Časová složitost algoritmů
|
|
- Libor Jaroš
- před 8 lety
- Počet zobrazení:
Transkript
1 Časová složitost algoritmů Důležitou vlastností algoritmu je časová náročnost výpočtů provedené podle daného algoritmu Ta se nezískává měřením doby výpočtu pro různá data, ale analýzou algoritmu, jejímž výsledkem je časová složitost algoritmu Časová složitost algoritmu vyjadřuje závislost času potřebného pro provedení výpočtu na rozsahu ( velikosti ) vstupních dat Čas se však neměří sekundách, ale počtem provedených operací, přičemž trvání každé operace se chápe jako bezrozměrná jednotka Příklad: součet prvků pole static int soucet(int[] pole) { int s = 0; for (int i=0; i<pole.length; i++ ) s = s + pole[i] ; return s; Považujme za operace podtržené konstrukce, pak časová složitost je: C(n) = 2 + (n+1) + n + n = 3 + 3n kde n je počet prvků pole Algoritmizace (Y36ALG), Šumperk přednáška 1
2 Časová složitost algoritmů Doba výpočtu obvykle nezávisí jen na rozsahu vstupních dat, ale též na konkrétních hodnotách. Obecně proto rozlišujeme časovou složitost v nejlepším, nejhorším a průměrném případě Příklad: sekvenční hledání prvku pole s danou hodnotou static int hledej(int[] pole, int x) { Analýza: for (int i=0; i<pole.length; i++ ) if ( x==pole[i] ) return i; return -1; nejlepší případ: první prvek má hodnotu x Algoritmizace (Y36ALG), Šumperk přednáška 2
3 Časová složitost algoritmů Doba výpočtu obvykle nezávisí jen na rozsahu vstupních dat, ale též na konkrétních hodnotách Obecně proto rozlišujeme časovou složitost v nejlepším, nejhorším a průměrném případě Příklad: sekvenční hledání prvku pole s danou hodnotou static int hledej(int[] pole, int x) { Analýza: for (int i=0; i<pole.length; i++ ) if ( x==pole[i] ) return i; return -1; nejlepší případ: první prvek má hodnotu x C min (n) = 3 nejhorší případ: žádný prvek nemá hodnotu x Algoritmizace (Y36ALG), Šumperk přednáška 3
4 Časová složitost algoritmů Doba výpočtu obvykle nezávisí jen na rozsahu vstupních dat, ale též na konkrétních hodnotách Obecně proto rozlišujeme časovou složitost v nejlepším, nejhorším a průměrném případě Příklad: sekvenční hledání prvku pole s danou hodnotou static int hledej(int[] pole, int x) { Analýza: for (int i=0; i<pole.length; i++ ) if ( x==pole[i] ) return i; return -1; nejlepší případ: první prvek má hodnotu x C min (n) = 3 nejhorší případ: žádný prvek nemá hodnotu x C max (n) = 1 + (n+1) + n + n = 2 + 3n průměrný případ Algoritmizace (Y36ALG), Šumperk přednáška 4
5 Časová složitost algoritmů Doba výpočtu obvykle nezávisí jen na rozsahu vstupních dat, ale též na konkrétních hodnotách Obecně proto rozlišujeme časovou složitost v nejlepším, nejhorším a průměrném případě Příklad: sekvenční hledání prvku pole s danou hodnotou static int hledej(int[] pole, int x) { Analýza: for (int i=0; i<pole.length; i++ ) if ( x==pole[i] ) return i; return -1; nejlepší případ: první prvek má hodnotu x C min (n) = 3 nejhorší případ: žádný prvek nemá hodnotu x C max (n) = 1 + (n+1) + n + n = 2 + 3n průměrný případ C prum (n) = n Algoritmizace (Y36ALG), Šumperk přednáška 5
6 Časová složitost algoritmů Přesné určení počtu operací při analýze složitosti algoritmu bývá velmi složité Zvlášť komplikované, ba i nemožné, bývá určení počtu operací v průměrném případě; proto se většinou omezujeme jen na analýzu nejhoršího případu. Zpravidla nás nezajímají konkrétní počty operací pro různé rozsahy vstupních dat n, ale tendence jejich růstu při zvětšujícím se n. Pro tento účel lze výrazy udávající složitost zjednodušit: stačí uvažovat pouze složky s nejvyšším řádem růstu a i u nich lze zanedbat multiplikativní konstanty Příklad: řád růstu časové složitosti předchozích algoritmů je n (časová složitost je lineární). Časovou složitost vyjadřujeme pomocí tzv. asymptotické notace: O dvou funkcích f a g definovaných na množině přirozených čísel a s nezáporným oborem hodnot říkáme, že f roste řádově nejvýš tak rychle, jako g a píšeme f(n) = O(g(n)) pokud existují přirozenáčísla K a n 1 tak, že platí f(n) K.g(n) pro všechna n > n 1 Algoritmizace (Y36ALG), Šumperk přednáška 6
