každého programátora, a tak není divu, že třídicí algoritmy jsou jedny z nejstudovanějších.
|
|
- Jaroslav Tábor
- před 6 lety
- Počet zobrazení:
Transkript
1 Třídění Pojem třídění je možná maličko nepřesný, často se však používá. Nehodláme data (čísla, řetězce a jiné) rozdělovat do nějakých tříd, ale přerovnat je do správného pořadí, od nejmenšího po největší ať už pro nás větší znamená jakékoliv uspořádání. Se seřazenými údaji se totiž mnohem lépe pracuje. Potřebujeme-li v nich kupříkladu vyhledávat, zvládneme to v uspořádaném stavu mnohem rychleji, jak dosvědčí další kuchařka a běžná zkušenost. Takové uspořádávání dat je proto denním chlebem každého programátora, a tak není divu, že třídicí algoritmy jsou jedny z nejstudovanějších. Obvykle třídíme exempláře datové struktury typu pascalského záznamu (v jiných jazycích struktury, třídy apod.). V takové datové struktuře bývá obsažena jedna význačná položka, klíč, podle které se záznamy řadí. Malinko si náš život zjednodušíme a budeme předpokládat, že třídíme záznamy obsahující pouze klíč, který je navíc celočíselný budeme tedy třídit pole celých čísel. Vzhledem k počtu tříděných čísel N pak budeme vyjadřovat časovou (a paměťovou) složitost jednotlivých algoritmů, které si předvedeme. Dodejme ještě, že se také studují případy, kdy je tříděných dat tolik, že se všechna naráz nevejdou do paměti. Tehdy by nastoupily takzvané vnější třídicí algoritmy. Ty dovedou zacházet s daty uloženými třeba na disku a přizpůsobit své chování jeho vlastnostem. Zejména tomu, že diskům svědčí spíše sekvenční přístup k datům, zatímco neustálé přeskakování z jednoho konce souboru na druhý je pomalé. Ostatně, i u našeho vnitřního třídění na lokalitě přístupů díky existenci procesorové cache trochu záleží. Toto vše si ale v naší úvodní kuchařce odpustíme. Přímé metody Nejjednodušší třídicí algoritmy patří do skupiny přímých metod. Jsou krátké, jednoduché a třídí přímo v poli (nepotřebujeme pole pomocné). Tyto algoritmy mají většinou časovou složitost O(N 2 ). Z toho vyplývá, že jsou použitelné tehdy, když tříděných dat není příliš mnoho. Na druhou stranu pokud je dat opravdu málo, je zbytečně složité používat některý z komplikovanějších algoritmů, které si předvedeme později. Třídění přímým výběrem (SelectSort) je založeno na opakovaném vybírání nejmenšího čísla z dosud nesetříděných čísel. Nalezené číslo prohodíme s prvkem na začátku pole a postup opakujeme, tentokrát s nejmenším číslem na indexech 2,..., N, které prohodíme s druhým prvkem v poli. Poté postup opakujeme s prvky s indexy 3,..., N atd. Je snadné si uvědomit, že když takto postupně vybíráme minimum z menších a menších intervalů, setřídíme celé pole (v i-tém kroku nalezneme i-tý nejmenší prvek a zařadíme ho v poli na pozici s indexem i). 12
2 procedure SelectSort(var A: Pole); var i, j, k, x: integer; for i:=1 to N-1 do k:=i; for j:=i+1 to N do if A[j]<A[k] then k:=j; x:=a[k]; A[k]:=A[i]; A[i]:=x; Pro úplnost si ještě řekněme pár slov o časové složitosti právě popsaného algoritmu. V i-tém kroku musíme nalézt minimum z N i + 1 čísel, na což spotřebujeme čas O(N i + 1). Ve všech krocích dohromady tedy spotřebujeme čas O(N + (N 1) ) = O(N 2 ). Třídění přímým vkládáním (InsertSort) funguje na podobném principu jako třídění přímým výběrem. Na začátku pole vytváříme správně utříděnou posloupnost, kterou postupně rozšiřujeme. Na začátku i-tého kroku má tato utříděná posloupnost délku i 1. V i-tém kroku určíme pozici i-tého čísla v dosud utříděné posloupnosti a zařadíme ho do utříděné posloupnosti (zbytek utříděné posloupnosti se posune o jednu pozici doprava). Není těžké si rozmyslet, že každý krok lze provést v čase O(N). Protože počet kroků algoritmu je N, celková časová složitost právě popsaného algoritmu je opět O(N 2 ). procedure InsertSort(var A: Pole); var i, j, x: integer; for i:=2 to N do x:=a[i]; j:=i-1; while (j>0) and (x<a[j]) do A[j+1]:=A[j]; j:=j-1; A[j+1]:=x; V uvedeném programu je využito zkráceného vyhodnocování v podmínce cyklu while. To znamená, že testování podmínky je ukončeno, jakmile j 0, a nikdy nemůže dojít k situaci, že by program zjišťoval prvek na pozici 0 nebo menší v poli A. Bublinkové třídění (BubbleSort) pracuje jinak než dva dříve popsané algoritmy. Algoritmu se říká bublinkový, protože podobně jako bublinky v limonádě stoupají vysoká čísla v poli vzhůru. Postupně se porovnávají dvojice sousedních prvků, řekněme zleva doprava, a pokud v porovnávané dvojici následuje menší číslo po větším, tak se tato dvě čísla prohodí. Celý postup opakujeme, dokud probíhají nějaké vý- 13
