VÝROBA VODÍKU reforming benzinových frakcí parní reforming zemního plynu parciální oxidace ropných zbytků zplyňováním biomasy elektrolýza

Rozměr: px
Začít zobrazení ze stránky:

Download "VÝROBA VODÍKU reforming benzinových frakcí parní reforming zemního plynu parciální oxidace ropných zbytků zplyňováním biomasy elektrolýza"

Transkript

1 VODÍK

2 - představuje jeden z hlavních chemických prvků v celém vesmíru jak ve hvězdách, tak i mezigalaktickém prostoru; - tvoří přibližně 75 % jeho hmoty a dokonce 90 % všech atomů; - z chemického hlediska je elektron v obalu atomu velmi reaktivní, což je i důvod, proč se jeho atomy spojují do dvouatomových molekul H 2 - na Zemi se vyskytuje pouze vázaný ve sloučeninách (nejvíce ve vodě), a proto je nutné jej technicky vyrábět; - nachází uplatnění v chemickém průmyslu a z globálního hlediska představuje jeho spotřeba cca 250 mil. tun ročně. [1]

3 VÝROBA VODÍKU - současnými technologiemi produkce vodíku jsou petrochemické procesy, převážně reforming benzinových frakcí, parní reforming zemního plynu a parciální oxidace ropných zbytků ; - počítá se i se zplyňováním biomasy (odpadní) a v budoucnu mají být hlavními procesy výroby vodíku elektrolýza a termické štěpení vody sluneční energií; - velké objemy vodíku jsou technicky vyráběny zejména z vody. Výroba vodíku elektrolýzou představuje nejjednodušší proces, avšak s použitím energie z klasických zdrojů je velmi nákladná; Na rozdíl od fosilních paliv obsahujících vodík a biomasy je voda jako zdroj vodíku látka s nulovou energií a elektrolyticky vyrobený vodík je pouze nosičem energie vložené do zmíněného procesu přeměny.

4 Výroba vodíku elektrolýzou vody - principem jsou dvě elektrody ponořené do alkalického vodného roztoku,na které je přivedeno napětí; - pro elektrolýzu se nejčastěji používá vodný roztok hydroxidu sodného (NaOH) nebo hydroxidu draselného (KOH) o nízké koncentraci; - na katodě se posléze uvolňuje vodík a na anodě kyslík; - tímto procesem se tedy spotřebovává voda i elektrická energie. [2]

5 Objemově vzniká oproti kyslíku dvojnásobné množství vodíku. Reakce na elektrodách lze vyjádřit rovnicemi: 2.H 2 O + 2.e - H OH - 2.OH - 1/2.O e - + H 2 O Elektrolýzou vody lze získávat neomezené množství vodíku, pro současnou velkovýrobu je energeticky neefektivní. K výrobě 1 kg H 2 je zapotřebí 45 kwh energie. V úvahu připadá tedy v případě využití levných zdrojů energie. Méně energeticky náročná je výroba pomocí vysokoteplotní parní elektrolýzy: - namísto kapalného elektrolytu se používá keramika propouštějící kyslíkové ionty, které jsou na anodové straně redukovány na kyslík; - přehřátá pára odebírá na straně katody elektrony a vzniká vodík.

6 Výroba vodíku reformací - v principu se jedná o přeměnu látky, která obsahuje vodík, na čistý vodík; - jako základní surovinu je možné použít např. methan, methanol, ropu, zemní plyn i uhlí. K samotnému procesu přeměny se využívá parciální oxidace, nebo parní reformace. Parciální oxidace probíhá dle reakce: C n H m + n/2.o 2 m/2.h 2 + n.co tedy v případě přeměny methanolu: CH 3 OH + 1/2.O 2 2.H 2 + CO 2 Parní reformace probíhá dle reakcí: C n H m + n.h 2 O (n + m/2).h 2 + n.co C n H m + 2.n.H 2 O (2.n + m/2).h 2 + n.co 2 Parní reformace methanolu: CH 3 OH + H 2 O 3.H 2 + CO 2

7 - parciální oxidace methanolu je možné aktivovat kovovými katalyzátory z mědi či vzácných kovů; - zároveň je nutná teplota nad 800 o C; - do reaktoru se přivádí methanol (příp. vyšší uhlovodíky) a vzduch jako zdroj kyslíku. Úplná oxidace převažuje při přebytku kyslíku, při menším množství, než je stechiometrické, probíhá především parciální oxidace. Průběh je stejně jako v případě úplné oxidace výrazně exotermický. Reformování je silně endotermní reakcí a vyžaduje přívod tepla a vhodné katalyzátory. Během různých reformačních reakcí vzniká i různé množství vodíku: Při parciální oxidaci methanolu obsahuje výsledný produkt přibližně 40 % vodíku Při parní reformaci methanolu obsahuje výsledný produkt přibližně 75 % vodíku

8 - výsledným produktem reformace mohou být i další plyny z hlavní reakce, jako jsou: 1) oxid uhelnatý, 2) oxid uhličitý, 3) dusík, 4) přebytek vody, 5) nepřetvořený zbytek methanolu (příp. vyšších uhlovodíků). - právě oxid uhelnatý je škodlivý pro platinový katalyzátor palivových článků s polymerovou membránou a je nutné jej odstranit. Reformací je možné vyrábět již v současné době dostačující množství vodíku pro využití v dopravě. Hlavní výhodou je nízká energetická náročnost a dostatečná znalost technologie. Nevýhodou je spotřeba fosilních paliv jako suroviny a nutnost čištění výsledného plynu po reformaci.

