Umělá inteligence a rozpoznávání
|
|
- Miloslav Vlček
- před 8 lety
- Počet zobrazení:
Transkript
1 Václav Matoušek KIV 0-1
2 Sylabus předmětu: Datum Náplň přednášky Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních počítačových systémů, prezentace inteligentních systémů Řešení úloh, strategie hledání řešení, jednoduché metody hledání řešení úloh (slepé strategie) a jejich programová realizace, příklady řešení úloh Heuristické metody hledání řešení úloh, jejich efektivnost, příklady; hraní jednoduchých her a možnosti jeho efektivní implementace, příklady Dekompozice úlohy, AND/OR grafy a jejich implementace, úvod do evolučních algoritmů, genetické algoritmy a jejich programová realizace Evoluční strategie a evoluční programování, simulované žíhání, zakázané prohledávání, umělý život, implementace některých algoritmů, ukázky Klasifikace, rozpoznávání a shlukování základní pojmy, členění metod, typy klasifikátorů, obecná klasifikační úloha, evaluační metrika, příklady aplikací Příznakové metody rozpoznávání volba a výběr příznaků, jednoduché klasifikátory a jejich použití, metody učení, příklady, Strukturní metody rozpoznávání tvorba a analýza popisných struktur, zdroje informace, počítačové zpracování popisných struktur, příklady 0-2
3 Klasifikace umělými neuronovými sítěmi typy umělých neuronových sítí, algoritmy jejich trénování, simulátory, příklady Základy formální logiky a logického programování; úvod do reprezentace znalostí, základní typy znalostních systémů a jejich struktura, příklady Úvod do medicínské informatiky nervový systém, mozek, smysly, paměť, jazyk a řeč; modelování nervového systému a jeho prvků, ukázky, příklady aplikací Základy strojového učení, struktura a vlastnosti inteligentních softwarových agentů, návrh a programová realizace inteligentních agentů, ukázky, příklady Komunikace člověk počítač v přirozeném jazyce, druhy a modely komunikace, analýza promluvy, zásady vedení dialogu, příklady Veškeré informace lze v elektronické podobě nalézt na webových stránkách KIV na adrese nebo na adrese (vyhledat předmět KIV/UIR). 0-3
4 Literatura základní Mařík V., Štěpánková O., Lažanský J. a kol: Umělá inteligence (1). Academia, Praha, 1993 Mařík V., Štěpánková O., Lažanský J. a kol: Umělá inteligence (2). Academia, Praha, 1997 Mařík V., Štěpánková O., Lažanský J. a kol: Umělá inteligence (3). Academia, Praha, 2001 Mařík V., Štěpánková O., Lažanský J. a kol: Umělá inteligence (4). Academia, Praha, 2003 Mařík V., Štěpánková O., Lažanský J. a kol: Umělá inteligence (5). Academia, Praha, 2007 Mařík V., Štěpánková O., Lažanský J. a kol: Umělá inteligence (6). Academia, Praha, 2013 Lukasová A.: Formální logika v umělé inteligenci. Computer Press, Brno, 2003 Russel, S., Norwig P.: Artificial Intelligence A Modern Approach. 2 nd Edition, Prentice Hall & Pearson Education, Inc., New Jersey, 2003 Schalkoff R.J.: Artificial Intelligence An Engineering Approach. McGraw-Hill, New York, 1990 Nilsson N. J.: Principles of Artificial Intelligence. Springer Verlag, Berlin, Kotek Z., Mařík V. a kol: Metody rozpoznávání a jejich aplikace. Academia, 1993 Jirků P. a kol.: Programování v jazyku Prolog. SNTL, Praha, 1991 Kubík A.: Inteligentní agenty tvorba aplikačního software na bázi multiagentových systémů. Computer Press, Brno,
5 Literatura doplňková Zelinka I.: Umělá inteligence v problémech globální optimalizace. BEN, Praha, 2002 Plšek B.: Umělá inteligence v modelování a řízení. BEN, Praha, 1996 Zelinka I.: Umělá inteligence hrozba nebo naděje? BEN, Praha, 2003 Hammer M.: Metody umělé inteligence v diagnostice elektrických spojů. BEN, 2009 Novák, M. a kol.: Umělé neuronové sítě teorie a aplikace. C.H.Beck, Praha, 1998 Dvořák, J.: Expertní systémy, Skriptum VUT Brno, 2004, Brenner, W., Zarnekow, R., Wittig, H.: Intelligente Softwareagenten. Springer Verlag, Berlin, Heidelberg,
Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do
Znalostní technologie proč a jak?
Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Základy umělé inteligence
Základy umělé inteligence Úvod Základy umělé inteligence - úvod. Vlasta Radová, ZČU, katedra kybernetiky 1 Zavedení pojmu umělá inteligence Inteligence je schopnost získávat a aplikovat vědomosti a tedy
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14
UITS / ISY Výzkumná skupina inteligentních systémů Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně ISY: Výzkumná skupina inteligentních systémů 1 / 14 Obsah Představení skupiny
Učící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
Marta Vomlelová marta@ktiml.mff.cuni.cz
Strojové učení Úvod, lineární regrese Marta Vomlelová marta@ktiml.mff.cuni.cz References [1] P. Berka. Dobývání znalostí z databází. Academia, 2003. [2] T. Hastie, R. Tishirani, and J. Friedman. The Elements
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Další povinnosti / odb. praxe. Návrh témat prací. Návaznost na další stud. prog.
Teoretická informatika Složitost I 2p+1c Z, Zk P RNDr. Čepek, PhD není stanoven Složitost II 2p+1c Z, Zk PV RNDr. Čepek, PhD Vyčíslitelnost II 2p Zk PV doc. Kučera, CSc. Datové struktury I 2p Zk P RNDr.
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Informace pro výběr bakalářského oboru
Informace pro výběr bakalářského oboru 2017.03.15 J. Matas Bakalářské obory informatika a počítačové vědy software internet věcí počítačové hry a grafika kapacita všech oborů je dostatečná pro volný výběr
D Charakteristika studijního předmětu
Název studijního předmětu Databázové systémy II Typ předmětu povinně volitelný doporučený ročník / semestr 2/1 Rozsah studijního předmětu 70 hod. za týden 2/3 kreditů 6 Jiný způsob vyjádření rozsahu 2
Ústav automatizace a měřicí techniky.
www.feec.vutbr.cz Specializace studijního oboru Automatizační a Měřicí Technika: Řídicí technika Moderní algoritmy řízení, teorie řízení Modelování a identifikace parametrů řízených systémů Pokročilé metody
IB013 Logické programování I Hana Rudová. jaro 2011
IB013 Logické programování I Hana Rudová jaro 2011 Hodnocení předmětu Zápočtový projekt: celkem až 40 bodů Průběžná písemná práce: až 30 bodů (základy programování v Prologu) pro každého jediný termín:
Architektury počítačů
Architektury počítačů skupina Identifyingvýzkumná the Interesting Points in Geometrical Figures of Certain Class Vysoké učení technické v Brně, Fakulta informačních technologií, Božetěchova 2, 612 66 Brno
IUVENTAS Soukromé gymnázium a Střední odborná škola, s. r. o. Umělá inteligence. Jméno: Třída: Rok:
IUVENTAS Soukromé gymnázium a Střední odborná škola, s. r. o. Umělá inteligence Jméno: Třída: Rok: Prohlašuji, že mnou předložená práce je mým původním autorským dílem, které jsem vypracoval/a samostatně.