7 Časová složitost algoritmů Tabulka udávající dobu výpočtu pro různéčasové složitosti za přepokladu, že 1 operace trvá 1 µs n log n 2,3µs 4,3µs 5µs 5,8µs 9µs n 10µs 20µs 40µs 60µs 0,5s 1ms n log n 23µs 86µs 0,2ms 0,35ms 4,5ms 10ms n 2 0,1ms 0,4ms 1,6ms 3,6ms 0,25s 1s n 3 1ms 8ms 64ms 0,2s 125s 17min n 4 10ms 160ms 2,56s 13s 17h 11,6dní 2 n 1ms 1s 12,7 dní let n! 3,6s let Algoritmizace (Y36ALG), Šumperk přednáška 7
8 Hledání v poli Sekvenční hledání v poli lze urychlit pomocí zarážky. Za předpokladu, že pole není zaplněno až do konce, uložíme do prvního volného prvku hledanou hodnotu a cyklus pak může být řízen jedinou podmínkou. Sekvenční hledání se zarážkou: static int hledejsezarazkou(int[] pole, int volny, int x){ int i = 0; pole[volny] = x; // uložení zarážky while ( pole[i]!= x ) i++; if ( i<volny ) return i; // hodnota nalezena else return -1; // hodnota nenalezena Tak sice ušetříme n=volny testů indexu, avšak časová složitost zůstane O(n) a nejde tedy o významné urychlení. Algoritmizace (Y36ALG), Šumperk přednáška 8
9 Princip opakovaného půlení Pro některé problémy lze sestavit algoritmus založený na principu opakovaného půlení: o o základem je cyklus, v němž se opakovaně zmenšuje rozsah dat na polovinu časová složitost takového cyklu je logaritmická (dělíme-li n opakovaně 2, pak po log 2 (n) krocích dostaneme číslo menší nebo rovno 1) Při hledání prvku pole lze použít princip opakovaného půlení v případě, že pole je seřazené, tj. hodnoty jeho prvků tvoří monotonní posloupnost. Hledání půlením ve vzestupně seřazeném poli: o o o o zjistíme hodnotu y prvku ležícího uprostřed zkoumaného úseku pole je-li hledaná hodnota x = y, je prvek nalezen je-li x < y, budeme hledat v levém úseku je-li x > y, budeme hledat v pravém úseku Takovéto hledání se nazývá též binární hledání (binary search),časová složitost je O(log n). Algoritmizace (Y36ALG), Šumperk přednáška 9
10 Binární hledání Algoritmus binárního hledání: static int hledejbinarne(int[] pole, int x) { // metoda vrací index hledaného prvku x int dolni = 0; int horni = pole.length-1; int stred; while ( dolni<=horni ) { stred = (dolni+horni)/2; if ( x<pole[stred] ) horni = stred-1; // nalevo else if (x>pole[stred]) dolni = stred +1;// napravo else return stred; // nalezen return -1; // nenalezen Algoritmizace (Y36ALG), Šumperk přednáška 10
11 Řazení pole Algoritmy řazení pole jsou algoritmy, které přeskupí prvky pole tak, aby upravené pole bylo seřazené. Pole p je vzestupně seřazené, jestliže platí p[i-1] <= p[i]pro i = 1 počet prvků pole 1 Pole p je sestupně seřazené, jestliže platí p[i-1] >= p[i]pro i = 1 počet prvků pole 1 Principy některých algoritmůřazení ukažme na řazení pole prvků typu int. Ukážeme si následující metody řazení pole: o bubblesort( ) o selectsort( ) o insertsort( ) o mergesort( ) Algoritmizace (Y36ALG), Šumperk přednáška 11
12 Řazení zaměňováním ( BubbleSort ) Při řazení zaměňováním postupně porovnáváme sousední prvky a pokud jejich hodnoty nejsou v požadované relaci, vyměníme je; to je třeba provést několikrát. Hrubéřešení: for ( n=a.length-1; n>0; n-- ) for ( i=0; i<n; i++ ) if ( a[i]>a[i+1] ) // vyměň a[i] a a[i+1] Jak budou seřazeny prvky pole? Podrobnéřešení: static void bubblesort(int[] a) { int pom, n, i; for ( n=a.length-1; n>0; n-- ) for ( i=0; i<n; i++ ) Časová složitost je O( n 2 ) if ( a[i]>a[i+1] ) pom = a[i]; a[i] = a[i+1]; a[i+1] = pom; Algoritmizace (Y36ALG), Šumperk přednáška 12
13 Řazení výběrem ( SelectSort ) Při řazení výběrem se opakovaně hledá nejmenší prvek Hrubéřešení: for (i=0; i<a.length-1; i++) { Podrobnéřešení: "najdi nejmenší prvek mezi a[i] až a[a.length-1] ; "vyměň hodnotu nalezeného prvku s a[i] ; public static void selectsort(int[] a) { int i, j, imin, pom; for (i=0; i<a.length-1; i++) { imin = i; for (j=i+1; j<a.length; j++) if (a[j]<a[imin]) imin = j; if (imin!=i) { pom = a[imin]; a[imin] = a[i]; a[i] = pom; Časová složitost algoritmu SelectSort: O(n 2 ) Algoritmizace (Y36ALG), Šumperk přednáška 13