3 měny. Protože algoritmus skončí, když nedojde k žádné výměně, je pole na konci algoritmu setříděné. procedure BubbleSort(var A: Pole); var i, x: integer; zmena: boolean; repeat zmena:=false; for i:=1 to N-1 do if A[i] > A[i+1] then x:=a[i]; A[i]:=A[i+1]; A[i+1]:=x; zmena:=true; until not zmena; Správnost algoritmu nahlédneme tak, že si uvědomíme, že po i průchodech cyklem repeat bude posledních i prvků obsahovat největších i prvků setříděných od nejmenšího po největší (rozmyslete si, proč tomu tak je). Popsaný algoritmus se tedy zastaví po nejvýše N průchodech a jeho celková časová složitost v nejhorším případě je O(N 2 ), neboť na každý průchod spotřebuje čas O(N). Výhodou tohoto algoritmu oproti předchozím dvěma je, že je tím rychlejší, čím blíže bylo zadané pole k setříděnému stavu pokud bylo úplně setříděné, tehdy algoritmus spotřebuje jen lineární čas O(N). Rychlé metody Sofistikovanější třídicí algoritmy pracují v čase O(N log N). Jedním z nich je třídění sléváním (MergeSort), založené na principu slévání (spojování) již setříděných posloupností dohromady. Představme si, že již máme dvě setříděné posloupnosti a chceme je spojit dohromady. Jednoduše stačí porovnávat nejmenší prvky obou posloupností a menší z těchto prvků vždy odstranit a přesunout do nové posloupnosti. Je zřejmé, že ke slití dvou posloupností potřebujeme čas úměrný součtu jejich délek. My si zde popíšeme a předvedeme modifikaci algoritmu MergeSort, která používá pomocné pole. Algoritmus lze implementovat při zachování časové složitosti i bez pomocného pole, ale je to o dost pracnější. Existuje též modifikace algoritmu, která má počet fází (viz dále) v nejhorším případě O(log N), ale pokud je již pole na začátku setříděné, proběhne pouze jediná a v takovém případě má algoritmus časovou složitost O(N). My si však zatajíme i tuto variantu. Algoritmus pracuje v několika fázích. Na začátku první fáze tvoří každý prvek jednoprvkovou setříděnou posloupnost a obecně na začátku i-té fáze budou mít setříděné posloupnosti délky 2 i 1. V i-té fázi tedy vždy ze dvou sousedních 2 i 1 -prvkových posloupností vytvoříme jedinou délky 2 i. Pokud N není násobkem 2 i, bude délka poslední posloupnosti zbytek po dělení N číslem 2 i. Zastavíme se, pokud 2 i N, tj. po log 2 N fázích. 14
4 Protože v i-té fázi slijeme N/2 i dvojic nejvýše 2 i 1 -prvkových posloupností, je časová složitost jedné fáze O(N). Celková časová složitost popsaného algoritmu je pak O(N log N). procedure MergeSort(var A: Pole); var P: Pole; { pomocné pole } delka: integer; { délka setříděných posl. } i: integer; { index do vytvářené posl. } i1, i2: integer; { index do slévaných posl. } k1, k2: integer; { konce slévaných posl. } delka:=1; while delka<n do i1:=1; i2:=delka+1; i:=1; k1:=delka; k2:=2*delka; while i2<=n do { sléváme A[i1..k1] s A[i2..k2] } if k2>n then k2:=n; while (i1<=k1) or (i2<=k2) do if (i2>k2) or ((i1<=k1) and (A[i1]<=A[i2])) then P[i]:=A[i1]; i:=i+1; i1:=i1+1; end else P[i]:=A[i2]; i:=i+1; i2:=i2+1; i1:=k2+1; i2:=i1+delka; k1:=k2+delka; k2:=k2+2*delka; A:=P; delka:=2*delka; V čase O(N log N) pracuje také algoritmus jménem QuickSort. Tento algoritmus je založen na metodě Rozděl a panuj. Nejprve si zvolíme nějaké číslo, kterému budeme říkat pivot. Více si o jeho volbě povíme později. Poté pole přeuspořádáme a rozdělíme je na dvě části tak, že žádný prvek v první části nebude větší než pivot a žádný prvek v druhé části naopak menší. Prvky