Obecná teorie systémů
Obecná teorie systémů přednáší: R. Šára cvičí: J. Kostlivá, D. Martinec, M. Perďoch http://cmp.felk.cvut.cz/cmp/courses/ots/curr/ http://cyber.felk.cvut.cz/teaching/ ots@cmp.felk.cvut.cz (dotazy ke cvičení)
Použití technik UI v algoritmickém obchodování II
Použití technik UI v algoritmickém obchodování II Matematicko-fyzikální fakulta Univerzity Karlovy v Praze 7. dubna 2014 Anotace Anotace Anotace Anotace Obchodování připomenutí problému Anotace Anotace
Počítačová geometrie I
0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti
H. Dreyfuss: What computers can t do, 1972 What computers still can t do, J. Weizenbaum. Computer power and human reason, 1976
Klasická AI připomenutí Meze klasické umělé inteligence Modelování mysli na logicko-symbolické úrovni. Modelování shora dolů. Reprezentacionalizmus Churchova teze: Použitelnost počítačů je omezena na ty
Automatizační a měřicí technika (B-AMT)
Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence
Zabýváme se konstrukcí racionálních agentů.
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Zabýváme se konstrukcí racionálních agentů. Agent je entita, co vnímá okolní prostředí prostřednictvím
Základní grafové algoritmy
i Základní grafové algoritmy Jakub Černý KAM, MFF UK 24. listopadu 2010 Verze 0.95 Homepage http://kam.mff.cuni.cz/ ~ kuba/ka Kontakt: kuba@kam.mff.cuni.cz ii Obsah Úvod v iii iv OBSAH Úvod Text je psán
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Seznam úloh v rámci Interního grantového systému EPI
Evropský polytechnický institut, s.r.o. Kunovice Seznam úloh v rámci Interního grantového systému I rok/p ořadí Číslo úlohy Název Obor 2008 B1/2008 Vývojové tendence globalizujícího se podnikatelského
Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D.
Speciální numerické metody 4. ročník bakalářského studia Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. 1 Základní informace o cvičení Předmět: 228-0210/01 Speciální numerické metody
Vybrané přístupy řešení neurčitosti
Vybrané přístupy řešení neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 8-1 Faktory jistoty Jedná se o přístup založený na ad hoc modelech Hlavním důvodem vzniku tohoto přístupu je omezení slabin
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Inteligentní systémy. Informace o bakalářském oboru. Jiří Lažanský. Zdeněk Hanzálek (katedra řídicí techniky) Michal Pěchouček (katedra kybernetiky)
Informace o bakalářském oboru Inteligentní systémy studijního programu Softwarové technologie a management Jiří Lažanský (katedra kybernetiky) Zdeněk Hanzálek (katedra řídicí techniky) Michal Pěchouček
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017
Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta
Zpracování neurčitosti
Zpracování neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 7-1 Usuzování za neurčitosti Neurčitost: Při vytváření ZS obvykle nejsou všechny informace naprosto korektní mohou být víceznačné, vágní,
ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT
Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání
Lineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
Genetické programování 3. část
1 Portál pre odborné publikovanie ISSN 1338-0087 Genetické programování 3. část Macháček Martin Elektrotechnika 08.04.2011 Jako ukázku použití GP uvedu symbolickou regresi. Regrese je statistická metoda
Inteligentní systémy a neuronové sítě
Inteligentní systémy a neuronové sítě Arnošt Veselý, Česká zemědělská univerzita, Kamýcká, Praha 6 - Suchdol Summary: In the article two main architectures of inteligent systems: logical-symbolic and connectionist
0,7 0,6 0,5 0,4 0,3 0,2 0,1
VÝVOJ PROSTŘEDKŮ VÝPOČTOVÉ INTELIGENCE PRO MONITOROVÁNÍ A ŘÍZENÍ OCELÁŘSKÝCH VÝROBNÍCH PROCESŮ Miroslav Pokorný¹ Václav Kafka² Zdeněk Bůžek³ 1) VŠB TU Ostrava, FEI, 17. listopadu 15, 708 33 Ostrava, ČR,
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Historie a vývoj umělé inteligence
Historie a vývoj umělé inteligence 11. února 2015 1-1 Co je to inteligence? Encyklopedie Duden : Intelligenz = Fähigkeit des Menschen abstrakt und vernünftig zu denken und daraus zweckvolles Handeln abzuleiten.
Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky
Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová
INFORMATIKA Jindřich Kaluža Ludmila Kalužová Recenzenti: doc. RNDr. František Koliba, CSc. prof. RNDr. Peter Mikulecký, PhD. Vydání knihy bylo schváleno vědeckou radou nakladatelství. Všechna práva vyhrazena.
Myšlenkové mapy v Linuxu
Myšlenkové mapy v Linuxu Michal Černý LinuxAlt 2011 Abstrakt Myšlenkové mapy se staly nezpochybnitelným fenoménem. Používají se k rozvoji kreativního myšlení, ke studiu, kooperaci na projektech nebo jako
Expertní systémy. 1. Úvod k expertním systémům. Cíl kapitoly:
Expertní systémy Cíl kapitoly: Úkolem této kapitoly je pochopení významu expertních systémů, umět rozpoznat expertní systémy od klasicky naprogramovaných systémů a naučit se jejich tvorbu a základní vlastnosti.
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Vývojové trendy 1. Dnešní téma. Vývojové trendy 2. Vývojové trendy ve zpracování informací a znalostí
Dnešní téma Vývojové trendy 1 Vývojové trendy ve zpracování informací a znalostí Znalostní management Využití umělé inteligence Sémantický web Zpracování přirozeného jazyka 1 Hnacím motorem vývoje v současnosti
5.1.7 Informatika a výpočetní technika. Časové, obsahové a organizační vymezení. ročník 1. 2. 3. 4. hodinová dotace 2 2 0 0
5.1.7 Informatika a výpočetní technika Časové, obsahové a organizační vymezení ročník 1. 2. 3. 4. hodinová dotace 2 2 0 0 Realizuje se vzdělávací obor Informatika a výpočetní technika RVP pro gymnázia.
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní
Testování a verifikace softwaru
Testování a verifikace softwaru Radek Mařík ČVUT FEL Katedra telekomunikační techniky, K13132 4. října 2017 Radek Mařík (radek.marik@fel.cvut.cz) Testování a verifikace softwaru 4. října 2017 1 / 6 Vize
Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi
Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function
Informatika a výpočetní technika 1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 1 kr. Povinné předměty pro obor IVT
1. roč./1. sem. 1. roč./2. sem. 2. roč./3. sem. 2. roč./4. sem. Semestrální Semestrální Diplomový Diplomový I I 460-4064/01 460-4067/01 460-4095/01 460-4096/01 460-4065/01 470-4405/01 Povinně volitelné
Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz. 16. srpna 2006
Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz 16. srpna 2006 Rozpoznávání a vnímání. Statistický (příznakový) a strukturní přístup. Klasifikátory a jejich učení. Cíle umělé inteligence. Reprezentace
Informatika. tercie. Mgr. Kateřina Macová 1
Informatika tercie Mgr. Kateřina Macová 1 Provozní řád učebny informatiky Žáci smí být v učebně výhradně za přítomnosti vyučujícího. Do učebny smí vstoupit a učebnu smí opustit pouze na pokyn vyučujícího.