14 Řazení vkládáním ( InsertSort ) Pole lze seřadit opakovaným vkládání prvku do seřazeného úseku pole Hrubéřešení: for (n=1; n<a.length; n++) { Podrobnéřešení: úsek pole od a[0] do a[n-1] je seřazen vlož do tohoto úseku délky n hodnotu a[n] private static void vloz(int[] a, int n, int x) { int i; for (i=n-1; i>=0 && a[i]>x; i--) a[i+1]=a[i]; // odsun a[i+1] = x; // vlozeni public static void insertsort(int[] a) { for (int n=1; n<a.length ; n++) vloz(a, n, a[n]); Časová složitost algoritmu InsertSort: O(n 2 ) Algoritmizace (Y36ALG), Šumperk přednáška 14
Algoritmy I, složitost
A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??
Časová složitost algoritmů, řazení a vyhledávání
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Časová složitost algoritmů, řazení a vyhledávání BI-PA1 Programování a algoritmizace 1 Katedra teoretické informatiky Miroslav Balík Fakulta
V případě jazyka Java bychom abstraktní datový typ Time reprezentující čas mohli definovat pomocí třídy takto:
20. Programovací techniky: Abstraktní datový typ, jeho specifikace a implementace. Datový typ zásobník, fronta, tabulka, strom, seznam. Základní algoritmy řazení a vyhledávání. Složitost algoritmů. Abstraktní
IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) {
Vyhledání extrému v poli použito v algoritmech řazení hledání maxima int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) // nikoli 0 if (Pole[i] > max) max = pole[i];
Základy algoritmizace a programování
Základy algoritmizace a programování Složitost algoritmů. Třídění Přednáška 8 16. listopadu 2009 Který algoritmus je "lepší"? Různé algoritmy, které řeší stejnou úlohu zbytek = p % i; zbytek = p - p/i*i;
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová
Algoritmy vyhledávání a řazení. Zatím nad lineární datovou strukturou (polem)
Algoritmy vyhledávání a řazení Zatím nad lineární datovou strukturou (polem) Vyhledávací problém Vyhledávání je dáno Universum (množina prvků) U je dána konečná množina prvků X U (vyhledávací prostor)
Různé algoritmy mají různou složitost
/ 1 Různé algoritmy mají různou složitost 1/ 1 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená?? 2/ 1 Asymptotická složitost y y x x Každému algoritmu
Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem
Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
Algoritmizace řazení Bubble Sort
Algoritmizace řazení Bubble Sort Cílem této kapitoly je seznámit studenta s třídícím algoritmem Bubble Sort, popíšeme zde tuto metodu a porovnáme s jinými algoritmy. Klíčové pojmy: Třídění, Bubble Sort,
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Asymptotická složitost algoritmů
Semestrální projekt 1 Y14TED Asymptotická složitost algoritmů Autor: Antonín DANĚK Osnova Slide 2 Co je to složitost algoritmu? Jak se počítá složitost algoritmu? Smysl přesného výpočtu složitosti algoritmu
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
5. Vyhledávání a řazení 1
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 5 1 Základy algoritmizace 5. Vyhledávání a řazení 1 doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
Prioritní fronta, halda (heap), řazení
Prioritní fronta, halda (heap), řazení Co je prioritní fronta? Definována operacemi - vlož prvek - vyber největší (nejmenší) prvek Proč pf? Rozhraní: class PF { // ADT rozhrani PF(); boolean jeprazdna();
Zadání k 2. programovacímu testu
Zadání k 2. programovacímu testu Úvod do programovacích jazyků (Java) 4.12.2008 00:08 Michal Krátký Katedra informatiky Technická univerzita Ostrava Historie změn, příklady: 21 Poznámka: Pokud není řečeno
Složitost algoritmů. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Složitost algoritmů Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2017 Datové struktury a algoritmy, B6B36DSA 02/2017, Lekce 3
Algoritmizace a programování
Algoritmizace a programování Vyhledávání, vkládání, odstraňování Vyhledání hodnoty v nesetříděném poli Vyhledání hodnoty v setříděném poli Odstranění hodnoty z pole Vkládání hodnoty do pole Verze pro akademický
Časová složitost / Time complexity
Časová složitost / Time complexity Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 24 Složitost algoritmů Algorithm complexity Časová a paměťová složitost Trvání výpočtu v závislosti
ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů
ÚVODNÍ ZNALOSTI datové struktury správnost programů analýza algoritmů Datové struktury základní, primitivní, jednoduché datové typy: int, char,... hodnoty: celá čísla, znaky, jednoduché proměnné: int i;
Datové struktury. Obsah přednášky: Definice pojmů. Abstraktní datové typy a jejich implementace. Algoritmizace (Y36ALG), Šumperk - 12.
Obsah přednášky: Definice pojmů o datový typ, o abstraktní datový typ Datové struktury Abstraktní datové typy a jejich implementace o Fronta (Queue) o Zásobník (Stack) o Množina (Set) Algoritmizace (Y36ALG),
3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti
Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace
Vyvažování a rotace v BVS, všude se předpokládá AVL strom
Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce
COMPLEXITY
Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný
int t1, t2, t3, t4, t5, t6, t7, prumer; t1=sys.readint();... t7=sys.readint(); prume pru r = r = ( 1+t 1+t t3+ t3+ t4 t5+ t5+ +t7 +t7 )/ ;
Pole Příklad: přečíst teploty naměřené v jednotlivých dnech týdnu, vypočítat průměrnou teplotu a pro každý den vypsat odchylku od průměrné teploty Řešení s proměnnými typu int: int t1, t2, t3, t4, t5,
DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3
DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Složitosti základních operací B + stromu
Složitosti základních operací B + stromu Radim Bača VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky ŠKOMAM 2010-1- 28/1/2010 Složitosti základních operací B +
Základy řazení. Karel Richta a kol.
Základy řazení Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická
Tato tematika je zpracována v Záznamy přednášek: str
Obsah 10. přednášky: Souvislosti Složitost - úvod Výpočet časové složitosti Odhad složitosti - příklady Posuzování složitosti Asymptotická složitost - odhad Přehled technik návrhů algoritmů Tato tematika
Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1
Rekurze a zásobník Jak se vypočítá rekurzivní program? volání metody vyšší adresy ret1 main(){... fa(); //push ret1... PC ret2 void fa(){... fb(); //push ret2... return //pop void fb(){... return //pop
Základní informace o předmětu Otázka:
Základní informace o předmětu Otázka: Proč vůbec porovnávat algoritmy? Vlastnosti algoritmů přirozenost a stabilita algoritmu časová náročnost algoritmu asymetrická a asymptotická časová náročnost algoritmů
A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.
A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min
Datové struktury. alg12 1
Datové struktury Jedna z klasických knih o programování (autor prof. Wirth) má název Algorithms + Data structures = Programs Datová struktura je množina dat (prvků, složek, datových objektů), pro kterou
Obsah 10. přednášky: Jak bude probíhat zkouška?! Podrobné informace:
Obsah 10. přednášky: Kódování dat - terminologie Rozdělení kódů Kódování čísel Kódování znaků Dynamické programování* Příklad řešení úlohy ACM* Úloha pro zájemce* efektivita algoritmu Tato tematika je
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41
Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:
Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
5. přednáška - Rozklad problému na podproblémy
5. přednáška - Rozklad problému na podproblémy Obsah přednášky: Rozklad problému na podproblémy. Rekurze. Algoritmizace (Y36ALG), Šumperk - 5. přednáška 1 Rozklad problému na podproblémy Postupný návrh
Spojové struktury. x, y, a, b. X1 y1 X2 y2 X3 y3. Grafické objekty bod. kružnice. obdélník. lomenáčára
Spojové struktury Grafické objekty bod x y kružnice x y r obdélník x, y, a, b lomenáčára X1 y1 X2 y2 X3 y3 Algoritmizace (Y36ALG), Šumperk - 13. přednáška 1 Spojové seznamy I Prvek seznamu: class Prvek
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava
Složitost algoritmů doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 27. prosince 2015 Jiří Dvorský (VŠB TUO) Složitost algoritmů
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
Řazení. Uspořádat množinu prvků obsahujících klíč podle definovaného kriteria.