v obou částech pak setřídíme rekurzivním zavoláním téhož algoritmu. Je zřejmé, že po skončení algoritmu bude pole setříděné. Malá zrada spočívá ve volbě pivota. Pro naše účely by se hodilo, aby levá i pravá část pole byly po přeházení přibližně stejně velké. Nejlepší volbou pivota by tedy byl medián tříděného úseku, tj. prvek takový, jenž by byl v setříděném poli přesně uprostřed. Přeuspořádání jistě zvládneme v lineárním čase, a pokud by pivoty na všech úrovních byly mediány, pak by počet úrovní rekurze byl O(log N). Protože je navíc na každé úrovni rekurze součet délek tříděných posloupností nejvýše N, bude celková časová složitost O(N log N). 15
5 Ačkoli existuje algoritmus, který medián pole nalezne v čase O(N), v QuickSortu se obvykle nepoužívá, jelikož konstanta u členu N je příliš velká v porovnání s pravděpodobností, že náhodná volba pivota algoritmus příliš zpomalí. Většinou se pivot volí náhodně z dosud nesetříděného úseku. Dá se ukázat, že takovýto algoritmus s velmi vysokou pravděpodobností poběží v čase O(N log N). Důkaz tohoto tvrzení je trošičku trikový a lze jej nalézt např. v knize Kapitoly z diskrétní matematiky od pánů Matouška a Nešetřila. Je však třeba si pamatovat, že pokud se pivot volí náhodně, může rekurze dosáhnout hloubky N a časová složitost algoritmu až O(N 2 ) představme si, že se pivot v každém rekurzivním volání nešťastně zvolí jako největší prvek z tříděného úseku. V naší implementaci QuickSortu pro názornost nebudeme pivot volit náhodně, ale vždy jako pivot vybereme prostřední prvek tříděného úseku. procedure QuickSort(var A: Pole; l, r: integer); var i, j, k, x: integer; i:=l; j:=r; k:=a[(i+j) div 2]; { volba pivota } repeat while A[i]<k do i:=i+1; while A[j]>k do j:=j-1; if i<=j then x:=a[i]; A[i]:=A[j]; A[j]:=x; i:=i+1; j:=j-1; until i >= j; if j>l then QuickSort(A, l, j); if i<r then QuickSort(A, i, r); Metody pro specifická data Ještě si předvedeme dva třídicí algoritmy, které jsou vhodné, pokud tříděné objekty mají některé další speciální vlastnosti. Prvním z nich je třídění počítáním (Count- Sort). To lze použít, pokud tříděné objekty obsahují pouze klíče a možných hodnot klíčů je málo. Tehdy si stačí spočítat, kolikrát se který klíč vyskytuje, a místo třídění vytvořit celé pole znovu na základě toho, kolik jednotlivých objektů obsahovalo pole původní. My si tento algoritmus předvedeme na příkladu třídění pole celých čísel z intervalu D, H : const D = 1; H = 10; procedure CountSort(var A: Pole); var C: array[d..h] of integer; i, j, k: integer; 16
6 for i:=d to H do C[i]:=0; for i:=1 to N do C[A[i]]:=C[A[i]] + 1; k:=1; for i:=d to H do for j:=1 to C[i] do A[k]:=i; k:=k+1; Časová složitost takovéhoto algoritmu je lineární v N, ale nesmíme zapomenout přičíst ještě velikost intervalu, ve kterém se prvky nacházejí (K = H D+1), protože nějaký čas spotřebujeme i na inicializaci pole počítadel. Celkem tedy O(N + K). Pokud by tříděné objekty obsahovaly vedle klíčů i nějaká data, můžeme je místo pouhého počítání rozdělovat do přihrádek podle hodnoty klíče a pak je z přihrádek vysbírat v rostoucím pořadí klíčů. Tomuto algoritmu se říká přihrádkové třídění (BucketSort) a my si popíšeme jeho víceprůchodovou variantu (RadixSort), která je vhodnější pro větší hodnoty K. V první fázi si čísla rozdělíme do přihrádek (skupin) podle nejméně významné cifry a spojíme do jedné posloupnosti, v druhé fázi čísla roztřídíme podle druhé nejméně významné cifry a opět spojíme do jedné posloupnosti atd. Je důležité, aby se uvnitř každé přihrádky zachovalo pořadí čísel v posloupnosti na začátku fáze, tj. posloupnost uložená v každé přihrádce je vybranou podposloupností posloupnosti ze začátku fáze. Tvrdíme, že na konci i-té fáze obsahuje výsledná posloupnost čísla utříděná podle i nejméně významných cifer. Zřejmě i-té nejméně významné cifry tvoří neklesající posloupnost, neboť podle nich jsme právě v této fázi rozdělovali čísla do přihrádek, a pokud dvě čísla mají tuto cifru stejnou, jsou uložena v pořadí dle jejich