Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015

Rozměr: px
Začít zobrazení ze stránky:

Download "Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015"

Transkript

1 Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015

2 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí jednosměrných spojových seznamů Obousměrné lineární spojové seznamy Create, ConvertArray, Print InsertToBegin, InsertToEnd InsertBefore, InsertAfter, Find, Delete Cyklické spojové seznamy Jan Lánský Programování 3. hodina 2

3 Cíle hodiny Stromy Reprezentace Binární vyhledávací stromy Create Find, Insert, Delete Vypis (inorder, preorder, postorder) Vyvážené stromy (stručně) Dokonale vyvážený binární vyhledávací strom AVL strom Jan Lánský Programování 3. hodina 3

4 Formálně: Zakořeněný strom je souvislý acyklický orientovaný graf Strom Vrchol (matematický pojem) se v programování někdy označuje jako uzel. Struktura skládající se z uzlů a hran. Hrana vede z jednoho uzlu do jiného uzlu. Uzel, ze kterého vede hrana, je otcem vrcholu, do kterého hrana vede. Rekurzivní definice: Strom má právě jeden uzel zvaný kořen. Synové kořene jsou kořeny vlastních stromů. Z kořene do libovolného uzlu vede vždy právě jedna cesta (posloupnost hran, které se neopakují) Uzel, který nemá žádné syny se nazývá list. Jan Lánský Programování 3. hodina 4

5 Používá se terminologie: otec, bratr, dědeček, vnuk, bratranec, strýc, Strom Kořen A má syny B, C a D Uzel B má syna E A Uzel D má syny F a G B C D Uzly C, E, F a G nemají žádné syny, jsou to listy Hrana mezi D a F E F G Větev: cesta od kořene k listu, např. A, D, F Jan Lánský Programování 3. hodina 5

6 Speciální druh stromu: Každý vrchol má nejvýše dva syny Binární strom Kořen A má syny 2 syny A Uzel D má 2 syny List C má 0 synů C D List F má 0 synů F G List G má 0 synů Jan Lánský Programování 3. hodina 6

7 Jednosměrný spojový seznam je strom, obousměrný strom není, obsahuje cyklus Stromy v běžném životě Říční síť (obecný strom) Pokud se řeka vlévá do jiné řeky je jejím synem. Rodokmeny Typ rozvod: (obecný strom) naše názvosloví Typ vývod z předků: (binární strom) Otec a matka jsou synové svého dítěte Struktura řízení ve firmě (obecný strom) Ředitel je kořen, řadoví zaměstnanci listy Play-off pavouk (binární strom) Vítěz je otcem (své kopie a poraženého soupeře) Jan Lánský Programování 3. hodina 7

8 Reprezentace: Binární strom V praxi hodně využívané pro snadnou implementaci Uzel při implementaci se používá tento název pro vrchol Data, která uzel obsahuje Odkaz na levého syna Odkaz na pravého syna Jan Lánský Programování 3. hodina 8

9 Binární strom Kořen null null List List null null null null List Jan Lánský Programování 3. hodina 9

10 Reprezentace: Obecný strom pole synů (*) Maximální počet synů je dán velikostí pole. Pokud chceme přidat více synů, musíme pole zvětšit. (*) Má-li uzel méně synů než je velikost pole (obvyklý stav) natavíme dalšího syna (prvek pole) na null. (*) Ideální pokud se od vytvoření uzlu synové již nemění. (*) Pokud syny jen přidáváme, je možné pole po naplnění zvětšit na dvojnásobek a syny překopírovat do nového pole (dynamické pole) Nevhodné, pokud převažují operace přidávání a ubírání synů Jan Lánský Programování 3. hodina 10

11 Reprezentace: Obecný strom seznam synů Spojový seznam synů Aktuální syn Následující syn (jeho bratr) Spojový seznam synů Reprezentace je vhodná při častých změnách struktury stromu Jan Lánský Programování 3. hodina 11

12 Reprezentace: Obecný strom převod na binární strom Obecný strom převedeme na binární strom První syn Následující bratr Chceme-li znát všechny syny uzlu, musíme z prvního syna uzlu projít všechny jeho bratry Jan Lánský Programování 3. hodina 12

