisti: nedostatečný přítlak: nepravidelný transport roztoku ( tam a zpět ), tvorba hladiny v mlžné komoře při nedostatečném odvodu do odpadu příliš velký přítlak: pulsování aerosolu výměna hadičky při opotřebení (protahuje se, mění se průtok)
130 Funkce mlžné komory: Mlžné komory filtrace aerosolu, oddělení malých částic od velkých, ztlumení pulsů tvorby aerosolu Materiál mlžných komor: celoskleněné nejkratší časy promytí skleněné s plastovým víčkem / zmlžovačem plastové delší doba promytí Nejlepší přesnost měření : skleněný Meinhardův zmlžovač se skleněnou komorou (0,2 až 0,5 % RSD), při problémech (spoje, příliš vysoký průtok Ar, pak RSD 1% a vyšší)
131 Mlžné komory Typy mlžných komor komora dle Scotta (double-pass): dvojitý průchod aerosolu se změnou směru o180º vyvolaný usměrněním proudu nosného plynu s aerosolem vnitřní trubicí proti stěně: odstranění větších částic převážně: gravitační ztrátou, setrvačnou (inerciální) ztrátou nárazem na stěnu komory při změně směru proudu nosného plynu (Stokesovo kritérium) cyklonová komora: vstup nosného plynu s aerosolem v tečném směru: ztráta odstředivá (centrifugální, případ inerciální ztráty)
132 Mlžné komory Typy mlžných komor Konická komora s kulovitým impaktorem (sekundární modifikace aerosolu), V současné době zejména: Scottova komora - klasika Cyklonová komora větší účinnost přenosu vzorku, odlišná distribuce velikostí částic, u některých typů vzorků horší přesnost kratší doba promývání (washout time)
133 Mlžná komora dle Scotta ICP Vzorek Nosný Ar Odpad
134 Mlžná komora dle Scotta ICP zmlžovač aerosol aerosol odpad
135 Mlžná komora dle Scotta odpad Chlazená komora chladicí voda aerosol ICP aerosol chladicí voda zmlžovač
136 Cyklonová mlžná komora - termostatovaná
137 Zmlžovače Concentric glass Concentric PFA Fixed Cross-Flow Lichte (modified) Micro-concentric glass Adjustable Cross-Flow High-Pressure Fixed Cross-Flow (MAK) Babington V-Groove (high solids) GMK Babington (high solids) Hildebrand dual grid (high solids) Ebdon slurry (high solids) Cone Spray (high solids)
138 Materiál sklo Zmlžovače polymery (odolné vůči HF) Použití pro ICP-OES zmlžovače schopné zvládnout vysoký obsah TSD, typicky 1-2%, v extrémech 20%; tyto zmlžovače nejsou ideální pro ICP-MS pro ICP-MS typicky 0,2 % TDS
139 Meinhardův koncentrický skleněný zmlžovač (CGN) 65 mm Vzorek Nosný Ar
140 CGN Meinhard CGN borosilikátové sklo, typický, varianty s nasávací rychlostí 1, 2, 3 ml/min, tlak 2,1 bar; 1 l/min Ar; 5% TDS CGN křemenný pro stanovení nízkých obsahů boru Micro Mist, modely 50, 100, 200, 400, 600 μl l / min
141 CGN zmlžovače a mikrozmlžovače, vysoký obsah rozpuštěných látek (TDS) Sea Spray CGN, TDS 20%, modely 100; 200; 400 μl/min; 1, 2 a 3 ml/min
142 CGN pro zmlžování suspenzí Zmlžování suspenzí s velikostí částic do 150 mikrometrů
143 Koncentrický zmlžovač pro roztoky s obsahem HF PolyCon, materiál Polyimid, modely pro průtoky 50; 100; 200; 400; 600 μl/min; 1; 2 ml/min
144 Mikrozmlžovače Micro-Flow, materiál PFA, PolyPro, modely pro průtoky 20; 50; 100; 400 a 700 μl/min roztoku; vyměnitelná kapilára OpalMist, materiál PFA, modely pro průtoky 50; 100; 200; 400; 600 μl/min; také 1ml/min; 2 ml/min roztoku
145 Mikrokoncentrické zmlžovače (MCN) CETAC PFA, odolný vůči kyselinám včetně HF, alkáliím a organickým rozpouštědlům; fixní nastavení kapilár, nasávací průtoky 50; 100 a 200 μl/min CETAC Perfluoroalkoxy (PFA) zmlžovač s PTFE vyměnitelnou kapilárou a nastavitelnou tryskou, 50; 100; 200; 400 μl/min nasávací průtoky C-Flow PFA Aspire PFA
146 Zmlžovač Burgener Mira Mist,materiál Teflon ; paralelní vedení Ar a roztoku, 0,2 až 2,5 ml/min; střední obsah TDS, vyšší obsahy kyselin včetně HF, zmlžování suspenzí; 3 bar, 1 l/min Ar Materiál PEEK
147 Mikrozmlžovače Burgener AriMist; PEEK; střední obsahy solí, suspenze, koncentrované kyseliny včetně HF; 3 bar; model HP pro HPLC, 5 bar; 0,8 l/min Ar; μl/min roztoku MiraMist CE pro kapilární elektroforézu, Pt konektor k CE; 6 bar; 1 l/min Ar; 2 10 μl l / min roztoku
148 Mikrozmlžovače pro HPLC Meinhard CIR 50 HK, pro HPLC, 0,7 l/min He; 1 až 1000 μl/min HEN = High Efficiency Nebulizer pro HPLC, μl/min, meze detekce a citlivosti srovnatelné s běžným CGN Meinhard, vhodný pro HPLC a FIA