9 Termická výroba vodíku - termická výroba vodíku představuje velmi jednoduchý proces, avšak energeticky náročný; - při dosažení teploty více než ºC je kinetická energie molekul vodní páry tak velká, až dochází k rozštěpení molekul na vodík a kyslík. K tomuto se používá různých energetických zdrojů počínaje spalování fosilních paliv až po jaderné reakce. - z toho důvodu se jedná o poměrně drahý proces výroby, který např. v případě využití fosilních paliv neřeší problém ekologie; - zatím ve stádiu zkoušek jsou metody využívající energii slunečního záření a využití solárního koncentrátoru. Problémem této metody však je nedostatečná účinnost oddělení kyslíku a vodíku při vysokých teplotách a riziko exploze. Tento problém se však dá překonat použitím termického cyklu štěpení vody, kde vodík a kyslík vznikají v různých krocích cyklu. Komerční využití je zatím ještě otázkou výzkumu a vývoje.

10 Biologická výroba vodíku - získávání vodíku je možné i biologickou cestou; - některé bakterie typu Clostridium rozkládají organické látky za vývoje vodíku; - vývoj vodíku je možný i při určité fázi fotosyntézy, kde se uvolňuje z vody; - biologické metody jsou i v tomto případě ve stadiu výzkumu a jejich velkoplošné využití v dohledné době nepřipadá v úvahu; - výzkum v této oblasti směřuje ke zvýšení účinnosti fotovoltaických článků tím, že napodobí schopnost rostlin využít k přeměně sluneční energie na elektrickou širší část světelného spektra; - toto by měly zajistit svazky molekul organických barviv, které je snaha zabudovat do dnešních fotovoltaických panelů. Výhodou této metody je malá energetická náročnost, jelikož by využívala jako zdroj energie sluneční záření. [3]

11 Výroba vodíku jako odpadního produktu - vodík může být vyroben i jako odpadní produkt chemické výroby; - využití takto vzniklého vodíku jako zdroje energie lze využívat pouze doplňkově; - vodík jako vedlejší produkt chemických reakcí vzniká například při výrobě hydroxidu sodného (NaOH) elektrolýzou chloridu sodného (NaCl) dle rovnice: 2.NaCl + 2.H 2 O 2.NaOH + H Cl - tento způsob výroby vodíku představuje výhodné ekonomické zhodnocení odpadní látky; - jedná se o velmi levný proces, kterého však není produkováno dostatečné množství pro širší využiti.

12 Nevýhodou této metody je i využívání neobnovitelných zdrojů energie. V případě vodíku se nejedná o primární zdroj energie pro pohon vozidel, ale pouze o její nosič. Pro pohon vozidel lze vodík využít dvěma základními metodami: 1) spalováním ve speciálně konstruovaných spalovacích motorech; 2) jako surovinu pro elektrochemickou oxidaci v palivových článcích a následné využití energie v elektromotorech.

13 VYUŽITÍ VODÍKU V ZÁŽEHOVÝCH MOTORECH - systém pohonu tepelného spalování vodíku bude představovat důležitý mezičlánek při přechodu z fosilních paliv na vodík; - princip práce poháněných spalovacích motorů poháněných vodíkem je stejný jako u spalovacích motorů na dosud používaná paliva; - pístové zážehové spalovací motory spalující vodík budou vyžadovat úpravy pro zajištění optimálních podmínek hoření při tak mimořádné rychlosti hoření a výbušnosti směsi vodíku se vzduchem v koncentracích od 4 do 74 % obj. - bude nutné také upravit systém směšování paliva se vzduchem a časování zážehu. [4]

14 - vodík v porovnání s jinými motorovými palivy vykazuje výrazné odlišnosti: V případě pohonů zážehových motorů: 1) malou hustotu a malý obsah energie v objemové jednotce (obtížné uskladnění plynného vodíku ve vozidle); 2) velmi nízkou teplotu potřebnou pro zkapalnění (problematické uskladnění kapalného vodíku ve vozidle); 3) nízkou energii jiskry potřebnou k zapálení směsi vodíku se vzduchem (umožňuje spalování i velmi chudých směsí); 4) široké rozmezí zápalnosti směsi vodíku se vzduchem umožňuje spalování i velmi chudých směsí; 5) vysoká rychlost hoření palivové směsi a nízká antidetonační odolnost stechiometrické palivové směsi vyžaduje relativně nízký kompresní poměr.

15 - nabízí několik koncepčních řešení pohonu zážehových motorů lišících se hlavně způsobem přípravy palivové směsi; - ovlivňují provozní parametry motoru, jakými jsou: 1) výkon, 2) spotřeba paliva, 3) množství emisí škodlivin (oxidy dusíku a uhlovodíky pocházející z použitého oleje) vznikajících při spalování směsi. Pro přípravu palivové směsi vodík-vzduch lze použít některý z následujících způsobů: 1) plynný vodík se přivádí do sání motoru pomocí směšovače; 2) stlačený plynný vodík se vefukuje do sání motoru elektricky ovládanými ventily; 3) stlačený plynný vodík se vefukuje do válců motoru elektricky ovládanými ventily; 4) zkapalněný vodík se vstřikuje do válců motoru elektricky ovládanými ventily.

16 - během tvorby palivové směsi v sání motoru (ve směšovači) před vstupem do válců vzniká homogenní směs, ale v důsledku malé hustoty vodíku má náplň válců, zvláště u nepřeplňovaných motorů, nízký energetický obsah a měrný výkon motoru je malý; - další nevýhodou je také nebezpečí nežádoucího zapálení směsi s rozšířením plamene do sání motoru; - vhodnějším řešením je proto nasávání vzduchu a přivádění vodíku přímo do válců motoru buď v plynné fázi vyfukovacím ventilem, nebo ve fázi kapalné vstřikovacím ventilem; - přivedením vodíku během kompresního zdvihu pístu se dosáhne vyšší energetické náplně válců a vyloučí se nebezpečí zapálení směsi v sání motoru. Jako vhodná a perspektivní se zatím jeví varianta přípravy palivové směsi tvorba velmi chudé směsi vefukováním vodíku do válců přeplňovaného motoru s relativně vysokým kompresním poměrem. Vedle odstranění výše uvedených nevýhod je přínosem spalování velmi chudé palivové směsi malý obsah oxidů dusíku ve výfukových plynech.

17 Palivové články - palivové články jsou zařízení, v nichž na základě elektrochemických procesů dochází k přímé přeměně vnitřní energie paliva na energii elektrickou, tedy k přímé přeměně vnitřní energie paliva na energii elektrickou; - v tomto ohledu jsou tedy podobné článkům primárním či sekundárním (akumulátorům); - na rozdíl od primárních a sekundárních článků nejsou aktivní chemické látky součástí anody a katody, ale jsou k nim průběžně přiváděny zvnějšku; - obě elektrody působí výlučně jako katalyzátor chemických přeměn, během činností článku se téměř neopotřebovávají a jejich chemické složení se nemění. Palivový článek se tedy nevybíjí. [5]

18 - pokud jsou do něho aktivní látky přiváděny trvale, může pracovat prakticky bez časového omezení. Mizí zde tedy pojem kapacita článku. Kromě napětí se proto mezi charakteristické parametry obvykle řadí: 1) velikost proudu či výkonu odebíraného z 1 dm (1 cm) elektrod; 2) často se také udává měrný výkon (W/kg), objemový výkon (W/dm 3 ) nebo výkon na jednotku plochy elektrod (W/cm 2 ). Rozdíl spočívá i v tom, že pracovní teplota palivových článků je vyšší (u některých typů velmi výrazně) než u baterií, což se také odráží jak v technologii výroby, tak i v určité době náběhu, než dosáhnou jmenovitých provozních parametrů.

19 Princip činnosti palivového článku Na zápornou elektrodu (anodu) tzv. palivovou se přivádí aktivní látka (palivo). Ta oxiduje (její atomy se zbavují jednoho nebo více elektronů z valenční sféry) a uvolněné elektrony představující elektrický proud se vnějším obvodem pohybují ke kladné elektrodě (katodě). Na kladné elektrodě, kam se přivádí okysličovadlo, naopak probíhá redukce za současné reakce s kladnými ionty, které k ní pronikají elektrolytem. Pokud se vnější obvod přeruší, probíhající chemické reakce se z důvodu deficitu elektronu okamžitě zastaví.

20 Typy palivových článků Základní rozdělení palivových článku spočívá v typu použitého elektrolytu. 1) Alkalické palivové články (AFC s - alkaline fuel cells), elektrolytem je zpravidla hydroxid draselný (KOH); 2) Palivové články s polymerovou membránou (PEM-FC s - proton exchange membran fuel cells), elektrolytem je tuhý organický polmer; 3) Palivové články s kyselinou fosforečnou (PAFC s - phosphoric acid fuel cells), elektrolytem je kyselina fosforečná (HPO 3 ); 4) Palivové články s roztavenými uhličitany (MCFC s - molten carbonate fuel cells), elektrolytem je směs roztavených uhličitanů; 5) Palivové články s tuhými oxidy (SOFC s - solid oxide fuel cells), elektrolytem jsou oxidy vybraných kovů.

21

22 - pro užití ve vozidlech se jako nejvhodnější jeví zatím článek s polymerovou membránou PEM-FC s; - tento typ článku pracuje při nízké teplotě, již při 20 C dodává 50 % výkonu a pracovní teplota se pohybuje mezi 70 a 90 C; - jako hospodárné se jeví využívání běžného vzduchu jako okysličovadla; - podstatným parametrem pro využití palivového článku pro pohon vozidla je jeho objemový výkon. Jeho hodnota má být nad 1 kw.litr -1, což články s polymerovou membránou bezpečně překračují. Výhodou 1) odolnost vůči nízkým vnějším teplotám (maximálně do -25 C); 2) neobsahují elektrolyt, o který je zapotřebí se starat a mají dlouhou životnost pro použití ve vozidlech (5 000 až hodin). Nevýhodou je vysoká cena polymerové membrány, která slouží jako elektrolyt a jsou na ni kladeny vysoké nároky. Musí snášet vysokou hustotu proudu a zároveň musí být co nejtenčí pro zajištění dobré iontové vodivosti.