i 1 nejméně významných cifer, neboť v každé přihrádce jsme zachovali pořadí čísel z konce minulé fáze. Na závěr poznamenejme, že místo čísel podle cifer lze do přihrádek rozdělovat též textové řetězce podle jejich znaků, atp. Jak je to s časovou složitostí této varianty RadixSortu? Pokud třídíme celá čísla od 1 do K a v každém kroku je rozdělujeme do l přihrádek, potřebujeme log l K průchodů (tolik je cifer v zápisu čísla K v l-kové soustavě). Každý průchod spotřebuje čas O(N + l), takže celý algoritmus běží v čase O((N + l) log l K). To je O(N), pokud K a l jsou konstanty. My si předvedeme implementaci algoritmu pro K = 255 a l = 2 (čísla budeme rozhazovat do přihrádek podle bitů v jejich binárním zápisu). const K=255; procedure RadixSort(var A: Pole); var P0, P1: Pole; k1, k2: integer; i: integer; bit: integer; 17
7 bit:=1; while bit<=k do k1:=0; k2:=0; for i:=1 to N do if (A[i] and bit)=0 then k1:=k1+1; P0[k1]:=A[i]; end else k2:=k2+1; P1[k2]:=A[i]; for i:=1 to k1 do A[i]:=P0[i]; for i:=1 to k2 do A[k1+i]:=P1[i]; bit:=bit * 2; { bitový posun o jedna vlevo } Dolní mez na rychlost třídění Na závěr našeho povídání o třídicích algoritmech si ukážeme, že třídit obecné údaje, se kterými neumíme provádět nic jiného než je navzájem porovnávat, rychleji než Θ(N log N) nejen nikdo neumí, ale také ani umět nemůže. Libovolný třídicí algoritmus založený na porovnávání a prohazování prvků totiž musí na některé vstupy vynaložit řádově alespoň N log N kroků. (RadixSort na první pohled tento výsledek porušuje, na druhý však už ne, když si uvědomíme, o jak speciální druh tříděných dat se jedná.) } Třídicí algoritmus v průběhu své činnosti nějak porovnává prvky a nějak je přehazuje. Provedeme myšlenkový experiment. Pozměníme algoritmus tak, že nejdříve bude pouze porovnávat, podle toho zjistí, jak jsou prvky v poli uspořádány, a když už si je jistý správným pořadím, prvky najednou přehází. Tím se algoritmus zpomalí nejvýše konstanta-krát. Také pro jednoduchost předpokládejme, že všechny tříděné údaje jsou navzájem různé. Porovnávací činnost algoritmu si pak můžeme popsat tzv. rozhodovacím stromem. Zde je příklad rozhodovacího stromu pro tříprvkové pole: 18
8 Každý vrchol obsahuje porovnání dvou prvků x a y, v levém podstromu daného vrcholu je činnost algoritmu pokud x < y, v pravém podstromu činnost při x y. V listech je už jisté správné pořadí prvků. Každému algoritmu odpovídá nějaký rozhodovací strom a každý průběh činnosti algoritmu odpovídá průchodu rozhodovacím stromem od kořene do nějakého listu. Naším cílem bude ukázat, že v libovolném rozhodovacím stromu (a tedy i libovolném odpovídajícím algoritmu) bude existovat cesta z kořene do nějakého listu (neboli výpočet algoritmu) délky N log N. Kolik maximálně hladin h, a tedy i jaká nejdelší cesta se v takovém stromu může vyskytnout? Náš strom má tolik listů, kolik je možných pořadí tříděných prvků, tedy právě N!. Různým pořadím totiž musí odpovídat různé listy, jinak by algoritmus netřídil (předpokládáme přeci, že to, jak má prvky prohazovat, může zjistit jenom jejich porovnáváním), a naopak každé pořadí prvků jednoznačně určuje cestu do příslušného listu. Na nulté hladině je jediný vrchol, na každé další hladině se oproti předchozí počet vrcholů nejvýše zdvojnásobí, takže na i-té hladině se nachází nejvýše 2 i vrcholů. Proto je listů stromu nejvýše 2 h (některé listy mohou být i výše, ale za každý takový určitě chybí jeden vrchol na h-té hladině). Z toho víme, že platí: 2 h počet listů N!, a proto: h log 2 (N!). Logaritmus faktoriálu se těžko počítá přesně, ale můžeme si ho zdola odhadnout pomocí následujícího pozorování: Dosazením získáme: n! = n (n 1)... (n/2)... }{{} n/2 členů, každý n/2 (n/2) (n/2). h log 2 (N!) log 2 ((N/2) N/2 ) = = N 2 log 2(N/2) = 1 2 N(log 2 N 1) 1 4 N log 2 N. Vidíme tedy, že pro každý třídicí algoritmus existuje vstup, na kterém se bude muset provést alespoň c N log N kroků, kde c > 0 je nějaká konstanta. Poznámky Zkuste si též rozmyslet (drobnou modifikací