2. Mechatronický výrobek 17
Předmluva 1 Úvod 3 Ing. Gunnar Künzel 1. Úvod do mechatroniky 5 1.1 Vznik, vývoj a definice mechatroniky 5 1.2 Mechatronická soustava a její komponenty 9 1.3 Mechatronický systém a jeho struktura 11 1.4
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
7. Inferenční metody. Inferenční metody Václav Matoušek, Josef Strolený Úvod do znalostního inženýrství, ZS 2014/
Inferenční metody 18.11.2014 7-1 Inferenční metody Rezoluční systémy Dopředné a zpětné řetězení Výběr dotazu Nemonotónní usuzování 7-2 a) Česká Literatura Dvořák J.: Expertní systémy. Skriptum VUT Brno,
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Rozdělení sub-oborů robotiky Učební text jméno a příjmení autora Doc. Ing. Mgr. Václav Záda, CSc. Liberec 2010 Materiál
Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně
Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Zoltán Szabó Katedra biomedicínské
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
7. Pracovní postupy. Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 7. Pracovní postupy Posloupnosti analytických a syntetických
Úvod do expertních systémů
Úvod do expertních systémů Expertní systém Definice ES (Feigenbaum): expertní systémy jsou počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně zakódovaných,
Tvorba informačních systémů
Tvorba informačních systémů Michal Krátký 1, Miroslav Beneš 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Tvorba informačních systémů, 2005/2006 c 2006 Michal Krátký, Miroslav Beneš Tvorba informačních
ADAPTACE PARAMETRU SIMULAČNÍHO MODELU ASYNCHRONNÍHO STROJE PARAMETR ADAPTATION IN SIMULATION MODEL OF THE ASYNCHRONOUS MACHINE
ADAPTACE PARAMETRU SIMULAČNÍHO MODELU ASYNCHRONNÍHO STROJE PARAMETR ADAPTATION IN SIMULATION MODEL OF THE ASYNCHRONOUS MACHINE Oktavián Strádal 1 Anotace: Článek ukazuje použití metod umělé inteligence
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
Programování virtuálních agentů Platforma Pogamut
Programování virtuálních agentů Platforma Pogamut RUDOLF KADLEC, JAKUB GEMROT, CYRIL BROM Kabinet softwarove a výuky informatiky, MFF UK Praha Malostranské nám. 25, 118 00 Praha {rudolf.kadlec, jakub.gemrot}@gmail.com,
1. Predikátová logika jako prostedek reprezentace znalostí
1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn
1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
Konceptualizace, komunikace a reprezentace znalostí
Konceptualizace, komunikace a reprezentace znalostí Lékařská informatika Zimní semestr 2018/2019 Michal Huptych Proč? Při technickém implementačním popisu se často ztrácí určitá část podstaty věcí. Snaha
Systémové inženýrství
1 Systémové inženýrství Obsah : Str. 1. Důležité termíny pro závěr studia 2 2. Rámcový postup při SZZ 3 3. Výňatek ze Studijního a zkušebního řádu ČZU v Praze 3 4. Okruhy otázek k SZZ 5 Důležité termíny
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Řízení projektů Simulační projekt
Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Řízení projektů Simulační projekt Technická univerzita v Liberci Simulace výrobních
EXPERTNÍ SYSTÉMY V CHOVU VČEL A MOŽNOSTI JEJICH VYUŽITÍ V. Vostrovský Katedra informatiky, Vysoká škola zemědělská, 165 21 Praha 6 Suchdol, tel.