149 DIHEN - Direct INjection High Efficiency Nebulizer Bez mlžné komory, průtoky μl/min, 100%-ní účinnostt 0,4 l/min Ar; J.A. McLean, Hao Zhang, Akbar Montaser, 1998 Použitelný i pro jiné zdroje atommvé spektrometrie
150 DIHEN - Direct INjection High Efficiency Nebulizer
151 Pravoúhlý zmlžovač (CFN) Nosný Ar Vzorek
152 CFN Úhlové zmlžovače PTFE, vhodné pro vysoký obsah TDS, pro ICP-OES; odolné vůči HF
153 Žlábkový zmlžovač Vzorek Nosný Ar V-žlábek
154 Žlábkový zmlžovač V-Groove zmlžovač VeeSpray, materiál křemen nebo korund
155 Síťkový zmlžovač (dle Hildebranda) Roztoková kapilára 2 Pt mřížky Vzorek Safírová tryska 12 mm Nosný Ar Aerosol Kruhový žlábek
156 Ultrazvukový zmlžovač (USN) Suchý aerosol Odpad Chladič Kondenzace Suchý aerosol + páry H 2 O Krystal Aerosol Odpařování vody RF zdroj zmlžovače Nosný Ar Odpad-čerpání Vzorek - čerpání Topná páska
157 Ultrazvukový zmlžovač
158 Rozhraní pro kapilární elektroforézu a ICP-MS, CEI-100 (CETAC) Zachovává vysokou rozlišovací schopnost CE Minimální ředění (make-up liquid méně než 10 μl/min) Malá spotřeba vzorku; méně než 1 μl/min Eliminuje sekundární laminární tok v kapiláře CE Obsahuje: Mikrokoncentrický zmlžovač Mlžnou komoru Spojovací prvek mezi CE a zmlžovačem Nádobky s pracovními roztoky pro CE
159 ICP-MS, axiální plazma
160 Spojení plazmové hlavice a zavádění vzorku
Spektrometrie s indukčně vázaným plazmatem ICP
Spektrometrie s indukčně vázaným plazmatem ICP Principy a analytické vlastnosti Viktor Kanický Laboratoř atomové spektrochemie Ústav chemie Přírodovědecké fakulty Masarykovy univerzity 1. Plamen Atomová
Viktor Kanický 6. Kurs ICP Přírodovědecká fakulta Masarykovy univerzity
Optimalizace ICP a vývoj analytické metody Viktor Kanický 6. Kurs ICP 2011 Spektroskopická společnost Jana Marka Marci Přírodovědecká fakulta Masarykovy univerzity 1 Analytické vlastnosti ICP-OES Stanovení
OES S BUZENÍM V PLAZMATU
OES S BUZENÍM V PLAZMATU (c) -2010 PLAZMA PLAZMA = ionizovaný plyn obsahující dostatečný počet kladně nabitých (iontů) a záporně nabitých částic (e - ), který je navenek elektroneutrální. Celá soustava
OES S BUZENÍM V PLAZMATU
OES S BUZENÍM V PLAZMATU PLAZMA He Ar PLAZMA = ionizovaný plyn obsahující dostatečný počet kladně nabitých (iontů) a záporně nabitých částic (e - ), který je navenek elektroneutrální. Celá soustava je
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
5.7 Optická emisní spektrometrie s indukčně vázaným plazmatem
5.7 Optická emisní spektrometrie s indukčně vázaným plazmatem 5.7.1 Úvod Indukčně vázané plazma (ICP) je využíváno v chemické prvkové analýze již téměř po čtyři desítiletí. Výboj ICP byl nejdříve použit
Seznam zkratek. Relativní směrodatná odchylka pozadí RSD
Seznam zkratek...2 5.7 Optická emisní spektrometrie s indukčně vázaným plazmatem...4 5.7.1 Úvod...4 5.7.2 Z historie plazmatu...5 5.7.3 Postavení ICP mezi ostatními plazmovými zdroji buzení...6 5.7.4 Generování
Viktor Kanický Kurs ICP Přírodovědecká fakulta Masarykovy univerzity
Kalibrace a diagnostika spektrometru Viktor Kanický Kurs ICP 2009 Spektroskopická společnost Jana Marka Marci Přírodovědecká fakulta Masarykovy univerzity Analytické parametry X = b 0 + b 1. c X L = B
ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra)
ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra) Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce fotonu je spojena s excitací
Kurz ICP května Univerzitní kampus Bohunice (UKB), Kamenice 5, Brno
6. kur zi CPs pekt r omet r i e Br no24. -26. květ na2011 Edi t orví t ěz s l avot r uba Spektroskopická společnost Jana Marka Marci ve spolupráci s Přírodovědeckou fakultou MU a pod záštitou děkana PřF
Kalibrace a testování spektrometrů
Kalibrace a testování spektrometrů Viktor Kanický 5.3.014 1 Kalibrace ICP-OES V ICP-OES je lineární závislost intenzity emise na koncentraci analytu v rozsahu 4 až 6 řádů. V analytické praxi se obvykle
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES
Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Průtokové metody (Kontinuální měření v proudu kapaliny)
Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2017 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj
DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým
OPTICK SPEKTROMETRIE
OPTICK TICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE
ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE (c) David MILDE 2003-2010 Metody anorganické MS ICP-MS hmotnostní spektrometrie s indukčně vázaným plazmatem, GD-MS spojení doutnavého výboje s MS, SIMS hmotnostní
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) Lenka Veverková, 2013 OES je založena na registrování fotonů vzniklých přechody valenčních e - z
Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje
Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených
Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec
Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
Základy spektroskopických metod
Základy spektroskopických metod Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Spektroskopické metody Optické metody pro stanovení chemického složení materiálů Založeny na vzájemném působení
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Zdroje optického záření
Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon
VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS
1 VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS JAN KNÁPEK Katedra analytické chemie, Přírodovědecká fakulta MU, Kotlářská 2, Brno 611 37 Obsah 1. Úvod 2. Tepelný zmlžovač 2.1 Princip 2.2 Konstrukce 2.3 Optimalizace
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ
ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com
AUTOMATICKÁ EMISNÍ SPEKTROMETRIE
AUTOMATICKÁ EMISNÍ SPEKTROMETRIE SPEKTROGRAFIE Jako budící zdroj slouží plazma elektrického výboje, kdy se výkon generátoru mění v plazmatu na teplo, ionizační a budící práci a zářivou E. V praxi se spektrografie
ELEKTROTERMICKÁ ATOMIZACE. Electrothermal atomization AAS (ETA-AAS)
ELEKTROTERMICKÁ ATOMIZACE Electrothermal atomization AAS (ETA-AAS) FA nedosahuje detekčních mezí potřebných pro chemickou praxi (FA mg/l, ETA g/l). ETA: atomizátor obvykle ve tvaru trubičky (Massmannova
Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
Dělení a svařování svazkem plazmatu
Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?
Porovnání metod atomové spektrometrie
Porovnání metod atomové spektrometrie ACH/APAS David MILDE, 2017 Úvod Metody našeho zájmu: plamenová atomizace v AAS (FA-AAS) elektrotermická atomizace v AAS (ETA-AAS, GF-AAS) ICP-OES ICP-MS Výhody a nevýhody
SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace
DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké
VI. Analytické vlastnosti ICP-OES VI.1 Úvod
VI. Analytické vlastnosti ICP-OES VI.1 Úvod Technika ICP-OES je založena na měření emise excitovaných atomů a iontů. V prvním přiblížení lze říci, že signál analytu z ICP nezávisí na jeho speciaci v roztoku
Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová
Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES
30074. Analýza extraktu podle Mehlicha 3 Strana ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES Účel a rozsah Postup je určen především pro stanovení obsahu základních živin vápníku, hořčíku, draslíku,
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
OPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie
Klinická a farmaceutická analýza Petr Kozlík Katedra analytické chemie e-mail: kozlik@natur.cuni.cz http://web.natur.cuni.cz/~kozlik/ 1 Spojení separačních technik s hmotnostní spektrometrem Separační
Stručný úvod do spektroskopie
Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,
IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:
Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální
Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ
Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES 1 Rozsah a účel Metoda je určena pro stanovení makroprvků vápník, fosfor, draslík, hořčík
METODY - spektrometrické
Analýza Analýza - prvková METODY - spektrometrické atomová emisní/absorpční spektrometrie rentgenová fluorescenční analýza emise elektronů - povrchová analýza ESCA (elektronová spektroskopie pro chemickou
ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra)
ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra) (c) -2014 Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS 1 Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ
ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače
Skupenské stavy látek. Mezimolekulární síly
Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.
Vybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
Plynové lasery pro průmyslové využití
Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne
Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický
Plazma v technologiích
Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,
INSTRUMENTÁLNÍ METODY
INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Plazmové svařování a dělení materiálu. Jaromír Moravec
Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.
Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU ARSENU, KOBALTU, CHROMU A NIKLU METODOU ICP-OES
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU ARSENU, KOBALTU, CHROMU A NIKLU METODOU ICP-OES 1 Rozsah a účel Metoda je určena pro stanovení uvedených prvků (As, Co, Cr, Ni) v krmivech metodou
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
Počítačový model plazmatu. Vojtěch Hrubý listopad 2007
Počítačový model plazmatu Vojtěch Hrubý listopad 2007 Situace Zajímá nás, co se děje v okolí kovové sondy ponořené do plazmatu. Na válcovou sondu přivedeme napětí U Očekáváme, že se okolo sondy vytvoří
Modulace a šum signálu
Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr
Aplikace AAS ACH/APAS. David MILDE, Úvod
Aplikace AAS ACH/APAS David MILDE, 2017 Úvod AAS: v podstatě 4atomizační techniky: plamenová atomizace (FA), elektrotermická atomizace (ETA), generování těkavých hydridů (HG), určené pro stanovení As,
Ultrazvuková defektoskopie. Vypracoval Jan Janský
Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
Atomová spektrometrie
Atomová spektrometrie Obsah kapitoly Atomová absorpční spektrometrie F AAS ET AAS HG AAS Atomová emisní spektrometrie plamenová fotometrie ICP-AES Atomová absorpční spektrometrie Princip metody absorpce
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Úvod do fyziky plazmatu
Úvod do fyziky plazmatu Lenka Zajíčková, Ústav fyz. elektroniky Doporučená literatura: J. A. Bittencourt, Fundamentals of Plasma Physics, 2003 (3. vydání) ISBN 85-900100-3-1 Navazující a související přednášky:
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
Průtoková injekční analýza ve spojení s ICP-OES
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV CHEMIE Průtoková injekční analýza ve spojení s ICP-OES Bakalářská práce Denisa Doležalová Vedoucí práce: doc. Mgr. Karel Novotný, Ph.D. Brno 2015 Bibliografický
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)
SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření
Optický emisní spektrometr Agilent 725 ICP-OES
Optický emisní spektrometr Agilent 725 ICP-OES Popis systému: Přístroj, včetně řídicího softwaru a počítače, určený pro plně simultánní stanovení prvků v širokém koncentračním rozmezí (ppm až %), v nejrůznějších
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
Aplikace ICP-OES (MS)
(MS) ACH/APAS David MILDE, 2017 Úvod ICP-OES je citlivá a dostatečně selektivní analytická metoda pro stanovení většiny prvků. Jedná se především o roztokovou metodu, i když existují modifikace pro přímou
DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018
DETEKTORY pro kapalinovou chromatografii Izolační a separační metody, 2018 Detektory v kapalinové chromatografii Typ detektoru Zkratka Měřená veličina Refraktometrický detektor RID index lomu Spektrofotometrický
Otázky pro samotestování. Téma1 Sluneční záření
Otázky pro samotestování Téma1 Sluneční záření 1) Jaká je vzdálenost Země od Slunce? a. 1 AU b. 6378 km c. 1,496 x 10 11 m (±1,7%) 2) Jaké množství záření dopadá přibližně na povrch atmosféry? a. 1,60210-19
Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.
Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
Autokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STEJNOSMĚRNÝ PROUD Nesamostatný výboj TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Plyny jsou tvořeny elektricky neutrálními molekulami. Proto jsou za
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční