Zvyšování efektivity jaderné elektrárny s využitím umělé inteligence
|
|
- Sabina Slavíková
- před 9 lety
- Počet zobrazení:
Transkript
1 Zvyšování efektivity jaderné elektrárny s využitím umělé inteligence Ing. Jaroslav Novák Fakulta podnikatelská Vysokého učení technického v Brně, Ústav informatiky, Kolejní 2906/4, Brno, novakj@fbm.vutbr.cz Abstract This text is focused on theme about using artificial intelligence for nuclear power plant. Artificial intelligence is the intelligence of machines which can learn and decide similar to human intelligence. The objective of this project is to design, construct and test diagnostic system for nuclear power plant. The program will be analysis of data of nuclear power plant. Key words Artificial intelligence, nuclear power plant, analysis of data, prediction, diagnostics, efficiency Anotace Tento text je zaměřen na možnosti použití umělé inteligence pro zefektivnění provozu jaderné elektrárny. Umělá inteligence je inteligence strojů, které se mohou učit a rozhodovat podobně jako lidé. Cílem tohoto projektu je návrh, realizace a testování diagnostického systému pro jadernou elektrárnu. Program bude analyzovat data jaderné elektrárny pro predikci možné poruchy. Klíčová slova Umělá inteligence, jaderná elektrárna, analýza dat, predikce, diagnostika, efektivita
2 Úvod do problematiky V současné době moderních výpočetních a měřících technologií přibývá v jaderných elektrárnách naměřených dat. Jejich množství přesahuje možnosti člověka, tato data sledovat. Díky tomu, že lze data jednoduše ukládat, vznikají z lidského pohledu prakticky nekonečné databáze dat podle Knotek (2009). Data z provozu jednoho bloku jaderné elektrárny za rok již dosahují takového množství, že by je jeden člověk nestihl za život ani přečíst. Pro kontrolu naměřených dat se tedy používá výpočetních technologií a lidé ručně kontrolují pouze nejdůležitější údaje. Vzhledem k tomu, že se parametry jaderných elektráren neustále mění, není ani v lidských silách, aby tento úkol lidé plnili. Výhodou výpočetní techniky při analýze dat je, že počítače mohou zpracovat a vyhodnotit podstatně větší množství dat než člověk, a to za zlomek času. Analýza naměřených dat je nutná hned z několika důvodů. Prvním a z hlediska měření a sběru dat vůbec nejdůležitějším důvodem je zjištění, zda snímač komunikuje se zobrazovacím zařízením. Dalším důvodem je kontrola, zda se měřené parametry pohybují v dovolených mezích. Tyto dva úkoly plní počítače měřících systémů online a v případě zjištění chyb v komunikaci se snímači nebo při vybočení měřených parametrů ze signalizačních mezí okamžitě hlásí odchylku od nominálního stavu. Snad nejdůležitějším důvodem pro analýzu parametrů je spuštění havarijních systémů v případech, kdy by pomalá reakce člověka zbytečně prodloužila řešení havarijního stavu. Důležité je také analyzovat stav bloku jaderné elektrárny z důvodu zamezení chybného zásahu člověka. Dalším důvodem pro analýzu dat je predikce poruch. Z ekonomického pohledu je pak nejdůležitější analýza parametrů pro možnost zvýšení výkonu jaderného bloku pouze lepším nastavením regulačních obvodů. S ekonomikou také úzce souvisí již zmíněná predikce poruchového stavu. V případě úspěšné predikce poruchy před odstávkou reaktoru pro výměnu paliva se blok může vyhnout nutnosti snižovat výkon nebo dokonce odstavení celého bloku pro možnost opravy. Typ jaderné elektrárny, kterého se týká tento text, je VVER 440 s reaktorem typu V213. Tento typ jaderné elektrárny je v současnosti v provozu na Slovensku v Jaslovských Bohunicích (bloky 3 a 4) a v Mochovcích (bloky 1 a 2), v České republice v Dukovanech (bloky 1, 2, 3 a 4), v Ruské elektrárně Kola (bloky 3 a 4), v Maďarské elektrárně Paks (bloky 1, 2, 3 a 4), na Ukrajině v elektrárně Rovno (bloky 1 a 2) a ve Finské Loviise (bloky 1 a 2). Uvedené jaderné elektrárny byly postaveny podle stejného technologického projektu v letech 1977 (Loviisa 1) až 1999 (Mochovce 2) dle Cencinger (2003). Od doby, co byly uvedeny do provozu, se již vyvíjely každá samostatně. Měřicí systémy, které se postupem času modernizovaly, již stejné nejsou, a proto nelze jeden program používat na data ze všech uvedených jaderných elektráren. Další práce se tedy bude zabývat pouze jadernou elektrárnou v Dukovanech (bloky 1, 2, 3 a 4). Cíl a metody výzkumu Hlavním cílem práce bude zvýšení efektivity provozu jaderné elektrárny a tím ušetření finančních nákladů. Zlepšit efektivitu jaderné elektrárny lze hned několika způsoby. Prvním z nich je obohacení jaderného paliva U 235. Obohacením paliva by se celkem jednoduše dosáhlo většího elektrického výkonu. Další metodou, kterou by se dosáhlo větší efektivity, je zdokonalení tepelných výměníků mezi primárním a sekundárním okruhem. Zlepšil by se tak přestup tepla a znovu by to vedlo k vyššímu výkonu. Zvýšit efektivitu lze také vylepšením aerodynamiky parní turbíny. Při stejném množství páry by se zvýšil dodávaný elektrické výkon zatím co tepelný výkon reaktoru by zůstal stejný. Efektivitu jaderné elektrárny lze vylepšit také zkrácením odstávek pro výměnu paliva. Zlepšením organizace odstávky se sice