EXPERTNÍ SYSTÉMY V CHOVU VČEL A MOŽNOSTI JEJICH VYUŽITÍ V. Vostrovský Katedra informatiky, Vysoká škola zemědělská, 165 21 Praha 6 Suchdol, tel. (02)3382274, fax. (02)393708 Anotace: Příspěvek popisuje
OBLASTI VEDENÍ ZÁVĚREČNÝCH PRACÍ PEDAGOGŮ INSTITUTU 545
OBLASTI VEDENÍ ZÁVĚREČNÝCH PRACÍ PEDAGOGŮ INSTITUTU 545 Oddělení ekonomiky Ing. Igor Černý, Ph.D. 1. Strukturální pomoc EU ve vybraných oblastech a společnostech 2. Modelování vlivu vybraných faktorů na
Tematické okruhy pro Státní závěrečné zkoušky
Tematické okruhy pro Obor: Název SZZ: Ekonomika podniku Logistika a management Vypracoval: Ing. Josef Maroušek, Ph.D., Ing. Ladislav Šolc, Ph.D., Ing. Julie Tužová, doc. Ing. Rudolf Kampf, Ph.D. Podpis:
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Mezinárodní finanční trhy
Úvod Ing. Jan Vejmělek, Ph.D., CFA jan_vejmelek@kb.cz Investiční bankovnictví Náplň kurzu Úvod do mezinárodních finančních trhů Devizový trh a jeho instrumenty Mezinárodní finanční instituce Teorie mezinárodního
Navazující magisterský studijní program APLIKOVANÁ INŽENÝRSKÁ INFORMATIKA
Navazující magisterský studijní program APLIKOVANÁ INŽENÝRSKÁ INFORMATIKA Žádost o akreditaci Vysoká škola chemicko-technologická v Praze Fakulta chemicko-inženýrská Říjen 2008 Praha 2008 1 / 29 do stávající
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Zvyšování efektivity jaderné elektrárny s využitím umělé inteligence
Zvyšování efektivity jaderné elektrárny s využitím umělé inteligence Ing. Jaroslav Novák Fakulta podnikatelská Vysokého učení technického v Brně, Ústav informatiky, Kolejní 2906/4, 612 00 Brno, novakj@fbm.vutbr.cz
Následující text je součástí učebních textů předmětu Bi0034 Analýza a klasifikace dat a je určen
11. Klasifikace V této kapitole se seznámíme s účelem, principy a jednotlivými metodami klasifikace dat, jež tvoří samostatnou rozsáhlou oblast analýzy dat. Klasifikace umožňuje určit, do které skupiny
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Možnosti modelování systému pro elektronickou podporu vzdělání. Modelling Capabilities of the Electronic Support of Education.
Možnosti modelování systému pro elektronickou podporu vzdělání Modelling Capabilities of the Electronic Support of Education Martina Janková Abstract: Purpose of the article: This article focuses on systemic
4.8 Jak jsme na tom v porovnání s jinými přístupy
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Přílohy. Obchodní strategie firmy STAPRO společnost s ručením omezeným
Přílohy Obchodní strategie firmy STAPRO společnost s ručením omezeným Seznam příloh 1. Prezentace Analýza kvality onkologické péče prováděné z dostupných dat (STAPRO a CBA české onkologie) 2. Základní
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení. Jiří Málek
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení Jiří Málek Cíl projektu Cíl: Zefektivnění vzdělávání na ITE* v oblasti strojového učení pomocí posílení dostupné výpočetní
Aplikovaná informatika
Studijní program: Obor: N 1802 Aplikovaná informatika Aplikovaná informatika Forma studia: prezenční, kombinovaná Standardní doba studia: 2 roky Rok přijímacího řízení: 2015 Profil uchazeče: O studium
EVA VOLNÁ MARTIN KOTYRBA MICHAL JANOŠEK VÁCLAV KOCIAN
Doc. RNDr. PaedDr. Eva Volná, PhD. RNDr. Martin Kotyrba, Ph.D. RNDr. Michal Janošek, Ph.D. Mgr. Václav Kocian UMÌLÁ INTELIGENCE Rozpoznávání vzorù v dynamických datech Praha 2014 Anotace: Cílem knihy je
PŘEDNÁŠKA 03 OPTIMALIZAČNÍ METODY Optimization methods
CW057 Logistika (R) PŘEDNÁŠKA 03 Optimization methods Ing. Václav Venkrbec skupina obecných modelů slouží k nalezení nejlepšího řešení problémů a modelovaných reálií přináší řešení: prvky konečné / nekonečné
UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Miroslav POKORNÝ Praha 1996, BEN Miroslav Pokorný UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Analýzou dat k efektivnějšímu rozhodování
Analýzou dat k efektivnějšímu rozhodování Chytrá řešení pro veřejnou správu Václav Bahník, ECM Solution Consultant Marek Šoule, ECM Software Sales Representative 8.4.2013 Řízení efektivního poskytování