13 K zamyšlení: Jak umožnit, aby více vrcholů mělo shodnou hodnotu AJ: binary search tree BST Binární vyhledávací strom Uzly stromu obsahují datovou položku, která vyjadřuje hodnotu vrcholu. Podle této hodnoty lze vrcholy porovnávat <, >, = Pro každý uzel "u" platí Všechny uzly nacházející se v podstromu levého syna mají menší hodnotu než je hodnota vrcholu "u" Všechny uzly nacházející se v podstromu pravého syna mají větší hodnotu než je hodnota vrcholu "u" Podmínky musí platit pro všechny vrcholu v podstromu (nikoliv jen pro syna) Jan Lánský Programování 3. hodina 13

14 Binární vyhledávací strom Všichni potomci < Všichni potomci > Zleva doprava: hodnoty uzlů tvoří vzestupně setříděnou posloupnost Reprezentace: použijeme stejnou třídu jako pro binární strom - StromB Jan Lánský Programování 3. hodina 14

15 Binární vyhledávací strom časová složitost operací V průměrném případě hloubka stromu O(Log N). Find, Insert, Delete O(log N) Oproti obousměrnému seznamu rychlejší hledání, za cenu zpomalení vkládání a mazání V nejhorším případě vznikne jednosměrný spojový seznam Při přidávání prvků v setříděném pořadí Find, Insert, Delete O(N) Jan Lánský Programování 3. hodina 15

16 Binární vyhledávací strom: Vytvoření Vytvoříme kořen reprezentující zadanou hodnotu. Kořen má syny null Binární vyhledávací strom je nutné vytvořit postupným vkládáním prvků. Pokud jsou prvky uloženy v poli, ušetříme si opakované psaní názvu funkce Insert při jejich vkládání. Insert bude o pár slajdů později Jan Lánský Programování 3. hodina 16

17 Binární vyhledávací strom: Find Praktická ukázka bude na tabuli Procházíme stromem od kořene směrem k listu, ve kterém by se hledaná hodnota měla nacházet. Pokud hodnota uzlu se rovná požadované hodnotě, vrátíme tento uzel. Pokud hodnota uzlu je větší než hledaná hodnota, pokračujeme v hledání v podstromu levého syna Pokud hodnota uzlu je menší než hledaná hodnota, pokračujeme v hledání v podstromu pravého syna Pokud je syn, jehož podstrom máme prohledat null, hledaný prvek se ve stromu nenachází Jan Lánský Programování 3. hodina 17

18 Binární vyhledávací strom: Find " akt" aktuální uzel stromu Podle hledané hodnoty se na konci iterace cyklu "akt" posune na levého nebo pravého syna Prvek se ve stromu nenachází Implementace pomocí rekurze. Rekurzivní volání funkce na levého nebo pravého syna Jan Lánský Programování 3. hodina 18

19 Binární vyhledávací strom: Insert Praktická ukázka bude na tabuli Podobně jako u funkce Find procházíme stromem od kořene směrem k listu, ve kterém by se hledaná hodnota měla nacházet. Hodnotu nalezeného listu, který je null, nahradíme novým uzlem s vkládanou hodnotou Při tomto průchodu nesmíme zapomenout otce nahrazovaného syna Při přechodu z otce na syna, pokud je tento syn null místo přechodu provedeme nahrazení. Jan Lánský Programování 3. hodina 19

20 Prázdný strom, vrátíme nový prvek, který se stane kořenem Průchod směrem od kořene k listům Prvek ve stromě už je Podle hodnoty uzlu nás zajímá levý syn Našli jsme místo pro vložení prvku. Levý syn je null, nahradíme ho nově vytvořeným prvkem a skončíme funkci Levý syn není ještě null, pokračujeme Pravý syn je symetrický levému Tento příkaz nikdy nenastane, ale kompilátor ho vyžaduje Jan Lánský Programování 3. hodina 20

21 Binární vyhledávací strom: Delete Praktická ukázka bude na tabuli. Obrázky v Prg Kucera.pdf (41-42) Nejprve najdeme uzel, který chceme smazat (pamatujeme si otce) Je-li mazaný uzel listem: nastavíme otci, že jeho příslušný syn je null Má-li mazaný uzel jednoho syna: Příslušného syna otce nastavíme na syna mazaného uzlu Otec mazaného uzlu bude mít za syna bývalého vnuka. Delete může smazat kořen, musí vracet hodnotu Jan Lánský Programování 3. hodina 21