předchozího důkazu), že ani průměrná časová složitost třídění nemůže být lepší než N log N. Odvodit průměrnou složitost QuickSortu vlastně není zase tak těžké. Zkusme } následující úvahu: Pokud by pivot nebyl přesně medián, ale alespoň se nacházel v prostřední třetině setříděného úseku, byla by složitost stále O(N log N), jen by se zvýšila konstanta v O-čku. Kdybychom pivota volili náhodně, ale po rozdělení prvků si zkontrolovali, jestli pivot padl do prostřední třetiny, a pokud ne (jeden z úseků by byl moc velký a druhý moc malý), volbu bychom opakovali, v průměru by nás to stálo konstantní počet pokusů (pokud čekáme na událost, 19
9 která nastává náhodně s pravděpodobností p, stojí nás to v průměru 1/p pokusů; zde je p = 1/3), takže celková složitost by v průměru vzrostla jen konstantně. Původní QuickSort sice žádné takové opakování volby neprovádí a rovnou se zavolá rekurzivně na velký i malý úsek, ale opět se po v průměru konstantně mnoha iteracích velký úsek zredukuje na nejvýše 2/3 původní velikosti a třídění malých úseků jednotlivě nezabere víc času, než kdyby se třídily dohromady. Kdybychom u QuickSortu použili rekurzivní volání jen na menší interval, zatímco ten větší bychom obsloužili přenastavením proměnných a skokem na začátek právě prováděné procedury, zredukovali bychom paměťovou složitost na O(log N) (nepočítaje samotné pole čísel), jelikož každé další rekurzivní volání zpracovává alespoň dvakrát menší úsek než to předchozí. Časové složitosti tím však nepomůžeme. Počet přihrádek u RadixSortu vůbec nemusí být konstanta pokud např. chcete třídit N čísel v rozsahu 1... N k, stačí si zvolit l = N a fází bude jenom k. Pro pevné k tak dosáhneme lineární časové složitosti. Úloha : Stavbyvedoucí Tomáš Valla, Martin Mareš a Dan Kráľ Stavbyvedoucím krokoběhu se stal Potrhlík a všichni ostatní zvířecí stavitelé si u něj mohli objednávat materiál. Když si konečně všichni nadiktovali, co chtěli, měl už Potrhlík pěkně dlouhý seznam. U každého předmětu ze seznamu si Potrhlík pamatuje N údajů a každý předmět má zapsaný v seznamu na jedné řádce. Celý seznam je tedy tabulka, která má N sloupců a tolik řádek, kolik je předmětů. Všichni stavitelé si ovšem (stejně jako učitelé) myslí, že jejich předměty jsou ty nejdůležitější, a tak každý chce, aby byly všechny řádky tabulky setříděny podle jejich požadavku. Každý požadavek je číslo údaje (sloupce), podle kterého by se měly všechny řádky setřídit. (Neboli je to číslo sloupce, podle kterého bychom měli setřídit celou tabulku.) Chudák Potrhlík nakonec obdržel M požadavků, tedy M žádostí o setřídění dle určitého sloupce. Rozhodl se, že řádky setřídí nejprve podle 1. požadavku, potom podle 2.,..., až M-tého požadavku. Navíc když budou v nějakém kroku dvě řádky podle zpracovávaného požadavku stejné, jejich vzájemné pořadí zůstane stejné jako před tímto tříděním. Počet třídících požadavků je ale opravdu velký a často se v něm opakují čísla sloupců, takže Potrhlíka napadlo, že byste mu mohli pomoci jeho úkol zjednodušit. Zajímalo by ho, jestli by nemohl provést setřídění řádků podle menšího počtu třídících požadavků. Tato kratší posloupnost třídících požadavků by měla být s původní posloupností ekvivalentní, čili ať je seznam předmětů na začátku uspořádán libovolně, setřídění podle původní posloupnosti požadavků a podle kratší posloupnosti požadavků musí dát vždy stejné výsledky (stejně setříděný seznam). Zkuste napsat program, který dostane N (počet sloupců seznamu), M (počet třídících požadavků) a jednotlivé třídící požadavky a najde nejkratší posloupnost tří- 20