3 nedosáhne zvýšení okamžitého výkonu, ale zkrátí se čas, kdy jaderná elektrárna nedodává elektrickou energii. Některé uvedené metody zvýšení efektivity provozu jaderné elektrárny již v Dukovanech proběhly. Další jsou z důvodu legislativy či finanční náročnosti prakticky nemožné. Dalším dosud nezmíněným způsobem zlepšení efektivity je predikce poruch. Díky úspěšné predikci poruch lze zabránit nutnosti snižování výkonu kvůli opravě. Hlavním cílem práce bude tedy vytvoření programu, který bude analyzovat parametry jaderné elektrárny před vybranými poruchovými stavy. Tato data bude program srovnávat s parametry za nominálního provozu. Hlavním úkolem programu bude předpovědět blížící se poruchový stav. V tomto případě není myšlen poruchový stav ve smyslu všeobecně známých havárií v Černobylu na Ukrajině nebo v Japonské Fukušimě. Příkladem poruchy může být jednoduchý výpadek čerpadla, který sice nesouvisí s bezpečností, ale pro provoz může znamenat ekonomické ztráty kvůli nutnosti snížení výkonu reaktoru. Pro analýzu naměřených dat z jaderné elektrárny lze použít hned několik způsobů. Jedním ze způsobů je využití metod umělé inteligence. Umělá inteligence se zabývá tvorbou systémů, které vykazují známky inteligentního chování. V tomto případě se za inteligentní chování považuje schopnost programu rozhodnout co se děje nebo případně co by se mělo udělat. Umělá inteligence dle Mařík (1993) sdružuje několik metod. Lze použít neuronové sítě, které se pomocí modelů neuronů snaží modelovat vlastnosti lidského mozku dle Mařík (1993). Další metodou umělé inteligence jsou genetické algoritmy. Tyto postupy dle Mařík (2003) napodobují genetickou evoluci, jak ji popsal Charles Darwin. Jednou z metod umělé inteligence jsou také expertní systémy. Dle Mařík (1997) je Expertní systém počítačový program, který poskytuje rady a rozhodnutí za experta. Expert se účastní pouze vytvoření programu. Program následně experta nahradí. Použitelné metody umělé inteligence jsou také prohledávání stavového prostoru nebo pravděpodobnostní usuzování dle Mařík (1993). Vstupní data programu budou tvořit parametry reaktorového bloku během nominálního provozu od poslední odstávky reaktoru. Výstupem programu budou predikce poruchových stavů, které se již na elektrárně v minulosti staly. Diskuse výsledků O jaderné elektrárně se dá říct, že prakticky všechny hodnoty parametrů jsou na sobě navzájem závislé. V případě, že některý z parametrů vybočí z dovoleného rozsahu je o této události okamžitě informována posádka řídicího centra dle Růžek (2009), ale pro predikci výpadku čerpadla je to již většinou pozdě, protože čerpadlo je v té době již neprovozuschopné. Jaký tedy může být přínos tohoto programu? Většina poruchových stavů se nestane z ničeho nic, ale má své příčiny, které se nemusí ihned projevit vybočením parametrů z dovolených rozsahů. Například již uvedený výpadek čerpadla může být způsoben vysokou teplotou ložiska. A právě teplota ložiska se nezvedne skokově, ale pravděpodobně bude postupně růst v rámci povolených hodnot a může trvat delší dobu, než se na tento problém přijde. Dalším příkladem poruchy, která se projevuje delší dobu, je netěsnost potrubí. Většina netěsností vznikne z mikrotrhlin, které se časem zvětšují. Pokud je toto potrubí na primárním okruhu, lze tuto netěsnost identifikovat podle mírně rostoucí aktivity v místech, kde se netěsnost nachází. Stejně jako v předchozím případě se nejedná ihned o překročení dovolených mezí radiace, ale pouze o nepatrnou změnu od normálního stavu. Nejjednodušší a zároveň nejlevnější je oprava čerpadla nebo netěsného potrubí během odstávky reaktoru pro výměnu paliva, kdy se provádí všechny plánované opravy, kontroly a
4 revize. Naopak nejnákladnější varianta je, že se na poruchu čerpadla nebo na netěsnost v potrubí přijde ihned po najetí bloku na nominální výkon reaktoru. Program se tedy bude snažit předpovídat co nejvíce poruchových stavů v období před odstavením reaktoru pro výměnu paliva. Každý poruchový stav, který by se díky tomuto programu povedlo předpovědět před plánovanou odstávkou, by ušetřil nemalé finanční náklady. Vyčíslit tyto ušetřené náklady nelze úplně přesně, protože cena elektřiny se neustále mění. Cena elektřiny je závislá na tom zda se jedná o pracovní den, svátek nebo víkend. Vliv na cenu elektřiny mají také: střídání dne a noci, teplota a mnoho dalších vlivů. V současné době se cena elektřiny průměrně pohybuje kolem 1325 Kč za 1 MWh. I když tato cena není přesná, dále bude využita pro odhad ušetřených nákladů. V odhadu tedy nebude zohledněno, který den a v kolik hodin porucha nastane. Výkon jednoho bloku v jaderné elektrárně Dukovany za nominálního provozu je 500 MW. Jednou z nejpravděpodobnějších poruch, které mohou nastat je výpadek jednoho ze čtyř napájecích čerpadel sekundárního okruhu. Při výběru poruchy bylo zohledněno velké množství měřených parametrů zmíněného čerpadla, které zvyšují pravděpodobnost úspěšné predikce poruchy. Při výpadku uvedeného čerpadla se automaticky snižuje výkon reaktoru na 75 %, což také znamená snížení dodávaného elektrického výkonu na 375 MW. V případě, že se jedná o jednoduchou poruchu bude zajištění, vyšetření závady, oprava, kontrola a znovu najetí čerpadla trvat přibližně 6 hodin. Znovu se jedná pouze o odhad. Doba opravy je závislá na čase, kdy porucha přijde. Pokud se jedná o pracovní den a ranní směnu bude oprava čerpadla rychlejší. V případě jiných směn se může stát, že se bude až několik hodin čekat na pracovníky určité specializace, kteří se nenachází v elektrárně, ale mají pouze pohotovost. Z uvedeného příkladu vyplývá, že by se úspěšnou predikcí a opravou čerpadla během poslední odstávky pro výměnu paliva mohlo vyrobit o 750 MWh více. 750 MWh znamená při ceně elektřiny 1325 Kč za 1 MWh ztrátu Kč. Závěr Tento text pojednává o možnostech zvýšení efektivity jaderné elektrárny Dukovany. V textu je popsáno několik metod, které byly v minulosti použity nebo by mohly být použity v budoucnu. Dále je text zaměřen na zvýšení efektivity jaderné elektrárny analýzou dat pomocí metod umělé inteligence. Jsou zde také zmíněny základní metody umělé inteligence, a to: neuronové sítě, evoluční algoritmy (genetické algoritmy), expertní systémy, prohledávání stavového prostoru a pravděpodobnostní usuzování, které se teoreticky pro řešení dané problematiky dají použít. Další prací bude tedy vybrat nejvhodnější metodu umělé inteligence, která bude porovnávat data za nominálního provozu jaderné elektrárny a při poruchových stavech. Na základě rozdílů dat mezi nominálním provozem a vývojem dat týkajících se poruchového stavu před poruchou se program naučí rozpoznávat jednotlivé poruchy. Program se tedy bude snažit předpovídat co nejvíce poruchových stavů v období nominálního provozu před odstavením reaktoru pro výměnu paliva. Nejjednodušší a zároveň nejlevnější je oprava technologie nebo netěsnosti během odstávky reaktoru pro výměnu paliva, kdy se provádí všechny plánované opravy, kontroly a revize. Naopak nejhorší variantou je, když se na poruchu nebo netěsnost přijde ihned po najetí bloku na nominální výkon reaktoru. Proto každý poruchový stav, který by se díky tomuto programu povedlo předpovědět před plánovanou odstávkou, by ušetřil nemalé finanční náklady. Odhad ušetřených nákladů byl uveden na jednoduchém příkladu. Velkou nevýhodou tohoto řešeni je, že program nikdy nebude moci předpovědět poruchu, která se v minulosti na jaderné elektrárně nestala, protože se ji nenaučí. Program také nebude řešit poruchy, které nastanou skokově. Další nevýhodou tentokrát z pohledu
5 vývoje programu je, že se formát dat z měřících systémů během provozu jaderné elektrárny Dukovany několikrát změnil. Nelze tedy jednoduše použít data za celých 26 let provozu elektrárny. Posledním úkolem práce bude vyzkoušet tento program v praxi při jedné z plánovaných odstávek bloku pro výměnu paliva a prezentovat jeho případné úspory. Použitá literatura Knihy Mařík, V., Štěpánková, O. a Lažanský, J., Umělá inteligence (1). Akademia, Praha, 264s. Mařík, V., Štěpánková, O. a Lažanský, J., Umělá inteligence (2). Akademia, Praha, 373s. Mařík, V., Štěpánková, O. a Lažanský, J., Umělá inteligence (4). Akademia, Praha, 476s. Knotek, A. a Pičman, M, Měření a regulace JE VVER 440-Systém kontroly a řízení na JE. Školící a výcvikové středisko JEZ Brno, Brno, 168 s. Cencinger, F., Teorie jaderných reaktorů III.- stavba jaderných reaktorů. Školící a výcvikové středisko JEZ Brno, Brno, 331 s. Růžek, V., Bloková a nouzová dozorna JE Dukovany popis MMI (Rozhraní člověk stroj). Školící a výcvikové středisko JEZ Brno, Brno, 232 s.
Simulace provozu JE s reaktory VVER 440 a CANDU 6
Simulace provozu JE s reaktory VVER 440 a CANDU 6 Jakub Tejchman jakub.tejchman@seznam.cz Martin Veselý martin.veslo@seznam.cz JE s reaktorem VVER 440 VVER = PWR (anglický ekvivalent) - tlakovodní reaktor,
VíceNabídka ŠKODA JS pro slovenskou jadernou energetiku
Nabídka ŠKODA JS pro slovenskou jadernou energetiku Mezinárodní konference CAN SLOVAKIA SECURE ENERGY SUPPLY AND SUSTAINABLE DEVELOPMENT WITHOUT NUCLEAR? 5.- 6.května 2004 Bratislava 1 Struktura společnosti
VíceVY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY
VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY Jaderné elektrárny Jak fungují jaderné elektrárny Schéma Informace Fotografie úkol Jaderné elektrárny Dukovany a Temelín Schéma jaderné elektrárny Energie vzniklá
VíceMoravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 30.5. 2013 Anotace
VíceOBK - Odezva EDU 2012 na STRESS TESTY 2011. Josef Obršlík, Michal Zoblivý
OBK - Odezva EDU 2012 na STRESS TESTY 2011 Josef Obršlík, Michal Zoblivý OBSAH - V čem je problém (tepelný výkon reaktoru za provozu a po odstavení) - Kritické Bezpečnostní funkce - Podkritičnost - Chlazení
VíceSimulace provozu JE s bloky VVER 1000 a ABWR
Simulace provozu JE s bloky VVER 1000 a ABWR Martina Veselá - Gymnázium T.G.M. Hustopeče - marta.ves@seznam.cz Tomáš Peták - Gymnázium Karla Sladkovského - t.petak@seznam.cz Adam Novák - Gymnázium, Brno,
VícePokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
VíceMetodické pokyny k pracovnímu listu č třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT
Metodické pokyny k pracovnímu listu č. 6 7. třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT DOPORUČENÝ ČAS K VYPRACOVÁNÍ: 45 minut INFORMACE K TÉMATU: JADERNÁ ENERGIE A ŽIVOTNÍ PROSTŘEDÍ Za normálního
VíceStanovisko ke konečným zprávám ČEZ o výsledcích zátěžových testů jaderných elektráren Temelín a Dukovany
Stanovisko ke konečným zprávám ČEZ o výsledcích zátěžových testů jaderných elektráren Temelín a Dukovany Státní úřad pro jadernou bezpečnost (SÚJB) předal 30. 12. 2011 do Bruselu Národní zprávu o výsledcích
VíceJaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení
Osnova předmětu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) Úvod Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Ostatní tepelné elektrárny Kombinovaná výroba elektřiny a tepla
VíceJaderná elektrárna Dukovany
Jaderná elektrárna Dukovany 0 PRAKTICKÉ ZKUŠENOSTI S VYUŽÍVÁNÍM SYSTÉMU PRO MONITOROVÁNÍ A DIAGNOSTIKU NC3/PowerOPTI V EDU 23. 5. 2016 Libor Věžník, Vladimír Beer, Jiří Smíšek OBSAH Potřeba začít využívat
VíceKEY PERFORMANCE INDICATORS (KPI)
KEY PERFORMANCE INDICATORS (KPI) Zavedením monitorováním a vyhodnocením KPI pro energetické provozy lze optimalizovat provoz a údržbu energetických zařízení, zlepšit účinnost a spolehlivost a také snížit
VíceRegistrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 5. 12. 2012 Pořadové číslo 03 1 Jaderná elektrárna Předmět: Ročník: Jméno autora:
VíceZkušenosti s provozem kalibračních tratí. Ing. Vladislav Šmarda ENBRA, a. s.
Zkušenosti s provozem kalibračních tratí Ing. Vladislav Šmarda ENBRA, a. s. Zkušební zařízení v AMS a kalibračních laboratořích zkušební zařízení pro zkoušky a ověřování měřidel proteklého množství vody
VíceUmělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
VícePříspěvek českých výrobců pro renesanci jaderného programu v EU. Martin Pecina, generální ředitel VÍTKOVICE POWER ENGINEERING a.s.
Příspěvek českých výrobců pro renesanci jaderného programu v EU Martin Pecina, generální ředitel VÍTKOVICE POWER ENGINEERING a.s. Česká republika je členem úzkého elitního klubu zemí, které jsou schopny
VíceVývoj a současnost jaderného průmyslu v ČR a SR. Kompetence ZAT pro jaderný průmysl
Vývoj a současnost jaderného průmyslu v ČR a SR Kompetence ZAT pro jaderný průmysl Základní informace o společnosti ZAT ZAT je se svými závody v Příbrami a Plzni největší českou firmou v oboru automatizace
VíceTERMOHYDRAULICKÉ TESTOVÁNÍ PALIVA TVSA-T PRO JE TEMELÍN
TERMOHYDRAULICKÉ TESTOVÁNÍ PALIVA TVSA-T PRO JE TEMELÍN Ing. Václav Bláha Škoda Plzeň V souvislosti s přípravou kontraktu na dodávku paliva pro JE Temelín na další období, poptala firma TVEL ve ŠKODA JS
VíceMIR-1200. Modernized International Reactor. Projekt nejen pro energetiku.
MIR-1200 Modernized International Reactor Projekt nejen pro energetiku. Milan Kohout, člen představenstva a obchodní ředitel ŠKODA JS a.s. IVD ČR a jeden z největších jaderných tendrů ve světě Praha, 22.
VíceJADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý
Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se
VíceProjekt MIR.1200 a aktuální požadavky na bezpečnost jaderných elektráren
Projekt MIR.1200 a aktuální požadavky na bezpečnost jaderných elektráren KONFERENCE STROJÍRENSTVÍ OSTRAVA 2011 Česká republika země špičkových technologií 21.4.2011, Ostrava Prezentuje Ing. Roman Zdebor,
VíceParní turbíny Rovnotlaký stupeň
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
Více28.z-8.pc ZS 2015/2016
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace počítačové řízení 5 28.z-8.pc ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další hlavní téma předmětu se dotýká obsáhlé oblasti logického
VíceInovace výuky Člověk a svět práce. Pracovní list
Inovace výuky Člověk a svět práce Pracovní list Čp 07_09 Jaderná elektrárna Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a svět práce Člověk
VíceTvorba dodavatelských řetězců v rámci NSK pro výstavbu jaderných elektráren. Lubomír Gogela, manažer NSK Ostrava
Tvorba dodavatelských řetězců v rámci NSK pro výstavbu jaderných elektráren Lubomír Gogela, manažer NSK Ostrava 21. 04. 2011 NÁRODNÍ STROJÍRENSKÝ KLASTR NÁRODNÍ STROJÍRENSKÝ KLASTR je dobrovolné sdruţení
VíceZměnila krize dlouhodobý výhled spotřeby energie?
Očekávaný vývoj odvětví energetiky v ČR a na Slovensku Změnila krize dlouhodobý výhled spotřeby energie? Lubomír Lízal, PhD. Holiday Inn, Brno 14.5.2014 Předpovídání spotřeby Jak předpovídat budoucí energetickou
VíceMěření při najíždění bloku. (vybrané kapitoly)
Měření při najíždění bloku (vybrané kapitoly) 1 Reaktor VVER 1000 typ V320 Heterogenní reaktor Palivo nízce obohacený kysličník uraničitý Moderátor a chladivo roztok kyseliny borité v chemicky čisté vodě
VíceAutomatizace pro jadernou energetiku
Automatizace pro jadernou Karel Stočes Zákaznický den 2015 Co děláme? Dodáváme systém kontroly a řízení pro jaderné elektrárny Realizovali jsme a realizujeme řadu projektů nejen v České republice, ale
Vícepříloha 2 Stav plnění bezpečnostních doporučení MAAE
příloha 2 Stav plnění bezpečnostních doporučení MAAE Stav řešení bezpečnostních nálezů JE s VVER-440/213 v JE Dukovany Označ. Název bezpečnostních nálezů Kat. Stav G VŠEOBECNÉ PROBLÉMY G01 Klasifikace
VíceJaderná elektrárna. Martin Šturc
Jaderná elektrárna Martin Šturc Princip funkce Štěpení jader Štěpení jader Štěpení těžkých se nejsnáze vyvolá neutronem. Přestože štěpení jader je vždy exotermická reakce, musí mít dopadající neutron určitou
VíceEnergetické zdroje budoucnosti
Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava
VíceJaderná energetika pod lupou dozorného orgánu. Dana Drábová Státní úřad pro jadernou bezpečnost
Jaderná energetika pod lupou dozorného orgánu Dana Drábová Státní úřad pro jadernou bezpečnost Proč se oživuje diskuse o jaderné energetice? Globální oteplování Energetická bezpečnost Nárůst populace Tlak
VíceJaderné elektrárny I, II.
Jaderné elektrárny I, II. Jaderné elektrárny I. Úvod do jaderných elektráren, teorie reaktorů, vznik tepla v reaktoru a ochrana před ionizujícím zářením. Jaderné elektrárny II. Jaderné elektrárny typu
VíceDOOSAN ŠKODA POWER. pro jaderné elektrárny ŠKODA POWER. Jiří Fiala Ředitel Globálního R&D centra Doosan Škoda Power
DOOSAN ŠKODA POWER pro jaderné elektrárny Jiří Fiala Ředitel Globálního R&D centra Doosan Škoda Power 12.5.2016 ŠKODA POWER Historie turbín ŠKODA Významné osobnosti historie parních turbín ŠKODA Prof.
VíceEnergetické problémy
Energetické problémy Zdroje energie 1) Obnovitelné zdroje energie, které jsou prakticky nevyčerpatelné částečně a nebo úplně se obnovují (sluneční energie, voda, vítr, biomasa) Zdroje energie 2) Neobnovitelné
VíceModerní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
VíceProjekt MIR.1200. Dostavba 3 a 4 bloku JE Temelín. Konference VVER 2010 Experience and Perspectives 1.-3.11.2010, Praha,
Projekt MIR.1200 Dostavba 3 a 4 bloku JE Temelín Konference VVER 2010 Experience and Perspectives 1.-3.11.2010, Praha, KONSORCIUM MIR.1200 Dne 14.10.2009 založeno mezinárodní česko-ruské sdružení - Konsorcium
VíceMEZINÁRODNÍ SETKÁNÍ OBK EDU S OIK MOCHOVCE A OIK BOHUNICE
MEZINÁRODNÍ SETKÁNÍ OBK EDU S OIK MOCHOVCE A OIK BOHUNICE 29.9.2016 Tatranská Lomnica JIŘÍ BEZDĚK VÚ KOM EDU tajemník OBK EDU AKTUÁLNÍ PROVOZNÍ STAV E T E E D U VÍC NEŽ DLOUHÉ ODSTÁVKY 1. RB 28.8.2015
VíceElektrárny část II. Tepelné elektrárny. Ing. M. Bešta
Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.
VíceVýpočet zisku z prodeje uspořených povolenek společnosti ČEZ v ČR
Výpočet zisku z prodeje uspořených povolenek společnosti ČEZ v ČR Shrnutí Úspora povolenek v roce 2005 je složena ze dvou částí. Zisk je vypočten prostým odečtením nákladů spojených s úsporou povolenek
Více1. Dělení a provoz výroben elektrické energie (elektráren)
Elektrárny 2 (Elektrická zařízení elektráren) Přednášející: Karel Noháč, nohac@kee.zcu.cz, klapka 4343, kancelář EK314 Cvičící: Miloslava Tesařová, tesarova@kee.zcu.cz, klapka 4313, kancelář EK302 Literatura:
VíceSVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I.
SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I. doc. Ing. Ivo Hlavatý, Ph.D. Český svářečský ústav s.r.o., Areál VŠB TU Ostrava, 17. listopadu 2172/15, 708 33 Ostrava Poruba, Česká republika Annotation: This
VíceInsitut bezpečnostních studií a výzkumu rizik Oddělení vody, atmosféry a životního prostředí Universita zemědělských věd, Vídeň
MOCHOVCE 3&4 ve světle jaderné katastrofy ve Fukušimě Opatření na zamezení těžkých nehod v JE Mochovce 3 a 4 se zohledněním fukušimské katastrofy a v přípravě stávajících zátěžových testů Shrnutí ze dne
VíceWORKSHOP oboru Jaderná energetika
WORKSHOP oboru Jaderná energetika Aplikace Z101 a Z102 při realizaci akce Záměna systému skupinového a individuálního řízení regulačních mechanismů (RRCS) na EMO1 ZD 2018, ZAT Příbram, 25. 1.2018 09/2017
VíceSimulace jaderné elektrárny s reaktorem VVER-440
Simulace jaderné elektrárny s reaktorem VVER-440 J. Slabihoudek 1, M. Rzehulka 2 1 Gymnázium J. K. Tyla, Hradec Králové, 2 Wichterlovo gymnázium, Ostrava-Poruba jakub.slabihoudek@seznam.cz 20. června 2017
VíceJaderné reaktory a jak to vlastně funguje
Jaderné reaktory a jak to vlastně funguje O. Novák Katedra jaderných reaktorů 24. května 2018 O. Novák (ČVUT v Praze) Jaderné reaktory 24. května 2018 1 / 45 Obsah 1 Jederná energetika v České republice
VícePOPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) ( 19 ) ČESKOSLOVENSKA SOCIALISTICKÁ. (51) Int Cl* (22) přihlášeno 29 12 85 (21) PV 10087-85 P 28 D 1/04
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 256987 (Bl) (22) přihlášeno 29 12 85 (21) PV 10087-85 (51) Int Cl* P 28 D 1/04 ÚftAD PRO VYNÁLEZY A OBJEVY (40)
VíceVliv zdrojů elektrické energie na životní prostředí
Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
VícePřílohy. Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu.
Přílohy Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu. (Zdroj: Nuclear Power Reactors in the World, IAEA, REFERENCE DATA SERIES No. 2, 2014 Edition,
VíceCO EMIL ŠKODA V ROCE 1869 NETUŠIL
CO EMIL ŠKODA V ROCE 1869 NETUŠIL ŠKODA JS STÁLA U ZRODU ČESKOSLOVENSKÉ JADERNÉ VZDĚLANOSTI A PRŮMYSLU Jaderný průmysl se v ČSR rozvíjí od roku 1956, kdy společnost Škoda JS zahájila práce na projektu
VíceVypracoval: Ing. Milan Herout a kol.
Výzkumný ústav zemědělské techniky, v.v.i., Praha Optimalizace a zvýšení efektivity výroby elektrické a tepelné energie vyráběné z biomasy Řešeno v rámci programu podpory spolupráce podniků v Jihočeském
VíceVáclav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
VíceVYUŽITÍ OZE V MINULOSTI
VYUŽITÍ OZE V MINULOSTI VYUŽITÍ OZE V MINULOSTI Oheň - zdroj tepla,tepelná úprava potravin Pěstování plodin, zavodňování polí Vítr k pohonu lodí Orientace budov tak, aby využily co nejvíce denního světla
VíceTeplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá
VíceVýběr z Národních priorit orientovaného výzkumu, experimentálního vývoje a inovací podporovaných programem OMEGA
Výběr z Národních priorit orientovaného výzkumu, experimentálního vývoje a inovací podporovaných programem OMEGA Č. j.: TACR/4321/2015 I. Konkurenceschopná ekonomika založená na znalostech 1. Využití (aplikace)
VícePříloha č. 3. Mise MAAE
Příloha č. 3 Mise MAAE 1998-2001 1. Posuzovací mise MAAE pro připravenost k provozu a uvádění elektrárny do provozu (JE Temelín 20. - 25. února 2000) 2. Mise OSART (JE Temelín 12. únor - 1. březen 2001)
VíceSoučasná situace z pohledu regionu Jaderné elektrárny Dukovany
Současná situace z pohledu regionu Jaderné elektrárny Dukovany Vítězslav Jonáš, předseda Energetické Třebíčsko a zástupce Jaderné regiony ČR Seminář PSP, 25. 11. 2014 Lokalita Dukovany technické parametry
VíceVÝVOJ CELKOVÉ OBJEMOVÉ AKTIVITY BETA V OKOLÍ JADERNÉ ELEKTRÁRNY DUKOVANY ZA OBDOBÍ Pavel Stierand
VÝVOJ CELKOVÉ OBJEMOVÉ AKTIVITY BETA V OKOLÍ JADERNÉ ELEKTRÁRNY DUKOVANY ZA OBDOBÍ 1966 2010 Pavel Stierand Systematické sledování jakosti vody : - zahájeno v roce 1963 - radiochemické ukazatele od r.
VíceSpolupráce VÍTKOVICE MACHINERY GROUP a ŠKODA JS v oboru jaderné energetiky
Spolupráce VÍTKOVICE MACHINERY GROUP a ŠKODA JS v oboru jaderné energetiky Lubomír Gogela, ředitel pro jakost, VÍTKOVICE POWER ENGINEERING a.s. Plzeň Historie Delimitace kotlového programu do SES Tlmače
VíceČtyři běžné PROBLÉMY PŘI KALIBRACI TLAKU
Čtyři běžné PROBLÉMY PŘI KALIBRACI TLAKU Kalibrace tlaku je často důležitou součástí systémů řízení a přispívá k optimalizaci procesů a bezpečnosti závodu. Přístroji pro měření tlaku je sice vybaven téměř
VíceINOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ENERGETICKÁ ÚVAHA Mgr. LUKÁŠ FEŘT
VíceNovar 206/214. Regulátor jalového výkonu. Vlastnosti. pro náročné a středně náročné aplikace s nestandardním měřicím napětím
Novar 206/214 Regulátor jalového výkonu Vlastnosti pro náročné a středně náročné aplikace s nestandardním měřicím napětím 6 nebo 14 reléových stupňů + alarmové relé napájecí napětí 230 V AC ( nebo 115
VíceÚstav automatizace a měřicí techniky.
www.feec.vutbr.cz Specializace studijního oboru Automatizační a Měřicí Technika: Řídicí technika Moderní algoritmy řízení, teorie řízení Modelování a identifikace parametrů řízených systémů Pokročilé metody
VíceCo se stalo v JE Fukušima? Úterý, 15 Březen :32 - Aktualizováno Pátek, 01 Duben :00
Sdělovací prostředky chrlí další a další informace, ze kterých si laik jen těžko poskládá názor, co se vlastně v jaderné elektrárně Fukušima stalo. Pokusím se shrnout tyto informace a najít pravděpodobnou
VíceK AUTORSKÉMU OSVĚDČENÍ
ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 158861 MPT G 21 c 15/16 ^ S á i Přihlášeno 07. VI. 1973 (PV 4118-73) PT 21 g 21/24 Zveřejněno 28. II. 1974 ÚŘAD PRO
VíceNezkreslená věda Jak funguje jaderná elektrárna
Nezkreslená věda Jak funguje jaderná elektrárna Víte, že jaderná elektrárna je ekologičtější než elektrárna uhelná? Pokud ne, podívejte se na tento díl nezkreslené vědy ještě jednou a vyřešte následující
VíceStrategické obory. Představení společnosti VÝROBA SERVIS INŽENÝRING
Profil společnosti Představení společnosti Strategické obory Dnešní ŠKODA JS a.s. se zrodila v polovině padesátých let dvacátého století, kdy se na světě o jaderné energetice teprve začínalo uvažovat.
VícePROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE
PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO
VíceMezinárodní strojírenský veletrh. 4.10.2011, Brno. Ing. Josef Perlík, ŠKODA JS a.s.
"Jaderná energetika jako impuls pro export velkých investičních celků" Mezinárodní strojírenský veletrh 4.10.2011, Brno Ing. Josef Perlík, ŠKODA JS a.s. PROJEKT MIR.1200 EVOLUČNÍ TECHNOLOGIE Reaktor projektu
VíceQUERYTHERM. o krok napřed
o krok napřed Kolik ušetříme??? Naše řešení umožňuje snížení nákladů na vytápění o 20% až 48% čím vynikáme.... využití vnitřních / vnějších tepelných zisků a prediktivních technologií rychlá instalace
VíceVÝSTAVBA NOVÝCH ENERGETICKÝCH BLOKŮ V JADERNÉ ELEKTRÁRNĚ TEMELÍN. Edvard Sequens 3. září 2013 Praha
VÝSTAVBA NOVÝCH ENERGETICKÝCH BLOKŮ V JADERNÉ ELEKTRÁRNĚ TEMELÍN Edvard Sequens 3. září 2013 Praha Jaderná energetika na ústupu Jaderná energetika na ústupu Jaderná energetika na ústupu Průměrný věk reaktorů
VíceWORKSHOP. oboru Jaderná energetika
WORKSHOP oboru Jaderná energetika Aplikace Z101 a Z102 při realizaci akce Záměna systému skupinového a individuálního řízení regulačních mechanismů (RRCS) na EBO34 Jan Horn 19. ledna 2017 K čemu je určen
VíceDilatometr DF-7 a Automatický lis DL-7
DASFOS CZr, s.r.o. Technologicko-inovační centrum Božkova 45, 702 00, Ostrava-Přívoz, Česká republika tel.: +420 596 612 092 fax: +420 596 612 094 e-mail: dasfos@dasfos.com web: http://www.dasfos.com Technická
VícePOPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. Zařízení pro akumulaci tepla v napájecí vodě pro transformátory páry
ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19 y POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ (61) (23) Výstavní priorita (22) Přihlášeno 15 04 77 (21) pv 2473-77 189 348 (ii) B1] (51) Int. Cl.' P 01 K 3/08
VíceOPTIMALIZACE SPOTŘEBY TEPLA REGULACÍ
V současnosti používané typy regulace lze nahradit kombinovanou automatickou regulací auto adaptivní inteligentní řízení spotřeby tepla s prediktivní funkcí. Stávající regulace: Ekvitermní regulace - kvalitativní
VíceZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA KAŠAVA. Kašava Kašava ABSOLVENTSKÁ PRÁCE. Výroba energie. Radek Březík, 9. ročník.
ZÁKLADNÍ ŠKOLA A MATEŘSKÁ ŠKOLA KAŠAVA Kašava 193 763 19 Kašava ABSOLVENTSKÁ PRÁCE Výroba energie Radek Březík, 9. ročník Kašava 2016 Vedoucí práce: Ludmila Flámová Prohlašuji, že jsem absolventskou práci
VícePOPIS VYNÁLEZU К AUTORSKÉMU OSVĚDČENÍ. MATAL OLDŘICH ing. CSc., BRNO, SADíLEK JIŘÍ ing., TŘEBÍČ
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 1«) POPIS VYNÁLEZU К AUTORSKÉMU OSVĚDČENÍ (22) přihlášeno 02 04 87 (21) PV 2357-87.1 263762 (51) Int Cl. 4 G 21 D 5/08 F 28 F 27/00 (Bl) ÚŔAO PRO VYNÁLEZY
VíceSoftware pro testování kvality kondenzátorů v provozních podmínkách
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV FYZIKY Software pro testování kvality kondenzátorů v provozních podmínkách Číslo projektu: TA02020998 Číslo výsledku:
Vícezáměnou kotle a zateplením
Úroveň snížen ení emisí záměnou kotle a zateplením Mgr. Veronika Hase Seminář: : Technologické trendy při p i vytápění pevnými palivy Horní Bečva 9.11. 10.11. 2011 Obsah prezentace Účel vypracování studie
VíceVyužívejte energii, kterou máme všichni zdarma - slunce Vám fakturu nepošle
Co nám může solární systém přinést: Chceme ohřívat vodu Systém je určen pro 4 osoby Kolik spotřebujeme vody za den (dle normy) 160 L Výkon, který je pro nás optimální 1,7 kw = 7 panelů na střeše (11,55
VíceKATALOG SUBREGULAČNÍ JEDNOTKY TEPLA EIM. řídí a optimalizuje dodávku tepla z CZT, tím šetří i více než 20% nákladů na vytápění.
KATALOG SUBREGULAČNÍ JEDNOTKY TEPLA EIM řídí a optimalizuje dodávku tepla z CZT, tím šetří i více než 20% nákladů na vytápění. SE SUBREGULACÍ EIM máte teplo z centrálního zdroje pod palcem vy! Subregulace
VíceJakou roli hraje energetika v české ekonomice?
18. června 2013 - Hotel Jalta Praha, Václavské nám. 45, Praha 1 Jakou roli hraje energetika v české ekonomice? Ing.Libor Kozubík Vedoucí sektoru energetiky IBM Global Business Services Energie hraje v
VíceIng. Martin Uhlíř, MBA
VÝSTAVBA NOVÝCH JADERNÝCH ZDROJŮ 22. 11. 2018 Ing. Martin Uhlíř, MBA AKTUALIZACE SEK Z ROKU 2015 POČÍTÁ S NÁRŮSTEM VÝROBY Z JÁDRA Změna palivového mixu dle ASEK* GWh, brutto** Jádro: po 2030 nárůst výroby
VíceJaderné reaktory a jak to vlastně vše funguje
Jaderné reaktory a jak to vlastně vše funguje Lenka Heraltová Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze 1 Výroba energie v České republice Typy zdrojů elektrické energie
VíceTepelná čerpadla ecogeo. pro topení a chlazení
Tepelná čerpadla ecogeo pro topení a chlazení Představení výrobce ECOFOREST Španělská technologická společnost Specialista na obnovitelné zdroje energie pro vytápění a chlazení Držitel řady ocenění za
VíceAutomatizační a měřicí technika (B-AMT)
Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence
VíceJaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o
Anotace Učební materiál EU V2 1/F18 je určen k výkladu učiva jaderná energetika fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru, zhodnotí výhody a nevýhody využívání různých
VíceVynález se týká zařízení odluhu vody druhého okruhu jaderných elektráren typu WER.
ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA (1») POPIS VYNALEZU К AUTORSKÉMU OSVĚDČENÍ (22) Přihlášeno 14 07 88 (21) PV 5086-88.Z 265 650 Ol) (BI) Á13) (51) Int. Cl. 4 G 21 D 1/00 FEDERÁLNÍ ÚŘAD PRO VYNÄLEZY
VíceMěření teploty v hlubinných vrtech. Zdeněk Slanina Katedra měřicí a řídicí techniky Fakulta elektrotechniky a informatiky VŠB TU Ostrava
Měření teploty v hlubinných vrtech Zdeněk Slanina Katedra měřicí a řídicí techniky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Obsah prezentace Úvod Geologická charakteristika Vrty pro teplotní
VíceBezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ. www.mestozlin.cz
Bezpečnostní systémy - rychlostní kamery Identifikace SPZ a RZ Město Zlín Jednou z možností monitorování a řízení dopravy v obcích je automatické snímání silničního provozu Monitorování dopravy vozidel
VíceTEPELNÁ ČERPADLA VZUCH - VODA
TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého
VíceStres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost
Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak
VíceCentrum pokročilých jaderných technologií (CANUT) prof. Ing. Zdeněk Peroutka, Ph.D.
Centrum pokročilých jaderných technologií (CANUT) prof. Ing. Zdeněk Peroutka, Ph.D. 1 2 Spolupráce na řešení projektu Dlouhodobá spolupráce Mezinárodní přesah Interdisciplinarita Komplexní řešení 3 Rozsah
VíceVývoj řízení velkých projektů v ČR a SR. Ing. Vladimír Poklop Generální ředitel
Vývoj řízení velkých projektů v ČR a SR Ing. Vladimír Poklop Generální ředitel ZČU, Jaderné dny 2018 19.4.2018 Projekty výstavby vybraných energetických bloků Řízení projektů Bohunice V2, Dukovany 34,
Více146/1997 Sb. VYHLÁŠKA. Státního úřadu pro jadernou bezpečnost
146/1997 Sb. VYHLÁŠKA Státního úřadu pro jadernou bezpečnost ze dne 18. června 1997, kterou se stanoví činnosti, které mají bezprostřední vliv na jadernou bezpečnost, a činnosti zvláště důležité z hlediska
VíceVýroba a spotřeba elektřiny v Plzeňském kraji v roce 2015
Výroba a spotřeba elektřiny v Plzeňském kraji v roce 2015 Meziročně se výroba elektrické energie v ČR snížila, zatímco její spotřeba vzrostla. Hlavní příčinou poklesu výroby elektrické energie byla odstávka
VíceVÁS VÍTÁM NA TOMTO SEMINÁŘI
Řízené pohony čerpadel ČVUT FS, Horská 3, 4.prosinec 2013 Jménem odborné sekce hydraulika a pneumatika české strojnické společnosti VÁS VÍTÁM NA TOMTO SEMINÁŘI Ing. Petr Jáchym jachym.petr@hydac.cz Cíl
VíceModel bloku a predikce elektrického výkonu Poznat Řídit Zlepšit
Model bloku a predikce elektrického výkonu Poznat Řídit Zlepšit Ing. Jiří Pliska, RNDr. Zdeněk Machát Setkání jaderných elektráren, Hrotovice 2016 ZNÁT S VĚTŠÍ PŘESNOSTÍ VŠECHNY OKOLNOSTI -> LÉPE ŘÍDIT->
VíceZdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách.
Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie Dodavatel energie Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie 1 Obsah
VíceUMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Miroslav POKORNÝ Praha 1996, BEN Miroslav Pokorný UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást
Více