22 Binární vyhledávací strom: Delete Praktická ukázka bude na tabuli. Obrázky v Prg Kucera.pdf (41-42) Má-li mazaný uzel dva syny Na pozici mazaného syna přesuneme (výměna odkazů, nikoliv hodnot) nejpravějšího potomka v levém podstromu mazaného uzlu Mazaný uzel na nové pozice ve stromu má maximálně jednoho syna, lze ho smazat již vysvětleným postupem. Analogicky lze nejlevějšího potomka v pravém podstromu Jan Lánský Programování 3. hodina 22

23 Výpis stromu v grafické podobě Výborné na ladění Počet hvězdiček reprezentuje počet předků uzlu Rekurzivně voláme na syny. Budou mít o hvězdičku více Kořen má hloubku 0 Jan Lánský Programování 3. hodina 23

24 Místo výpisu lze provést jinou akci, jde i pro nevyhledávací stromy Výpis setříděných hodnot Prvky binárního vyhledávacího stromu jsou směrem zleva doprava setříděné vzestupně. Výpis INORDER: Rekurzivně vypíšeme podstrom levého syna, poté uzel, poté podstrom pravého syna. výpis PREORDER: Nejprve vypíšeme uzel, poté rekurzivně podstrom levého syna, poté podstrom pravého syna, viz předchozí slajd (výpis v grafické podobě) Výpis POSTORDER: Rekurzivně vypíšeme podstrom levého syna, poté poté podstrom pravého syna, poté uzel. Jan Lánský Programování 3. hodina 24

25 Dokonale vyvážený binární vyhledávací strom jen stručně Snaha odstranit nejhorší případ, že z binárního vyhledávacího stromu vznikne spojový seznam Zaručena časová složitost Find O(log N) Při Insert a Delete nutno konstruovat strom znova - časová složitost O(N log (N)) Pro každý vrchol platí, že počet vrcholů v jeho pravém i levém podstromu se liší maximálně o jedna. Konstrukce: Zadána posloupnost prvků, setřídíme ji Zvolíme kořen jako prostřední prvek, posloupnost prvků se rozdělí na dvě části lišící se počtem prvků maximálně o 1 Rekurze pro levého (na prvky nalevo od kořene) a pravého syna (na prvky napravo od kořene) Jan Lánský Programování 3. hodina 25

26 Adeľson-Velskij, Landis, 1962 AVL strom jen stručně Snaha odstranit nejhorší případ, že vznikne spojový seznam Zaručena časová složitost Find, Insert i Delete O(log N) Pro každý uzel platí, že výška levého a pravého podstromu se liší maximálně o jedna Při vkládání a mazání prvků, pokud by došlo k porušení pravidla, se provádí jednoduchá (LL, RR) nebo dvojitá rotace (LR, RL) Pro zájemce podrobněji: Jan Lánský Programování 3. hodina 26

27 Zpětná vazba Objevili jste ve slajdech chyby? Včetně pravopisných Nechápete nějaký slajd? Je příliš obtížný, nesrozumitelný? Máte nějaký nápad na vylepšení? Anonymní formulář Odeslání za pár vteřin Jan Lánský Programování 3. hodina 27

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)

Více

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný

Více

AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující

AVL stromy. pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1 stromy jsou samovyvažující Stromy 2 AVL AVL stromy jména tvůrců stromů: dva Rusové Adelson-Velskii, Landis vyvážené binární stromy pro každý uzel u stromu platí, že rozdíl mezi výškou jeho levého a pravého podstromu je nejvýše 1

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39 Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Více

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620

Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 Binární vyhledávací strom pomocí směrníků Miroslav Hostaša L06620 1. Vymezení pojmů Strom: Strom je takové uspořádání prvků - vrcholů, ve kterém lze rozeznat předchůdce - rodiče a následovníky - syny.

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Strom

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Strom 8 Podklady ředmětu ro akademický rok 2013/2014 Radim Farana Obsah 2 Dynamické datové struktury. Strom. Binární stromy. Vyhledávací stromy. Vyvážené stromy. AVL stromy. Strom 3 Název z analogie se stromy.