10 dících požadavků, která je zadané posloupnosti ekvivalentní. Pokud je minimálních posloupností více, stačí vypsat libovolnou z nich. Příklad: Pro N = 3 a M = 7 požadavků 3, 3, 1, 1, 2, 3, 3 je hledaná nejkratší posloupnost požadavků třeba 1, 2, 3. Úloha : Rozházené EWD Chudák pan Richards má jen svou zapomnětlivou hlavu a pár papírů, tak budete muset vymyslet, jak setřídit EWD (číslované záznamy Edsgera Dijkstry) v konstantní paměti. To jest, že si může udělat třeba 1000 záznamů, ale ne pro každou z N EWD jeden. Vámi spotřebovaná paměť prostě na N vůbec nesmí záviset (a N může být libovolně velké argument, že EWD je konečně mnoho, vám neprojde). Dávejte si pozor na rekurzi, spotřebovává tolik paměti, jak hluboko je zanořená. Přeházená EWD budeme reprezentovat jako spojový seznam. V programu dostanete ukazatel na první prvek spojového seznamu, kde je číslo EWD a ukazatel na další. Vaším úkolem je ho setřídit a vrátit ukazatel na první prvek (nejstarší EWD). Spojový seznam už máte v paměti, vaším úkolem je přepojit jej do setříděného stavu. Příklad před setříděním: A po setřídění: 21
Základy algoritmizace a programování
Základy algoritmizace a programování Složitost algoritmů. Třídění Přednáška 8 16. listopadu 2009 Který algoritmus je "lepší"? Různé algoritmy, které řeší stejnou úlohu zbytek = p % i; zbytek = p - p/i*i;
Rozhledy matematicko-fyzikální
Rozhledy matematicko-fyzikální Daniel Kráľ; Martin Mareš; Tomáš Valla Recepty z programátorské kuchařky Korespondenčního semináře z programování, 2. část Rozhledy matematicko-fyzikální, Vol. 80 (2005),
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem
Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel
Programátorské kuchařky
Programátorské kuchařky VYDAVATELSTVÍ MATEMATICKO-FYZIKÁLNÍ FAKULTY UNIVERZITY KARLOVY V PRAZE BÖHM, LÁNSKÝ, VESELÝ A KOLEKTIV Programátorské kuchařky Praha 2011 Vydáno pro vnitřní potřebu fakulty. Publikace
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
Programátorské kuchařky
Programátorské kuchařky VYDAVATELSTVÍ MATEMATICKO-FYZIKÁLNÍ FAKULTY UNIVERZITY KARLOVY V PRAZE BÖHM, LÁNSKÝ, VESELÝ A KOLEKTIV Programátorské kuchařky Praha 2011 Vydáno pro vnitřní potřebu fakulty. Publikace
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
13. Třídící algoritmy a násobení matic
13. Třídící algoritmy a násobení matic Minulou přednášku jsme probírali QuickSort, jeden z historicky prvních třídících algoritmů, které překonaly kvadratickou složitost aspoň v průměrném případě. Proč
přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:
Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.
Algoritmizace řazení Bubble Sort
Algoritmizace řazení Bubble Sort Cílem této kapitoly je seznámit studenta s třídícím algoritmem Bubble Sort, popíšeme zde tuto metodu a porovnáme s jinými algoritmy. Klíčové pojmy: Třídění, Bubble Sort,
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_147_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
Maturitní téma: Programovací jazyk JAVA
Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek
Rozděl a panuj. Často se setkáme s úlohami, které lze snadno rozdělit na nějaké menší úlohy a z jejich
Rozděl a panuj Často se setkáme s úlohami, které lze snadno rozdělit na nějaké menší úlohy a z jejich výsledků zase snadno složit výsledek původní velké úlohy. Přitom menší úlohy můžeme řešit opět týmž
Na začátku rozdělíme práci a určíme, které podproblémy je potřeba vyřešit. Tyto
Kapitola 1 Rozděl a panuj Rozděl a panuj je programovací metoda. Často se označuje latinsky Divide et Empera nebo anglicky Divide and Conquer. Vychází z toho, že umíme zadaný problém rozložit na menší
Anotace. pointery (pars prima). Martin Pergel,
Anotace Základní třídicí algoritmy, jednotky oddělený překlad, pointery (pars prima). Problém třídění jednoduché třídicí algoritmy Bublinkové třídění (BubbleSort), zatřid ování alias třídění přímým vkládáním
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Sada 1 - Základy programování
S třední škola stavební Jihlava Sada 1 - Základy programování 17. Řadící algoritmy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_149_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Rekurze a rychlé třídění
Rekurze a rychlé třídění Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 54 Rekurze Rychlé třídění 2 / 54 Rekurze Recursion Rekurze = odkaz na sama sebe, definice za pomoci sebe
A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.