23 USKLADNĚNÍ VODÍKU VE VOZIDLE - vysoká pozornost je věnována i uskladnění vodíku; - jak u vozidla se spalovacím motorem, tak i s elektromotorem a palivovým článkem se vodík dodává z blízkého zásobníku; - podle způsobu akumulace vodíku se zásobníky člení na: 1) tlakové, 2) kryogenní, 3) chemické, 4) adsorpční. [6]

24 Tlakové zásobníky vodíku - jako nevyhovující je uskladnění stlačeného vodíku v ocelových láhvích (zvláště pro vývoj mobilních baterií palivových článků), proto se obrátila pozornost na kompozitní materiály; - v hliníkových láhvích zpevněných pletivem skleněných vláken může být vodík přechováván pod tlakem 24,8 MPa, což poskytuje kapacitu 12 kg vodíku na 1 m 3 skladovacího prostoru, resp. v hmotnostním vyjádření 2 % hm vodíku na hmotnost zásobníku; - nové typy lehkých tlakových zásobníků mají plášť s nadmutými bublinami, které se opírají o kompozitní zpevňovací pletivo; - očekává se, že tyto zásobníky budou mít při plnicím tlaku 33,8 MPa kapacitu větší než 12 % hm. vodíku;

25 - pro konstrukce elektromobilů s palivovým článkem na stlačený vodík znamenají tyto lehké plastikové zásobníky návrat ke konkurenceschopnosti. Použití tlakových nádob z kompozitních materiálů na bázi aramidových nebo uhlíkových vláken a syntetických pryskyřic (používaný v automobilech poháněných zemním plynem) pro stlačený plynný vodík je v principu také možné, ale akční rádius vozidel se oproti použití zkapalněného vodíku sníží.

26 Kryogenní zásobníky vodíku - kryogenní nádrže s kapalným vodíkem se osvědčily jako zásobníky energie pro palivové články na vesmírných lodích již před mnoha lety; - pro elektromobily poháněné baterií palivových článků je kryogenní zásobník s kapalným vodíkem přijatelným řešením; - zásobník je lehký a nemusí být příliš objemný. Z hlediska hmotnosti je tento způsob skladování výhodný, jeho nevýhodou je množství energie potřebné ke zkapalnění vodíku a ztráty odparem při plnění zásobníku a při dlouhé nečinnosti vozidla. - největší zkušenosti se skladováním a použitím vodíku jako paliva mají firmy angažující se v kosmické technice. Pro užití mimo kosmickou techniku byla vyvinuta dvouplášťová nádobu s evakuovaným prostorem mezi stěnami s vnější tepelnou izolací. - předpokládá se, že se k naplnění nádrží kapalným vodíkem buď využijí čerpadla, nebo přepouštění při tlakovém spádu mezi skladovací nádrží a nádrží dopravního prostředku; - ve fázích výzkumu je řešení tlakového kryogenního zásobníku, který může být plněn kapalným vodíkem při teplotě 20 K a přitom snese tlak 24,8 Mpa.

27 Chemické zásobníky - za bezpečné se pokládá i ukládání vodíku do vhodné chemické sloučeniny, která vodík zase snadno uvolňuje; - z tohoto hlediska jsou jako chemické zásobníky vodíku vhodné kovové hydridy a systém methylcyklohexan toluen. Hydridové zásobníky mají řadu výhod. - v hydridu je vodík uložen s větší hustotou (0,09 g/cm 3 ) než má v kapalné formě (0,07 g/cm 3 ), a to bez potřeby zkapalňovací technologie; - uložení v hydridu je také bezpečnější než skladování v tlakovém nebo kryogenním zásobníku. Nevýhodou hydridových zásobníků je vysoká cena a také velká hmotnost slitin. Přesto je tento způsob skladování vodíku předmětem intenzivního vývoje. Různé hydridové slitiny jsou již komerčně dostupné a řada firem vyvinula vlastní hydridové zásobníky, především pro praktické aplikace palivových článků.

28 K chemickým zásobníkům vodíku se může počítat i hydrogenace toluenu na methylcyklohexan (MTH systém). Jde v podstatě o uložení 6 % hm. vodíku ve stabilní chemické sloučenině (methylcyklohexanu) na libovolně dlouhou dobu, po které lze vodík jednoduchým způsobem (dehydrogenací) a prakticky beze ztrát opět uvolnit. [7]

29 Zdroj obrázků: [1] [2] [3] html [4] [5] [6] [7]

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku

Více

Hybridní pohony. Měniče a nosiče energie. Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha

Hybridní pohony. Měniče a nosiče energie. Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha Hybridní pohony Měniče a nosiče energie Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha 1 Hybridní pohony Obsah Měniče energie pracující na principu Fyzikální princip Pracovní média Účinnost přeměny energie

Více

Ekonomické a ekologické efekty kogenerace

Ekonomické a ekologické efekty kogenerace Ekonomické a ekologické efekty kogenerace Kogenerace (KVET) společná výroba elektřiny a dodávka tepla -zvyšuje využití paliva. Velká KVET teplárenství. Malá KVET - parní, plynová, paroplynová, palivové

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/

Více

Ondřej Mišina. Měření volt-ampérové charakteristiky palivových článků

Ondřej Mišina. Měření volt-ampérové charakteristiky palivových článků Ondřej Mišina Měření volt-ampérové charakteristiky palivových článků Vedoucí práce: Mgr. František Tichý Datum odevzdání: 18. 8. 2018 Abstrakt V této práci byl sestaven měřicí obvod pro měření volt-ampérové

Více

Palivové články. D. Javůrek, M.Záruba Fakulta jaderná a fyzikálně inženýrská ČVUT Břehová 7, 115 19 Praha 1 navy@centrum.cz

Palivové články. D. Javůrek, M.Záruba Fakulta jaderná a fyzikálně inženýrská ČVUT Břehová 7, 115 19 Praha 1 navy@centrum.cz Palivové články D. Javůrek, M.Záruba Fakulta jaderná a fyzikálně inženýrská ČVUT Břehová 7, 115 19 Praha 1 navy@centrum.cz Abstrakt Tato práce by měla jednoduchým způsobem přiblížit co to palivový článek

Více

Sekundární elektrochemické články

Sekundární elektrochemické články Sekundární elektrochemické články méně odborně se jim říká také akumulátory všechny elektrochemické reakce jsou vratné (ideálně na 100%) řeší problém ekonomický (vícenásobné použití snižuje náklady) řeší

Více

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ

NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ NEGATIVNÍ PŮSOBENÍ PROVOZU AUTOMOBILOVÝCH PSM NA ŽIVOTNÍ PROSTŘEDÍ Provoz automobilových PSM je provázen produkcí škodlivin, které jsou emitovány do okolí: škodliviny chemické (výfuk.škodliviny, kontaminace),

Více

Decentralizovaná KVET VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA. Tepelná síť. DKVET na bázi spalovacích motorů

Decentralizovaná KVET VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA. Tepelná síť. DKVET na bázi spalovacích motorů VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA Kombinovaná výroba elektřiny a tepla (KVET) Kombinovaná výroba elektřiny a tepla je významná z hledisek energetických ekologických společenských musí

Více

rní zdroj energie pro elektromobily Petr Vysoký

rní zdroj energie pro elektromobily Petr Vysoký Vodík k jako primárn rní zdroj energie pro elektromobily Petr Vysoký Dopravní fakulta ČVUT Vodík palivo budoucnosti Sloučen ením m vodíku s kyslíkem kem dojde k uvolnění energie, odpadem je voda Vodík

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

Sluneční energie. Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m -2 35 % se odrazí do kosmického prostoru 15 % pohlceno atmosférou

Sluneční energie. Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m -2 35 % se odrazí do kosmického prostoru 15 % pohlceno atmosférou Sluneční energie Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m -2 35 % se odrazí do kosmického prostoru 15 % pohlceno atmosférou 1 % energie větrů 1% mořské proudy 0,5 % koloběh vody

Více

Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK

Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK Pokus: Ponořte dva různé kovy vzdáleně od

Více

Obsah Chemická reakce... 2 PL:

Obsah Chemická reakce... 2 PL: Obsah Chemická reakce... 2 PL: Vyčíslení chemické rovnice - řešení... 3 Tepelný průběh chemické reakce... 4 Rychlost chemických reakcí... 4 Rozdělení chemických reakcí... 4 1 Chemická reakce děj, při němž

Více

ELEKTROLÝZA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 13. 3. 2012. Ročník: osmý

ELEKTROLÝZA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 13. 3. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková ELEKTROLÝZA Datum (období) tvorby: 13. 3. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí s elektrolýzou. V rámci

Více

H H C C C C C C H CH 3 H C C H H H H H H

H H C C C C C C H CH 3 H C C H H H H H H Alkany a cykloalkany sexta Martin Dojiva uhlovodíky obsahující pouze jednoduché vazby obecný vzorec alkanů: C n 2n+2 cykloalkanů: C n 2n homologický přírůstek C 2 Dělení alkanů přímé větvené u větvených

Více

Konstrukce motorů pro alternativní paliva

Konstrukce motorů pro alternativní paliva Souhrn Konstrukce motorů pro alternativní paliva Příspěvek obsahuje úvahy o využití alternativních paliv k pohonu spalovacích motorů u silničních vozidel zejména z hlediska zdrojů jednotlivých druhů paliv

Více

Směšovací poměr a emise

Směšovací poměr a emise Směšovací poměr a emise Hmotnostní poměr mezi palivem a okysličovadlem - u motorů provozovaných v atmosféře, je okysličovadlem okolní vzduch Složení vzduchu: (objemové podíly) - 78% dusík N 2-21% kyslík

Více

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

ZÁKLADNÍ CHEMICKÉ VÝPOČTY

ZÁKLADNÍ CHEMICKÉ VÝPOČTY ZÁKLADNÍ CHEMICKÉ VÝPOČTY Látkové množství - vyjadřování množství: jablka pivo chleba uhlí - (téměř každá míra má svojí jednotku) v chemii existuje univerzální veličina pro vyjádření množství látky LÁTKOVÉ

Více

AKUMULÁTORY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2012. Ročník: devátý

AKUMULÁTORY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková AKUMULÁTORY Datum (období) tvorby: 15. 3. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí se zdroji elektrického

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Využití vodíku v dopravě

Využití vodíku v dopravě Využití vodíku v dopravě Vodík - vlastnosti nejběžnější prvek ve vesmíru (90 % všech atomů a 75 % celkové hmotnosti) na Zemi hlavně ve formě sloučenin (hlavně voda H 2 O) hořlavý plyn lehčí než vzduch

Více

Palivová soustava Steyr 6195 CVT

Palivová soustava Steyr 6195 CVT Tisková zpráva Pro více informací kontaktujte: AGRI CS a.s. Výhradní dovozce CASE IH pro ČR email: info@agrics.cz Palivová soustava Steyr 6195 CVT Provoz spalovacího motoru lze řešit mimo používání standardního

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

Technické plyny. kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny)

Technické plyny. kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny) Technické plyny kapalný vzduch kyslík dusík vzácné plyny vodík (syntézní plyny) Kapalný vzduch složení vzduchu Před zkapalněním odstranění nežádoucích složek, např. vodní pára, CO 2, prach Zkapalňování

Více

Energie,výkon, příkon účinnost, práce. V trojfázové soustavě

Energie,výkon, příkon účinnost, práce. V trojfázové soustavě Energie,výkon, příkon účinnost, práce V trojfázové soustavě Energie nevzniká ani se neztrácí, jen se mění z jedné na druhou Energie je nejdůležitější vlastnost hmoty a záření Jednotlivé druhy energie:

Více

Výfukové plyny pístových spalovacích motorů

Výfukové plyny pístových spalovacích motorů Výfukové plyny pístových spalovacích motorů Hlavními složkami výfukových plynů při spalování směsi uhlovodíkových paliv a vzduchu jsou dusík, oxid uhličitý, vodní pára a zbytkový kyslík. Jejich obvyklá

Více

Alternativní zdroje energie

Alternativní zdroje energie Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Chemie 9. ročník Zpracovala: Mgr. Michaela Krůtová ANORGANICKÉ SLOUČENINY KYSELINY porovná vlastnosti a použití vybraných prakticky významných kyselin orientuje se

Více

Technická univerzita v Liberci

Technická univerzita v Liberci Technická univerzita v Liberci Fakulta strojní Katedra vozidel a motorů (KVM) Výzkumné centrum spalovacích motorů a automobilů Josefa Božka Nízkoemisní autobusový motor ML 637 NGS na zemní plyn (Dokončení

Více

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda

7) Uveď příklad chemické reakce, při níž se sloučí dva prvky za vzniku sloučeniny. (3) hoření vodíku s kyslíkem a vzniká voda Chemické reakce a děje Chemické reakce 1) Jak se chemické reakce odlišují od fyzikálních dějů? (2) změna vlastností látek, změna vazeb mezi atomy 2) Co označujeme v chemických reakcích jako reaktanty a

Více

OBSAH. 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise. 6.0 Porovnání palivových článků s konvenčními způsoby výroby energie

OBSAH. 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise. 6.0 Porovnání palivových článků s konvenčními způsoby výroby energie 2 PALIVOVÉ ČLÁNKY OBSAH 1.0 Úvod 2.0 Princip činnosti palivového článku 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise 4.0 Provozovaná zařízení s palivovými články 5.0 Výhled využití

Více

Zpracování ropy - Pracovní list

Zpracování ropy - Pracovní list Číslo projektu Název školy Předmět CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Ročník 2. Autor Datum výroby

Více

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc.

TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN. Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. TERMICKÉ PROCESY PŘI VYUŽITÍ ALTERNATIVNÍCH SUROVIN Most, 13.6.2013 Autor: Doc. Ing. J.LEDERER, CSc. OBSAH PRINCIPY POUŽÍVANÝCH TERMOCHEMICKÝCH PROCESŮ VELKOKAPACITNÍ REALIZACE TERMOCHEMICKÝCH PROCESŮ

Více

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 V rámci projektu: Inovace odborného vzdělávání na středních školách zaměřené na využívání energetických zdrojů pro 21. století El. proud I je určen

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod

Více

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe Firemní profil Obsah prezentace Potenciál a možnosti využití Vybrané technologie Základní principy a vlastnosti Hlavní oblasti využití

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace

Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace Sada 7 Název souboru Ročník Předmět Formát Název výukového materiálu Anotace VY_52_INOVACE_737 8. Chemie notebook Směsi Materiál slouží k vyvození a objasnění pojmů (klíčová slova - chemická látka, směs,

Více

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická

Více

PALIVOVÉ ČLÁNKY - ALTERNATIVNÍ ZDROJ ELEKTRICKÉ ENERGIE

PALIVOVÉ ČLÁNKY - ALTERNATIVNÍ ZDROJ ELEKTRICKÉ ENERGIE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PALIVOVÉ ČLÁNKY - ALTERNATIVNÍ ZDROJ ELEKTRICKÉ

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice Životní prostředí a doprava Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

Moderní energetické stoje

Moderní energetické stoje Moderní energetické stoje Jedná se o zdroje, které spojuje několik charakteristických vlastností. Jedná se hlavně o tyto: + vysoká účinnost + nízká produkce škodlivých látek - vysoká pořizovací cena! -

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Oxidace a redukce jsou chemické reakce spojené s výměnou elektronů. Při oxidaci látka elektrony uvolňuje a její oxidační číslo se zvyšuje.