Řazení Problém řazení: Uspořádat množinu prvků obsahujících klíč podle definovaného kriteria. Až 30% času běžného počítače. Příklad: Mějme zjistit zda jsou v posloupnosti prvků, například celých čísel,
NPRG030 Programování I, 2018/19 1 / :03:07
NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování
Michal Krátký. Úvod do programování. Cíl kurzu. Podmínky získání zápočtu III/III
Michal Krátký Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 tel.: +420 596 993 239 místnost: A1004 mail: michal.kratky@vsb.cz
Sada 1 - Základy programování
S třední škola stavební Jihlava Sada 1 - Základy programování 17. Řadící algoritmy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost
Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_149_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou
Doba běhu daného algoritmu/programu. 1. Který fragment programu z následujících dvou proběhne rychleji?
1 Doba běhu daného algoritmu/programu 1. Který fragment programu z následujících dvou proběhne rychleji? int n = 100; int sum = 0; for (i = 0; i < n; i++) for (j = 0; j < i; j++) sum += i+j; int n = 75;
SYSTÉMOVÉ INŽENÝRSTVÍ A INFORMATIKA (2-letý) (písemný test, varianta B)
Přijímací řízení pro akademický rok 2011/12 na magisterský studijní program: SYSTÉMOVÉ INŽENÝRSTVÍ A INFORMATIKA (2-letý) (písemný test, varianta B) Zde nalepte své univerzitní číslo U každé otázky či
Pole a Funkce. Úvod do programování 1 Tomáš Kühr
Pole a Funkce Úvod do programování 1 Tomáš Kühr (Jednorozměrné) pole u Datová struktura u Lineární u Homogenní = prvky stejného datového typu u Statická = předem určený počet prvků u Pole umožňuje pohodlně
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
ALG 14. Vícedimenzionální data. Řazení vícedimenzionálních dat. Experimentální porovnání řadících algoritmů na vícedimenzionálních datech
ABALG 5/ ALG Vícedimenzionální data Řazení vícedimenzionálních dat Experimentální porovnání řadících algoritmů na vícedimenzionálních datech ABALG 5/ Vícedimenzionální data..7.. -.. d = 6 5 6.....7.. -.....9
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_146_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Stromy. Jan Hnilica Počítačové modelování 14
Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A
Třídění a vyhledávání Searching and sorting
Třídění a vyhledávání Searching and sorting Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 33 Vyhledávání Třídění Třídící algoritmy 2 / 33 Vyhledávání Searching Mějme posloupnost (pole)
Binární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
Rozklad problému na podproblémy
Rozklad problému na podproblémy Postupný návrh programu rozkladem problému na podproblémy zadaný problém rozložíme na podproblémy pro řešení podproblémů zavedeme abstraktní příkazy s pomocí abstraktních
Databáze, sítě a techniky programování X33DSP
Databáze, sítě a techniky programování X33DSP Anotace: Náplní předmětu jsou některé techniky a metody používané ve výpočetních systémech zaměřených na biomedicínské inženýrství. Cílem je položit jednotný
Maturitní téma: Programovací jazyk JAVA
Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek
Základy algoritmizace. Hašování
Základy algoritmizace Hašování Problematika hašování Hašování - nástroj na jednoduchý způsob "zakódování vstupních dat. Vstupní data jsou zpracována hašovací funkcí jsou jistým způsobem komprimována. Relativně
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří
Algoritmizace. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Úvod stránky předmětu: https://cw.felk.cvut.cz/doku.php/courses/a4b33alg/start cíle předmětu Cílem je schopnost samostatné implementace různých variant základních
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
Základy algoritmizace, návrh algoritmu
Základy algoritmizace, návrh algoritmu Algoritmus Předpoklady automatického výpočtu: předem stanovit (rozmyslet) přesný postup během opakovaného provádění postupu již nepřemýšlet a postupovat mechanicky
Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno
12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,
Složitost 1.1 Opera ní a pam ová složitost 1.2 Opera ní složitost v pr rném, nejhorším a nejlepším p ípad 1.3 Asymptotická složitost
1 Složitost 1.1 Operační a paměťová složitost Nezávislé určení na konkrétní implementaci Několik typů operací = sčítání T+, logické T L, přiřazení T A(assign), porovnání T C(compare), výpočet adresy pole
Úvod do programování - Java. Cvičení č.4
Úvod do programování - Java Cvičení č.4 1 Sekvence (posloupnost) Sekvence je tvořena posloupností jednoho nebo více příkazů, které se provádějí v pevně daném pořadí. Příkaz se začne provádět až po ukončení
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz
Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2014 1 / 48 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý
ABSTRAKTNÍ DATOVÉ TYPY (ADT)
ABSTRAKTNÍ DATOVÉ TYPY (ADT) hierarchie abstrakcí: nejvyšší úroveň ZOO DruhZvirat celá čísla, řetězce nejnižší úroveň bity Abstrahujeme od - reprezentace (implementace) dat - realizace (implementace) operací
PODOBÁ SE JAZYKU C S NĚKTERÝMI OMEZENÍMI GLOBÁLNÍ PROMĚNNÉ. NSWI162: Sémantika programů 2
PI JE JEDNODUCHÝ IMPERATIVNÍ PROGRAMOVACÍ JAZYK OBSAHUJE PODPORU ANOTACÍ NEOBSAHUJE NĚKTERÉ TYPICKÉ KONSTRUKTY PROGRAMOVACÍCH JAZYKŮ JAKO JSOU REFERENCE, UKAZATELE, GLOBÁLNÍ PROMĚNNÉ PODOBÁ SE JAZYKU C
Pole a kolekce. v C#, Javě a C++
Pole a kolekce v C#, Javě a C++ C# Deklarace pole typ_prvku_pole[] jmeno_pole; Vytvoření pole jmeno_pole = new typ_prvku_pole[pocet_prvku_pole]; Inicializace pole double[] poled = 4.8, 8.2, 7.3, 8.0; Java
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39
Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010
Pokročilé haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (I-EFA) ZS 2010/11,
68. ročník Matematické olympiády 2018/2019
68. ročník Matematické olympiády 2018/2019 Řešení úloh krajského kola kategorie P P-II-1 Tulipány Budeme řešit o něco obecnější úlohu: dovolíme si předepsat, zda má na n-té pozici být tulipán, a pokud
1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
přirozený algoritmus seřadí prvky 1,3,2,8,9,7 a prvky 4,5,6 nechává Metody řazení se dělí:
Metody řazení ve vnitřní a vnější paměti. Algoritmy řazení výběrem, vkládáním a zaměňováním. Heapsort, Shell-sort, Radix-sort, Quicksort. Řazení sekvenčních souborů. Řazení souborů s přímým přístupem.
Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, Základní algoritmy v praxi
Robert Haken [MVP ASP.NET/IIS, MCT] software architect, HAVIT, s.r.o. haken@havit.cz, @RobertHaken Základní algoritmy v praxi Agenda Intro Řazení Vyhledávání Datové struktury LINQ to Objects Intro Asymptotická
Úvod do problematiky
Úvod do problematiky Karel Richta a kol. Přednášky byly připraveny i s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
R zné algoritmy mají r znou složitost
/ / zné algoritmy mají r znou složitost Dynamické programování / / Definice funkce Otázka Program f(x,y) = (x = ) (y = ) f(x, y-) + f(x-,y) (x > ) && (y > ) f(,) =? int f(int x, int y) { if ( (x == ) (y
Složitost. Teoretická informatika Tomáš Foltýnek
Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální
Datový typ prioritní fronta Semestrální práce z předmětu 36PT
Datový typ prioritní fronta Semestrální práce z předmětu 36PT Martin Tůma Cvičení 113, Út 18:00 22. května 2004 Specifikace problému Často potřebujeme přístup k informacím, tak aby tyto byly seřazeny podle
Další příklady. Katedra softwarového inženýrství. Katedra teoretické informatiky, Fakulta informačních technologii, ČVUT v Praze. Karel Müller, 2011
Karel Müller (ČVUT FIT) BI-PA2, 2011, Cvičení 11-13 1/5 Katedra softwarového inženýrství Katedra teoretické informatiky, Fakulta informačních technologii, ČVUT v Praze Karel Müller, 2011 Programování a