A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min
Anotace. Informace o praktiku z programování!!! Direktivy překladače Soubory (textové) Quicksort Metoda rozděl a panuj
Anotace Informace o praktiku z programování!!! Direktivy překladače Soubory (textové) Quicksort Metoda rozděl a panuj Direktivy překladače Překladač kontroluje plno věcí, například: zda nekoukáme za konec
Algoritmy I. Třídění ALGI 2010/2011
Algoritmy I Třídění 1 ALGI 2010/2011 Třídící problém Je dána množina A = {a 1,a 2,...,a n }. Je potřebné najít permutaci π těchto n prvků, která zobrazuje danou posloupnost do neklesající posloupnosti
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Rekurze. Pavel Töpfer, 2017 Programování 1-8 1
Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo
Intervalové stromy. Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme. 1. Změna jednoho čísla v posloupnosti.
Intervalové stromy Představme si, že máme posloupnost celých čísel p 0, p 1,... p N 1, se kterou budeme průběžně provádět tyto dvě operace: 1. Změna jednoho čísla v posloupnosti. 2. Zjištění součtu čísel
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Prioritní fronta, halda
Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_145_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
v nichž byly zadány, s možnou výjimkou konstantně mnoha tzv. pracovních
1. Tøídìní Vyhledávání ve velkém množství dat je každodenním chlebem programátora. Hledání bývá snazší, pokud si data vhodným způsobem uspořádáme. Seřadíme-li například pole n čísel podle velikosti, algoritmus
Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort.
Třídící algoritmy. Insert Sort. Bubble Sort. Select Sort. Shell Sort. Quick Sort. Merge Sort. Heap Sort. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká
Třídění a vyhledávání Searching and sorting
Třídění a vyhledávání Searching and sorting Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 33 Vyhledávání Třídění Třídící algoritmy 2 / 33 Vyhledávání Searching Mějme posloupnost (pole)
1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1
1 PRVOCISLA: KRATKY UKAZKOVY PRIKLAD NA DEMONSTRACI BALIKU WEB 1 1. Prvocisla: Kratky ukazkovy priklad na demonstraci baliku WEB. Nasledujici program slouzi pouze jako ukazka nekterych moznosti a sluzeb,
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
8. Geometrie vrací úder (sepsal Pavel Klavík)
8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Složitost UPR 2008/09 1
Složitost UPR 2008/09 1 Ohodnocení algoritmu Jak porovnávat efektivitu algoritmů? Požadavky na paměť Požadavky na rychlost výpočtu Asymptotická složitost UPR 2008/09 2 Měření algoritmu Dvě míry: čas x
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Testování prvočíselnosti
Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo
Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh Třídění dat. Ing. Hodál Jaroslav, Ph.D. VY_32_INOVACE_26 04
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Základy programování a algoritmizace úloh Třídění dat Autor:
Algoritmizace a programování
Algoritmizace a programování Vyhledávání, vkládání, odstraňování Vyhledání hodnoty v nesetříděném poli Vyhledání hodnoty v setříděném poli Odstranění hodnoty z pole Vkládání hodnoty do pole Verze pro akademický
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
Anotace. Jednotky (tvorba a využití), struktury (typ record),
Anotace Jednotky (tvorba a využití), struktury (typ record), medián v lineárním čase. Jednotky oddělený překlad Občas máme obecně využitelné funkce, které chceme používat v různých programech současně.
Časová složitost algoritmů
Časová složitost algoritmů Důležitou vlastností algoritmu je časová náročnost výpočtů provedené podle daného algoritmu Ta se nezískává měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž
Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno
12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,
Třídění čísel v poli = vnitřní třídění (řazení)
Třídění čísel v poli = vnitřní třídění (řazení) Úkol: uspořádat prvky pole podle velikosti (od nejmenšího po největší). Přímé metody - jednoduchý zápis programu - časová složitost O(N 2 ) vhodné jen pro
Universita Pardubice Fakulta elektrotechniky a informatiky. Mikroprocesorová technika. Semestrální práce
Universita Pardubice Fakulta elektrotechniky a informatiky Mikroprocesorová technika Semestrální práce Jméno: Chmelař Pavel Datum: 14. 5. 2008 Úkol: Příklad č. 1 V paměti dat je uložen blok 8 b čísel se
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2014 1 / 48 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý
1. Implementace funkce počet vrcholů. Předmět: Algoritmizace praktické aplikace (3ALGA)
Předmět: Algoritmizace praktické aplikace (3ALGA) Vytvořil: Jan Brzeska Zadání: Vytvoření funkcí na stromech (reprezentace stromu směrníky). Zadané funkce: 1. Počet vrcholů 2. Počet listů 3. Součet 4.