Více

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením

Více

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů

Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů 185 Vliv paliv obsahujících bioložky na provozní parametry vznětových motorů doc. Ing. Josef Laurin, CSc., doc. Ing. Lubomír Moc, CSc., Ing. Radek Holubec Technická univerzita v Liberci, Studentská 2,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.

GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek. GALAVANICKÝ ČLÁNEK V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek. Galvanický článek je zařízení, které využívá redoxní reakce jako zdroj energie. Je zdrojem

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

ELEKTRICKÝ PROUD V KAPALINÁCH

ELEKTRICKÝ PROUD V KAPALINÁCH ELEKTRICKÝ PROUD V KPLINÁCH 1. Elektrolyt a elektrolýza elektrolyt kapalina, která může vést elektrický proud (musí obsahovat ionty kyselin, zásad nebo solí - rozpuštěné nebo roztavené) elektrolýza proces,

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

Odmašťování rozpouštědly znamená obvykle použití chlorovaných uhlovodíků (CHC dnes jen v uzavřených zařízeních), alkoholů, terpenů, ketonů, benzínu,

Odmašťování rozpouštědly znamená obvykle použití chlorovaných uhlovodíků (CHC dnes jen v uzavřených zařízeních), alkoholů, terpenů, ketonů, benzínu, Kubíček J. FSI 2018 Odmašťování velmi důležitá operace: odstranění tuků, prachových částic, zbytků po tryskání, kovové třísky a vody. Nečistoty jsou vázány fyzikální adsorpcí a adhezními silami. Odmašťování

Více

DUM č. 2 v sadě. 24. Ch-2 Anorganická chemie

DUM č. 2 v sadě. 24. Ch-2 Anorganická chemie projekt GML Brno Docens DUM č. 2 v sadě 24. Ch-2 Anorganická chemie Autor: Aleš Mareček Datum: 26.09.2014 Ročník: 2A Anotace DUMu: Materiál je určen pro druhý ročník čtyřletého a šestý ročník víceletého

Více

DUM VY_52_INOVACE_12CH27

DUM VY_52_INOVACE_12CH27 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH27 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky Příloha č. 20 (Příloha č. 1 NV č. 352/2002 Sb.) Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky 1. Emisní limity

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

Josef Kameš ALTERNATIVNÍ POHON AUTOMOBILÙ 2004 Josef Kameš ALTERNATIVNÍ POHON AUTOMOBILÙ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást kopírována nebo rozmnožována jakoukoli

Více

PRŮBĚH SPALOVÁNÍ (obecně)

PRŮBĚH SPALOVÁNÍ (obecně) PRŮBĚH SPALOVÁNÍ (obecně) 1. PŘÍPRAVA a) Fyzikální část zabezpečuje podmínky pro styk reagentů vytvořením kontaktních ploch paliva s kyslíkem (odpaření, smíšení) vnější nebo vnitřní tvorba směsi ohřátím

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Technická zařízení pro energetické transformace bioplynu

Technická zařízení pro energetické transformace bioplynu Technická zařízení pro energetické transformace bioplynu Cíle Seznámit studenty s technologiemi energetického využití bioplynu: Kogenerace Trigenerace Palivové články Klíčová slova Bioplyn, energie, kogenerace,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Lekce 1 FisherTechnik (3,5 vyuč. hodiny)

Lekce 1 FisherTechnik (3,5 vyuč. hodiny) Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů Lekce 1 FisherTechnik (3,5 vyuč. hodiny) Tento projekt je spolufinancován Evropským sociálním fondem

Více

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Paliva Paliva nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování Dělení paliv podle skupenství pevná uhlí, dřevo kapalná benzín,

Více

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé

Více

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách.

Zdroje energie. Leonardo da Vinci Projekt. Udržitelný rozvoj v průmyslových prádelnách. Kapitola 1. Modul 5 Energie v prádelnách. Leonardo da Vinci Projekt Udržitelný rozvoj v průmyslových prádelnách Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie Dodavatel energie Modul 5 Energie v prádelnách Kapitola 1 Zdroje energie 1 Obsah

Více

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.

Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např. 1 Kyslík a vodík Kyslík Vlastnosti Bezbarvý reaktivní plyn, bez zápachu, nejčastěji tvoří molekuly O2. Kapalný kyslík je modrý. S jinými prvky tvoří sloučeniny oxidy (např. CO, CO2, SO2...) Výskyt Nejrozšířenější

Více

chartakterizuje přírodní vědy,charakterizuje chemii, orientuje se v možných využití chemie v běžníém životě

chartakterizuje přírodní vědy,charakterizuje chemii, orientuje se v možných využití chemie v běžníém životě Kapitola Téma (Učivo) Znalosti a dovednosti (výstup). Úvod do chemie Charakteristika chemie a její význam Charakteristika přírodních věd charakteristika chemie Chemie kolem nás chartakterizuje přírodní

Více

POKYNY MOTOROVÁ PALIVA

POKYNY MOTOROVÁ PALIVA POKYNY Prostuduj si teoretické úvody k jednotlivým částím listu a následně vypracuj postupně všechny zadané úkoly tyto a další informace pak použij na závěr při vypracování testu zkontroluj si správné

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav

Více

Učební texty Diagnostika II. snímače 7.

Učební texty Diagnostika II. snímače 7. Předmět: Ročník: Vytvořil: Datum: Praxe 4. ročník Fleišman Luděk 28.5.2013 Název zpracovaného celku: Učební texty Diagnostika II. snímače 7. Snímače plynů, měřiče koncentrace Koncentrace látky udává, s

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav

Více

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy:

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy: zapis_spalovaci_motory_208/2012 STR Gd 1 z 5 29.1.4. Zapalování Zajišťuje zapálení směsi ve válci ve správném okamžiku (s určitým ) #1 Zapalování magneto Bateriové cívkové zapalování a) #2 generátorem

Více

PALIVA. Bc. Petra Váňová 2014

PALIVA. Bc. Petra Váňová 2014 PALIVA Bc. Petra Váňová 2014 Znáte odpověď? Která průmyslová paliva znáte? koks benzín líh svítiplyn nafta Znáte odpověď? Jaké jsou výhody plynných paliv oproti pevným? snadný transport nízká teplota vzplanutí

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Bioplyn biomethan vodík biovodík

Bioplyn biomethan vodík biovodík Bioplyn biomethan vodík biovodík bioplyn biomethan vodík (biovodík) CH4 + CO2 CH4 ( CO2) H2 biomethan CH4 + (CO2 + H2) CH4 Vodík představuje surovinu s obrovským potenciálem pro celou řadu aplikací, hlavně

Více

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety PEVNÁ PALIVA Základní dělení: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety Biomasa obnovitelný zdroj energie u našich výrobků se týká dřeva a dřevních briket Složení

Více

Palivové články. Obsah 1 Seznam zkratek... 3 Úvod... 3

Palivové články. Obsah 1 Seznam zkratek... 3 Úvod... 3 Palivové články Obsah 1 Seznam zkratek... 3 Úvod... 3 8.1 Historie a blízká budoucnost 3 8.2 Základní princip a konstrukce palivových článků... 5 8.2.1 Rozdělení palivových článků.. 8 8.2.2 Aplikace, výhody

Více

Základy elektrotechniky

Základy elektrotechniky A) Elektrický obvod je vodivé spojení elektrických prvků (součástek) plnící zadanou funkci např. generování elektrického signálu o určitých vlastnostech, zesílení el. signálu, přeměna el. energie na jiný

Více

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze

ZDROJE A PŘEMĚNY. JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze ZDROJE A PŘEMĚNY ENERGIE JAN PREHRADNÝ, EVŽEN LOSA Katedra jaderných reaktorů FJFI ČVUT v Praze Formy energie Energie rozdělení podle působící síly omechanická energie Kinetická (Pohybová) Potenciální

Více

Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem

Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav chemických procesů Akademie věd ČR Kombinovaná výroba elektrické energie a tepla pomocí vysokoteplotních palivových článků s tuhým elektrolytem Michael

Více

Technické sekundární články - AKUMULÁTOR

Technické sekundární články - AKUMULÁTOR Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Technické sekundární články - AKUMULÁTOR Galvanické články, které je možno opakovaně nabíjet a vybíjet se nazývají

Více

Optimalizace procesu přípravy elektrolytu pro vanadovou redoxní průtočnou baterii

Optimalizace procesu přípravy elektrolytu pro vanadovou redoxní průtočnou baterii Úspěšně obhájeno 2. 6. 2014 na Ústavu chemického inženýrství VŠCHT Praha Optimalizace procesu přípravy elektrolytu pro vanadovou redoxní průtočnou baterii Autor Jiří Vrána Školitel Juraj Kosek Konzultanti

Více

Chemické veličiny, vztahy mezi nimi a chemické výpočty

Chemické veličiny, vztahy mezi nimi a chemické výpočty SBÍRKA ŘEŠENÝCH PŘÍKLADŮ PRO PROJEKT PŘÍRODNÍ VĚDY AKTIVNĚ A INTERAKTIVNĚ CZ.1.07/1.1.24/01.0040 Chemické veličiny, vztahy mezi nimi a chemické výpočty Mgr. Jana Žůrková, 2013, 20 stran Obsah 1. Veličiny

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C? TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě

Více

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami Perspektivní metody sušení pevných paliv Klasická metoda sušení horkými spalinami Uzavřený mlecí okruh PROČ sušení pevných paliv? zvýšení výhřevnosti snazší vzněcování spalování při vyšší teplotě menší

Více