Více

ADT STROM Lukáš Foldýna

ADT STROM Lukáš Foldýna ADT STROM Lukáš Foldýna 26. 05. 2006 Stromy mají široké uplatnění jako datové struktury pro různé algoritmy. Jsou to matematické abstrakce množin, kterou v běžném životě používáme velice často. Příkladem

Více

Stromy. Jan Kybic.

Stromy. Jan Kybic. Stromy Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 44 Stromy Binární vyhledávací stromy Množiny a mapy 2 / 44 Strom (Tree) Strom skládá se s uzlů (nodes) spojených hranami (edges).

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Binární vyhledávací stromy II

Binární vyhledávací stromy II Binární vyhledávací stromy II doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 19. března 2019 Jiří Dvorský (VŠB TUO) Binární vyhledávací

Více

Stromy. Jan Hnilica Počítačové modelování 14

Stromy. Jan Hnilica Počítačové modelování 14 Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A

Více

Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.

Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Prioritní fronta, halda

Prioritní fronta, halda Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Dynamicky vázané metody. Pozdní vazba, virtuální metody

Dynamicky vázané metody. Pozdní vazba, virtuální metody Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:

Více

Úvod do programování 10. hodina

Úvod do programování 10. hodina Úvod do programování 10. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Dvojrozměrné pole

Více

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky 25 Pole Datová struktura kolekce elementů (hodnot či proměnných), identifikovaných jedním nebo více indexy, ze kterých

Více

Dynamické datové struktury II.

Dynamické datové struktury II. Dynamické datové struktury II. Stromy. Binární vyhledávací strom. DFS. BFS. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce)

Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce) 13. Metody vyhledávání. Adresní vyhledávání (přímý přístup, zřetězené a otevřené rozptylování, rozptylovací funkce). Asociativní vyhledávání (sekvenční, binárním půlením, interpolační, binární vyhledávací

Více

Programování v C++ 1, 16. cvičení

Programování v C++ 1, 16. cvičení Programování v C++ 1, 16. cvičení binární vyhledávací strom 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené

Více

Dynamické datové struktury IV.

Dynamické datové struktury IV. Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Vyhledávací stromy. Slouží jako pomůcka pro organizaci dat umožňující efektivní vyhledávání.

Vyhledávací stromy. Slouží jako pomůcka pro organizaci dat umožňující efektivní vyhledávání. Vyhledávací stromy Slouží jako pomůcka pro organizaci dat umožňující efektivní vyhledávání. Vytvářejí se vždy nad již existující datovou strukturou (zpravidla tabulkou). Vyhledávací stromy můžeme rozdělit

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace

Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Red Black strom je binární strom s jedním dvouhodnotovým příznakem

Více

Vyvažování a rotace v BVS, všude se předpokládá AVL strom

Vyvažování a rotace v BVS, všude se předpokládá AVL strom Vyvažování a rotace v BVS, všude se předpokládá AVL strom 1. Jednoduchá levá rotace v uzlu u má operační složitost a) závislou na výšce levého podstromu uzlu u b) mezi O(1) a Θ(n) c) závislou na hloubce

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Úvod do programování 6. hodina

Úvod do programování 6. hodina Úvod do programování 6. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Algoritmy Třídění pole: Selection

Více

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel

Více

Radek Mařík

Radek Mařík 2012-03-20 Radek Mařík 1. Pravá rotace v uzlu U a) v podstromu s kořenem U přemístí pravého syna U.R uzlu U do kořene. Přitom se uzel U stane levým synem uzlu U.R a levý podstrom uzlu U.R se stane pravým

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Algoritmy II. Otázky k průběžnému testu znalostí

Algoritmy II. Otázky k průběžnému testu znalostí Algoritmy II Otázky k průběžnému testu znalostí Revize ze dne 19. února 2018 2 Lineární datové struktury 1 1. Vysvětlete co znamená, že zásobník představuje paměť typu LIFO. 2. Co je to vrchol zásobníku?

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

ABSTRAKTNÍ DATOVÉ TYPY

ABSTRAKTNÍ DATOVÉ TYPY Jurdič Radim ABSTRAKTNÍ DATOVÉ TYPY Veškeré hodnoty, s nimiž v programech pracujeme, můžeme rozdělit do několika skupin zvaných datové typy. Každý datový typ představuje množinu hodnot, nad kterými můžeme

Více

Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy

Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy Základní pojmy Stromy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Graf uzly hrany orientované / neorientované Souvislý

Více

Binární vyhledávací stromy

Binární vyhledávací stromy Binární vyhledávací stromy Definice: Binární vyhledávací strom (po domácku BVS) je buďto prázdná množina nebo kořen obsahující jednu hodnotu a mající dva podstromy (levý a pravý), což jsou opět BVS, ovšem

Více

Datové struktury Úvod

Datové struktury Úvod Datové struktury Úvod Navrhněte co nejjednodušší datovou strukturu, která podporuje následující operace: 1. Insert a Delete v O(n), Search v O(log n); Datové struktury Úvod Navrhněte co nejjednodušší datovou

Více

Dynamické datové struktury I.

Dynamické datové struktury I. Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost

Amortizovaná složitost. Prioritní fronty, haldy (binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost Amortizovaná složitost. Prioritní fronty, haldy binární, d- regulární, binomiální, Fibonacciho), operace nad nimi a jejich složitost 1. Asymptotické odhady Asymptotická složitost je deklarována na základě

Více

TÉMATICKÝ OKRUH TZD, DIS a TIS

TÉMATICKÝ OKRUH TZD, DIS a TIS TÉMATICKÝ OKRUH TZD, DIS a TIS Číslo otázky : 13. Otázka : Základní datové struktury (pole, zásobník, binární strom atd.), datové struktury vhodné pro fyzickou implementaci relačních dat v SŘBD (hašovací

Více

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3 DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),

Více

Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57

Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57 Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2007 Michal Krátký, Jiří Dvorský 1/57

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.

Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol. Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start

Více

STACK

STACK Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

3 Algoritmy řazení. prvku a 1 je rovněž seřazená.

3 Algoritmy řazení. prvku a 1 je rovněž seřazená. Specifikace problému řazení (třídění): A... neprázdná množina prvků Posl(A)... množina všech posloupností prvků z A ... prvky množiny Posl(A) q... délka posloupnosti Posl(A), přičemž Delka()

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel

Více

autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury)

autoři: Rudolf Bayer, Ed McCreight všechny vnější uzly (listy) mají stejnou hloubku ADS (abstraktní datové struktury) definice ( tree) autoři: Rudolf Bayer, Ed McCreight vyvážený strom řádu m ( ) každý uzel nejméně a nejvýše m potomků s výjimkou kořene každý vnitřní uzel obsahuje o méně klíčů než je počet potomků (ukazatelů)

Více

BINARY SEARCH TREE

BINARY SEARCH TREE ---------------------------------------- BINARY SEARCH TREE --------------------------------------------------- Je dán BVS s n uzly. Máme za úkol spočítat hodnotu součtu všech klíčů v tomto stromě. Když

Více

Úvod do programování 7. hodina

Úvod do programování 7. hodina Úvod do programování 7. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Syntax Znaky Vlastní implementace

Více

Padovan heaps Vladan Majerech

Padovan heaps Vladan Majerech Padovan heaps Vladan Majerech Základní princip velmi drahé porovnávání Porovnáváme jen když musíme (v podstatě veškerou práci dělá FindMin) Výsledky porovnávání nezahazujeme Nesmíme organizací porovnávání

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Úvod do teorie grafů

Úvod do teorie grafů Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS PŘÍPRAVA DOMÁCÍCH

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

BINARY SEARCH TREE

BINARY SEARCH TREE Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

Algoritmy na ohodnoceném grafu

Algoritmy na ohodnoceném grafu Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus

Více

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika

Pokročilá algoritmizace amortizovaná složitost, Fibonacciho halda, počítačová aritmetika amortizovaná složitost, Fibonacciho halda, počítačová aritmetika Jiří Vyskočil, Marko Genyg-Berezovskyj 2009 Amortizovaná složitost Asymptotická složitost často dostatečně nevypovídá o složitosti algoritmů,

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

a) b) c) Radek Mařík

a) b) c) Radek Mařík 2012-03-20 Radek Mařík 1. Čísla ze zadané posloupnosti postupně vkládejte do prázdného binárního vyhledávacího stromu (BVS), který nevyvažujte. Jak bude vypadat takto vytvořený BVS? Poté postupně odstraňte

Více

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n)

Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n) Stromy Binární Vyhledávací Stromy, u kterých je č asová složitost operací v nejhorším případě rovná O(log n) Vlastnosti Red-Black Stromů Vlastnosti Red-Black stromů Každý uzel stromu je obarven červenou

Více

vyhledávací stromové struktury

vyhledávací stromové struktury vyhledávací algoritmy Brute Force Binary Search Interpolation Search indexové soubory Dense index, Sparse index transformační funkce Perfect Hash, Close Hash Table, Open Hash Table vyhledávací stromové

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1

Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1 Rekurze a zásobník Jak se vypočítá rekurzivní program? volání metody vyšší adresy ret1 main(){... fa(); //push ret1... PC ret2 void fa(){... fb(); //push ret2... return //pop void fb(){... return //pop

Více

07 Základní pojmy teorie grafů

07 Základní pojmy teorie grafů 07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná

Více

Lineární spojový seznam (úvod do dynamických datových struktur)

Lineární spojový seznam (úvod do dynamických datových struktur) Lineární spojový seznam (úvod do dynamických datových struktur) Jan Hnilica Počítačové modelování 11 1 Dynamické datové struktury Definice dynamické struktury jsou vytvářeny za běhu programu z dynamicky

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010

Pokročilé haldy. prof. Ing. Pavel Tvrdík CSc. Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Pokročilé haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (I-EFA) ZS 2010/11,

Více

Anotace. Spojové seznamy, haldy. AVL-stromy, A-B stromy. Martin Pergel,

Anotace. Spojové seznamy, haldy. AVL-stromy, A-B stromy. Martin Pergel, Anotace Spojové seznamy, fronta a zásobník. Vyvážené binární stromy, AVL-stromy, červeno-černé stromy, A-B stromy. Hashování, haldy. Typologie spojových seznamů jednosměrný a obousměrný prvek ukazuje jen

Více

Prohledávání do šířky = algoritmus vlny

Prohledávání do šířky = algoritmus vlny Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé

Více

Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.

Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software. Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

Semestrální práce 2 znakový strom

Semestrální práce 2 znakový strom Semestrální práce 2 znakový strom Ondřej Petržilka Datový model BlockFileRecord Bázová abstraktní třída pro záznam ukládaný do blokového souboru RhymeRecord Konkrétní třída záznamu ukládaného do blokového

Více

Maturitní téma: Programovací jazyk JAVA

Maturitní téma: Programovací jazyk JAVA Maturitní téma: Programovací jazyk JAVA Insert Sort (třídění vkládáním) 1. Jako setříděnou část označíme první prvek pole. Jako nesetříděnou část označíme zbytek pole. 2. Vezmeme první (libovolný) prvek

Více

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase

PQ-stromy a rozpoznávání intervalových grafů v lineárním čase -stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S

Více

Lineární datové struktury

Lineární datové struktury Lineární datové struktury doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Lineární datové

Více

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010

Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

1. Vyhledávací stromy

1. Vyhledávací stromy 1. Vyledávací stromy V této kapitole budeme postaveni před následující problém. Je dáno nějaké univerzum prvků U a naším úkolem bude navrnout datovou strukturu, která udržuje konečnou množinu prvků X U.

Více

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant

Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ

ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,

Více

Da D to t v o é v ty t py IB111: Datové typy

Da D to t v o é v ty t py IB111: Datové typy Datové typy IB111: Datové typy Data a algoritmizace jaká data potřebuji pro vyřešení problému? jak budu data reprezentovat? jaké operaci s nimi potřebuji provádět? Navržení práce s daty je velice důležité

Více

Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66

Teorie grafů BR Solutions - Orličky Píta (Orličky 2010) Teorie grafů / 66 Teorie grafů Petr Hanuš (Píta) BR Solutions - Orličky 2010 23.2. 27.2.2010 Píta (Orličky 2010) Teorie grafů 23.2. 27.2.2010 1 / 66 Pojem grafu Graf je abstraktní pojem matematiky a informatiky užitečný

Více

Spojová implementace lineárních datových struktur

Spojová implementace lineárních datových struktur Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více