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41
Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby
Pole a kolekce. v C#, Javě a C++
Pole a kolekce v C#, Javě a C++ C# Deklarace pole typ_prvku_pole[] jmeno_pole; Vytvoření pole jmeno_pole = new typ_prvku_pole[pocet_prvku_pole]; Inicializace pole double[] poled = 4.8, 8.2, 7.3, 8.0; Java
Úvod do programování
Úvod do programování Základní literatura Töpfer, P.: Algoritmy a programovací techniky, Prometheus, Praha učebnice algoritmů, nikoli jazyka pokrývá velkou část probíraných algoritmů Satrapa, P.: Pascal
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)
Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání
Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) {
Vyhledání extrému v poli použito v algoritmech řazení hledání maxima int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) // nikoli 0 if (Pole[i] > max) max = pole[i];
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Vyvažování a rotace v BVS, všude se předpokládá AVL strom
Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Základní informace o předmětu Otázka:
Základní informace o předmětu Otázka: Proč vůbec porovnávat algoritmy? Vlastnosti algoritmů přirozenost a stabilita algoritmu časová náročnost algoritmu asymetrická a asymptotická časová náročnost algoritmů
Stromy. Jan Hnilica Počítačové modelování 14
Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A
Anotace. Dijkstrův algoritmus,
Anotace Dijkstrův algoritmus, medián lineárně, odstranění rekurze, binární soubory, předání funkce v parametru. Středník 3. května od 15:00 do 18:00. Dijkstrův algoritmus Hledá nejkratší cestu z daného
Implementace LL(1) překladů
Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku
Řazení. Uspořádat množinu prvků obsahujících klíč podle definovaného kriteria.
Řazení Problém řazení: Uspořádat množinu prvků obsahujících klíč podle definovaného kriteria. Až 30% času běžného počítače. Příklad: Mějme zjistit zda jsou v posloupnosti prvků, například celých čísel,
Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani
Časová složitost algoritmů, řazení a vyhledávání
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Časová složitost algoritmů, řazení a vyhledávání BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta
Základy řazení. Karel Richta a kol.
Základy řazení Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Datový typ prioritní fronta Semestrální práce z předmětu 36PT
Datový typ prioritní fronta Semestrální práce z předmětu 36PT Martin Tůma Cvičení 113, Út 18:00 22. května 2004 Specifikace problému Často potřebujeme přístup k informacím, tak aby tyto byly seřazeny podle
3 Vyhledávání, třídící algoritmy
3 Vyhledávání, třídící algoritmy Vyhledávání Nechme zelináře zelinářem a pojd me se spolu podívat na jinou úlohu. Tentokrát budeme chtít napsat spellchecker. Pro začátek bude velmi jednoduchý. Dostane
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A
Informatika navazující magisterské studium Přijímací zkouška z informatiky 2018 varianta A Každá úloha je hodnocena maximálně 25 body. Všechny své odpovědi zdůvodněte! 1. Postavte na stůl do řady vedle
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015
Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
INFORMATIKA. Vybrané podposloupnosti
INFORMATIKA Vybrané podposloupnosti (Úlohy z MO kategorie P, 30. část) PAVEL TÖPFER Matematicko-fyzikální fakulta UK, Praha V našem seriálu putujícím po zajímavých úlohách Matematické olympiády - kategorie
Poslední nenulová číslice faktoriálu
Poslední nenulová číslice faktoriálu Kateřina Bambušková BAM015, I206 Abstrakt V tomto článku je popsán a vyřešen problém s určením poslední nenulové číslice faktoriálu přirozeného čísla N. Celý princip
1. Vyhledávání a tøídìní
1. Vyhledávání a tøídìní 1.1. Úvod do problematiky V následující kapitole se budeme zabývat problémem, který je pro programátory každodenním chlebem vyhledávání a třídění údajů. Třídění je ovšem poněkud
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Hledání k-tého nejmenšího prvku
ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Předmět: Algoritmizace praktické aplikace
Předmět: Algoritmizace praktické aplikace Vytvořil: Roman Vostrý Zadání: Vytvoření funkcí na stromech (reprezentace stromu haldou). Zadané funkce: 1. Počet vrcholů 2. Počet listů 3. Součet 4. Hloubka 5.
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_153_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT
binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım