Face Descriptor Learned by Convolutional Neural Networks
|
|
- Josef Havel
- před 6 lety
- Počet zobrazení:
Transkript
1 CENTER FOR MACHINE PERCEPTION Face Descriptor Learned by Convolutional Neural Networks CZECH TECHNICAL UNIVERSITY IN PRAGUE Ondřej Holešovský CTU CMP May 20, 2015 BACHELOR THESIS ISSN Available at Thesis Advisor: Vojtěch Franc Research Reports of CMP, Czech Technical University in Prague, No. 1, 2015 Published by Center for Machine Perception, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University Technická 2, Prague 6, Czech Republic fax , phone , www:
2
3 Face Descriptor Learned by Convolutional Neural Networks Ondřej Holešovský May 20, 2015
4
5 České vysoké učení technické v Praze Fakulta elektrotechnická katedra řídicí techniky ZADÁNÍ BAKALÁŘSKÉ PRÁCE Student: Ondřej Holešovský Studijní program: Kybernetika a robotika Obor: Systémy a řízení Název tématu: Deskriptor tváří učený pomocí konvolučních neuronových sítí Pokyny pro vypracování: 1. Naučte hlubokou konvoluční neuronovou síť pro extrakci příznaků vhodných k rozpoznávání tváří. 2. Otestujte naučené příznaky na úloze: a) odhadu věku, b) odhad pohlaví a c) verifikace identit z obrázku tváře. 3. Porovnejte výsledky s nejlepším existujícím řešením pro danou úlohu.4. Pro učení sítě použijte knihovnu MatConvNet (url:// databáze tváří dodá vedoucí. Seznam odborné literatury: [1] Taigman et al.: DeepFace: Closing the Gap to Human-Level Performance in Face Verification. CVPR 2014.[2] Huang et al. : Labeled Faces in the Wild: Updates and New Reporting Procedures. Technical Report UMCS University of Massachutsetts Vedoucí: Ing. Vojtěch Franc, Ph.D. Platnost zadání: do konce letního semestru 2015/2016 L.S. prof. Ing. Michael Šebek, DrSc. vedoucí katedry prof. Ing. Pavel Ripka, CSc. děkan V Praze dne
6
7
8 I would like to express my deepest gratitude to my thesis advisor, Vojtěch Franc, for priceless advice and perfect feedback about the progress of this work. Many thanks also belong to Daniel Večerka, who has been maintaining the critical computational infrastructure in the Centre of Machine Perception. Last but not least, I would like to thank my parents for their support during my studies. vi
9 Abstract We present face descriptors created by nine and sixteen-layer deep convolutional neural networks. Performance is evaluated on identity verification and age and gender estimation tasks. Based on the neural network training scenario, a proper classifier has to be chosen in the case of identity verification. For the supervised indentity verification setting, a normalized dot product of face representation vectors outperforms the more intuitive Euclidean distance as a measure of face similarity. However, in the case of the unsupervised setting, the Euclidean distance is superior. The performance on the Labeled Faces in the Wild data set can be further improved by mirroring training images as well as by a well tuned combination of PCA and LDA projections of the face representation. Pretraining the simpler nine-layer network on the identity recognition task improves the final results in age and gender estimation. With the help of more sophisticated age and gender prediction models, both our neural networks reduce the age estimation error of the current state of the art by up to 28% on the MORPH II data set. Finally, computational performance of both neural networks is evaluated. Prezentujeme reprezentace obrázků tváří vytvořené devíti a šestnáctivrstvou hlubokou konvoluční neuronovou sítí. Úspěšnost je hodnocena na úlohách verifikace identity a odhadu věku a pohlaví. Vhodný klasifikátor příznaků pro verifikaci identit je třeba zvolit v závislosti na postupu trénování neuronové sítě. V případě učení verifikace identity s učitelem překoná normalizovaný skalární součin intuitivnější Euklidovskou vzdálenost v přesnosti verifikace, jakožto meřítko podobnosti tváří. Avšak v případě učení bez učitele vítězí Euklidovská vzdálenost nad skalárním součinem v přesnosti verifikace. Úspěšnost na Labeled Faces in the Wild databázi lze dále zlepšit zrcadlením trénovacích obrázků nebo také projekcí reprezentace tváře sladěnou kombinací PCA a LDA. Předtrénování jednodušší devítivrstvé neuronové sítě na úloze rozpoznávání identit zlepší konečné výsledky odhadu věku a pohlaví. S pomocí sofistikovanějších modelů pro odhad věku a pohlaví překonají obě naše neuronové sítě nejlepší dostupné řešení na světě pro odhad věku na databázi MORPH II a to až o 28%. Nakonec hodnotíme výpočetní náročnost obou neuronových sítí. vii
10
11 Contents 1 Introduction Thesis Assignment State of the Art Thesis Structure Main Network Architectures Basic Facts and MatConvNet Vgg-16 Network Architecture Deep9 Network Architecture Prediction Models Age and Gender Estimation Two-Class Linear SVM for Gender Estimation Piece-Wise MORD for Age Estimation Identity Verification Euclidean Distance L2 Normalization, Dot Product PCA + LDA Datasets Age and Gender Estimation Data Sets Split to Training/Validation/Testing Part Identity Verification LFW FaceScrub + PubFig Data Preprocessing Data Augmentation Experiments Age and Gender Estimation Training Data Augmentation and Pretraining Effects The Results and the State of the Art Comparison Identity Classification and Verification CNN Trained on an Identity Classification Task Effects of Training Data Changes PCA+LDA Tuning The Supervised Results and the State of the Art Comparison The LFW Unsupervised Protocol Results CNN Computational Performance Conclusions 24 Bibliography 25 1
12 Abbreviations 1D one dimension(al) 2D, 3D,... two dimension(al), three dimension(al), two dimension(al), three dimension(al), two dimension(al), three dimension(al), two dimension(al), three dimension(al),... AI artificial intelligence CNN convolutional neural network RGB red green blue, aka colour FC fully connected X2 Euclidean distance LBPPYR pyramid of the locally binary patterns SVM support vector machine SVOR-IMC support vector ordinal regression with implicit constraints PW-MORD piece-wise multi-class classifier for ordinal regression MAE mean absolute error PCA principal component analysis LDA linear discriminant analysis ROC receiver operating characteristic AUC area under the ROC curve CPU central processing unit GPU graphics processing unit RAM random-access memory 2
13 1 Introduction 1.1 Thesis Assignment Train a deep convolutional neural network suitable for feature extraction from facial images. Evaluate the extracted features on the task of: i) age estimation, ii) gender estimation and iii) identity verification based on facial images. Compare the obtained results with the current state-of-the-art. 1.2 State of the Art The Labeled Faces in the Wild [9] (LFW) Unrestricted with labeled outside data protocol is currently dominated by deep convolutional neural networks. Notably the DeepFace [18] ensemble of neural networks reaches 97.35% face verification accuracy. They have trained their algorithms on a private dataset of 4 million images and 4000 identitites. Moreover, face images are being passed through a piecewise affine transformation based on 3D face modeling for alignment. The current best algorithm on the MORPH II [13] age estimation benchmark data set is Human vs. Machine [8] by Hu Han, Charles Otto, and Anil K. Jain. It achieves 4.2 mean absolute age deviation, 72.5% predictions have their absolute error of the age estimate within 5 years. Unfortunately, there is no established benchmark for gender prediction. 1.3 Thesis Structure The second chapter of this thesis describes the convolutional neural network architectures and provides some information about training them. The features extracted by the neural networks are then classified by a prediction model which is different for each estimation/verification task. These prediction models are described in the third chapter. Data sets of images utilized for training, validation and testing our algorithms are introduced in the fourth chapter. Finally, the fifth chapter includes experiments done and their results. Although our identity verification solutions are good, they are not yet comparable to the state of the art on LFW. Both our trained neural networks can well classify into 16 age and gender classes (8 age classes for each gender). The vgg-16 network achieves the best result for this simple approach on the MORPH data set. With 4.09 mean absolute age deviation (MAE), it is already comparable with the current state of the art. With the help of more sophisticated age and gender prediction models (PW-MORD [1] for age estimation and a two-class linear SVM for gender prediciton), both our neural networks reduce the MAE of the current state of the art on the MORPH data set. Our Deep9 has MAE 3.90 years (improvement by 7%) and vgg-16 achieves MAE 3.04 years (improvement by 28%). 3
14 2 Main Network Architectures This chapter aims to introduce the more complex convolutional neural network (CNN) configurations called Deep9 and vgg-16. Both of them are used for multiple classification tasks. Their performance is described in the following chapters. 2.1 Basic Facts and MatConvNet Firstly, let us state some basic facts applying to all network models presented in this thesis. Maxpool layers are always using fields 2x2 with stride 2. Convolutional and fully connected layers are two kinds of weight layers. All networks are implemented with the help of MatConvNet toolbox [22]. Expressions used for model description: conv-6x A convolutional layer with (a bank of) filters of size 6x4, input dimension 1 and output dimension 32. FC-2048 (input 6x3-128) A fully connected layer, output dimension Its input consists of 128 images of size 6x3 (a 6x3x128 matrix). dropout 0.2 A dropout layer with 0.2 (20 %) dropout rate. It sets 20 % of passing data to zero while training. maxpool A max pooling layer. ReLu Rectified Linear Unit. softmax Combined softmax operator and logarithmic loss. All these types of layers (conv/fc, ReLu, maxpool, dropout, softmax) are available as functional blocks within MatConvNet. A network can be built just by combining these blocks together. 2.2 Vgg-16 Network Architecture This architecture was pretrained on ImageNet dataset. Very Deep Convolutional Networks for Large-Scale Image Recognition, Karen Simonyan and Andrew Zisserman, arxiv technical report, 2014, imagenet-vgg-verydeep-16. [16] The model is available at We simply changed the last fully connected layer (different number of outputs) and retrained the whole network on our datasets. Please note that all our vgg-16 configurations were unintentionally retrained without dropout layers. 4
15 2.3 Deep9 Network Architecture Network Configuration Vgg weight layers 224x224 RGB input image conv-3x conv-3x maxpool conv-3x conv-3x maxpool conv-3x conv-3x conv-3x maxpool conv-3x conv-3x conv-3x maxpool conv-3x conv-3x conv-3x maxpool FC-4096 (input 7x7-512) dropout 0.5 FC-4096 (input 1x1-4096) dropout 0.5 FC-464 or FC-16 etc., depends on the specific task soft-max Table 2.1 Configuration of vgg-16 network. There is a ReLu placed after every conv layer and also after both FC-4096 layers. Please note that all our vgg-16 configurations were unintentionally retrained without dropout layers. 2.3 Deep9 Network Architecture Deep9 network is inspired by vgg-16 configuration a bit. Its first 5 convolutional layers use 3x3 filters. However, randomly initialized network does not converge. In order to solve this problem, we initialize the first 5 conv layers from the pretrained 3x3 vgg- 16 filters by means of copy and paste method, leaving the remaining weight layers initialized randomly. 5
16 2 Main Network Architectures Network Configuration Deep9 9 weight layers 60x40 grayscale input image conv-3x conv-3x maxpool conv-3x conv-3x maxpool conv-3x conv-5x FC-2048 (input 6x3-128) dropout 0.5 FC-2048 (input 1x1-2048) dropout 0.5 FC-464 or FC-16 etc., depends on the specific task soft-max Table 2.2 Configuration of Deep9 network. There is a ReLu placed after every conv layer and also after both FC-2048 layers. 6
17 3 Prediction Models Prediction models are algorithms processing CNN features in a way to solve a particular classification or estimation task. Unless stated otherwise, CNN features are the input of the last fully connected (FC) layer. 3.1 Age and Gender Estimation Two-Class Linear SVM for Gender Estimation We predict the gender information from CNN features by a simple two-class linear SVM classifier [14]. The classifier y = h(x, w, b) = sgn( w, x + b) (3.1) returns y = 1 for a female and y = 1 for a male face. The trainable parameters comprise of w, b. x is a feature vector Piece-Wise MORD for Age Estimation In order to obtain age estimations from CNN feature vectors, we employ Piece-wise Multi-class Classifier for Ordinal Regression [1]. Firstly, we split the ages y Y into age groups Y z. These age groups are separated by Z cut labels ŷ 1 < ŷ 2 < < ŷ Z. We can define PW-MORD by plugging the linear combination coefficient into the classifier formula α(y, z) = y ŷ z ŷ z+1 ŷ z (3.2) ( h(x, W, b) = arg max arg max x, w z (1 α(y, z)) + w z+1 α(y, z) + b y ), (3.3) z Z y Y z where W, b are the parameters to be trained and x is a feature vector. 3.2 Identity Verification Identity verification methods guess if two feature vectors (x 1 and x 2 ) denote the same person or not Euclidean Distance This is probably the most intuitive metric. We may assume that two close features result in an identity match, whereas two distant features reveal different identities. The distance d, d = D (x 1i x 2i ) 2, (3.4) i=1 7
18 3 Prediction Models where D is the number of dimensions, x 1 and x 2 are the feature vectors being compared. Having the distance computed, the classification algorithm (same/different) consists simply in comparing the distance with a previously learned constant threshold. Moreover, a ROC curve (e.g. false versus true positive rate) of the verification algorithm can be drawn by varying this threshold L2 Normalization, Dot Product A dot product can help us distinguish if 2 feature vectors point to a similar or different direction. d(x 1, x 2 ) = x 1, x 2 (3.5) We may use d in the same way as the Euclidean distance. Furthermore, the feature vectors can be L2 normalized before computing their dot product. d(x 1, x 2 ) = x 1, x 2 x 1 2 x 2 2 (3.6) This approach is suggested in [18] (DeepFace) PCA + LDA The feature vectors can be further preprocessed before using them for classification as outlined above. We can at first reduce their dimension by Principal Component Analysis (PCA). The compressed features can then be projected into a more discriminative subspace by means of Linear Discriminant Analysis (LDA). [5] The LDA projection matrix is trained on a set of identity labeled, PCA compressed features. See the Experiments chapter for more information. 8
19 4 Datasets The sections Age and Gender Estimation Data Sets, Data Preprocessing and Data Augmentation have been mostly written by the thesis supervisor Vojtěch Franc. 4.1 Age and Gender Estimation Data Sets We utilize two databases for the age and gender estimation task. The MORPH II database [13] is a collection of US police mugshots. The images have a fixed resolution 200x240px and each of them contains a single subject. The images have been taken under controlled lighting conditions. Most of the faces are frontal and with subjects showing a neutral facial expression. The images are annotated with the true age and gender of the depicted subjects. The MORPH database has become the standard benchmark used for evaluation of age estimation systems. The LPIP database 1 is composed of three standard face databases and additional images downloaded from the Internet. The three databases are the Labeled Faces in the Wild [9], PAL [12] and PubFig [10]. Because the sample of young and old age categories is not sufficiently representative in none of the three databases they have been augmented by images downloaded from the Internet to make the age distribution closer to uniform. The faces exhibit large variation in races, facial expressions, background clutter, resolution and the quality of images in the sense of focus or motion blur. The faces are near frontal with the yaw and pitch angles between -30 and 30 degrees. The images are labeled by age and gender estimated by a set of human annotators. To sum up, the MORPH database contains near perfect input images with ground truth annotation. In contrast, the LPIP database represents challenging in-the-wild images with inconsistent human-created annotation. Table 4.1 shows some basic statistics. The age distribution is depicted in Figure 4.1. Sample images drawn from both datasets are in Figure 4.2 and Figure 4.3. MORPH II database LPIP database male female total annotation description 46,645 8,489 55,134 ground truth Police database of mugshots. Controlled conditions, resolution 200x ,295 23,534 48,829 human Images in the wild. Uncontrolled, mixed quality. LFW + PubFig + Internet download + PAL. Table 4.1 Databases used in benchmark Split to Training/Validation/Testing Part The images were split randomly three times into training, validation and testing part in the ratio 60/20/20. We made sure that images of the same identity never appear 1 Courtesy of Eyedea Recognition s.r.o 9
20 4 Datasets MORPH II LPIP count 3000 count age age Figure 4.1 Age distribution in the MORPH II and the LPIP database, respectively. Figure 4.2 Sample images from MORPH dataset. Both 60x40 gray and 224x224 RGB versions side by side. in the different parts simultaneously. The training and validation parts are used for training the parameters and model selection. The test results are mean and standard deviations computed over the three test splits. 10
21 4.2 Identity Verification Figure 4.3 Sample images from LPIP dataset. Both 60x40 gray and 224x224 RGB versions side by side. 4.2 Identity Verification LFW Labeled Faces in the Wild (LFW) [9] data set is de facto the standard benchmark for face verification algorithms. The data set contains images of faces collected from the web. Each face has been labeled with the name of the person pictured of the people pictured have two or more distinct photos in the data set. Overall, there are 5749 different people in the data set. The LFW test protocol suggests reporting performance as 10-fold cross validation using splits they have once randomly generated. Each test split contains 300 matched pairs and 300 mismatched pairs of images. We test the performance of our algorithms on LFW mostly under the protocol called Unrestricted with labeled outside data. This means that labeled outside data can be used for training, as long as there is no overlap with the LFW dataset. Our baseline vgg- 16 network pretrained just on ImageNet is tested under the Unsupervised protocol. Any training data are permitted in the Unsupervised protocol, as long as they are not annotated with identity or same/different information. Further information is available in the New Technical Report ( FaceScrub + PubFig Our dataset for identity recognition and verification training is built by merging Face- Scrub [7] ( and PubFig [10] datasets. All identities contained also in LFW are removed. FaceScrub dataset has URLs published for 107,818 images of 530 people. However, many of these images are no more available at their specified URLs. The original PubFig dataset has 58,797 images of 200 people, also in the form of listed URLs. Furthermore, some overlaps in identities appear during the merge of FaceScrub with PubFig and removal of LFW. Some identities get more samples but many have to be deleted. The resulting dataset consists of about 82,000 images and 464 identities. Figure 4.4 shows some sample images. 11
22 4 Datasets Figure 4.4 Sample images from FaceScrub + PubFig dataset. Both 60x40 gray and 224x224 RGB versions side by side. 4.3 Data Preprocessing The feature representation of the facial images were computed as follows. We first localized the faces by a commercial face detector 2 and consequently applied a Deformable Part Model based detector [20] to find facial landmarks like the corners of eyes, mouth or tip of the nose. The found landmarks were used to transform the face by an affine transform into its canonical pose. Finally, the features were extracted from the canonical face image. We considered two resolutions of the canonical face: 60x40 and 224x224 pixels. We used two feature descriptions. First, the pyramid of the locally binary patterns (LBPPYR) proposed in [17]. The LBPPYR descriptor applied on 60x40 image is a sparse n = 159, 488-dimensional binary vector serving as an input of linear classifier (either two-class SVM or the PW-MORD classifier). Second, the features learned by the deep convolutional neural network. 4.4 Data Augmentation The deep networks require a large set of training examples in order not to overfit. We enlarged the training set by generating synthetic facial examples. We generated a set of facial bounding boxes for each input face in the database. The bounding boxes were derived from the base bounding box found by the detector. In particular, the based bonding box was perturbed by applying in-plane rotations (+5 and -5 degrees) and scaling (1.05 and 0.95). Consequently, we extracted the canonical face from each generated bounding box by the process described above. Finally, we doubled the number of the canonical faces by mirroring them around the vertical axis. 2 Courtesy of Eyedea Recognition s.r.o 12
23 5 Experiments This chapter presents the experiments done and their results. 5.1 Age and Gender Estimation In order to train a CNN for the simultaneous age and gender estimation task, we decide to discretize the ages into 8 groups. As a result, we convert the task to a 16 class classification problem (8 age groups times 2 genders). That means the output dimension of the last fully connected network layer is set to 16. It is followed by a softmax loss layer. The abbreviations of the evaluation metrics and linear classification models presented in the tables: MAE The mean absolute deviation between the age estimated by computer and the age in the database. The database age is either the ground truth (MORPH) or human estimate (LPIP). CS5 The portion of images with the absolute error of the age estimate not higher than 5 years. maleasfemale The portion of images where male is erroneously estimated as female. femaleasmale The portion of images where female is erroneously estimated as male. total The combined classification error for the 16 class classification task. SVOR-IMC Support vector ordinal regression with implicit constraints [4]. PW-MORD Piece-wise linear Multi-class classifier for Ordinal Regression [1]. SVM Two-class linear Support Vector Machine classifier [21] Training Data Augmentation and Pretraining Effects We have completed a few experiments to discover which training procedure is the best for each network. The following tables present the validation errors of the age and gender estimation experiments. The validation errors are calculated on the LPIP validation set after every epoch during each CNN training on LPIP. We take the 16 class discretized prediction and compare it with the precise labels. The standard deviation is calculated only for the better results when we have trained the networks on 3 splits. We can infer from table 5.1 that Deep9 network gives better performance when pretrained firstly on the identity recognition task and then trained on LPIP than if it is trained directly on LPIP from (mostly) random initialization. Vgg-16, on the contrary, achieves better performance when not pretrained on the ID task. Deep9 benefits from augmented training data (see table 5.2). Vgg-16 results are nearly the same for both the augmented and non-augmented training set. 13
24 5 Experiments Configuration Net Validation Errors total maleasfemale femaleasmale MAE Deep Deep9 ID pretrained ± ± ± ± 0.12 Vgg ± ± ± ± 0.36 Vgg-16 ID pretrained Table 5.1 Effects of previous pretraining on the identity recognition task. LPIP data set. Configuration Net Validation Errors total maleasfemale femaleasmale MAE Deep Deep9 augmented ± ± ± ± 0.12 Vgg Vgg-16 augmented ± ± ± ± 0.36 Table 5.2 Effects of the training data augmentation. LPIP data set The Results and the State of the Art Comparison Test errors are calculated on the test set. The features are extracted from images by a CNN and fed into a prediction model. Precise age predictions from Piece-Wise MORD, for example, are compared to the precise labels. Gender is determined by the two-class linear SVM on the test set. Training is performed on the augmented data sets. Deep9 network is pretrained on the identity recognition task, vgg-16 only on ImageNet. MAE CS5 [%] note [8] Han Hu. vs. M Morph II (20569 subj, img) [3] Chang H. Rank Morph (55608 images) [6] Guo KPLS 4.2 NA Morph (55608 images) SVORIMC 5.00( ±0.03) 64.2 (±0.11) 60x40; LBPPYR features PwMord 4.67 (±0.04) 68.1 (±0.53) 60x40; LBPPYR features Deep9-lpip 11.6 (±0.06) NA 60x40; Deep9 trained on LPIP PwMord-Deep9-lpip 5.38 (±0.01) 61.2 (±0.3) 60x40; Deep9 trained on LPIP Deep (±0.10) NA 60x40; Deep9 trained on MORPH PwMord-Deep (±0.04) 75.2 (±0.6) 60x40; Deep9 trained on MORPH vgg-16-lpip 6.60 (±0.10) NA 224x224; vgg-16 trained on LPIP PwMord-vgg-16-lpip 4.58 (±0.17) 68.2 (±1.8) 224x224; vgg-16 trained on LPIP vgg (±0.09) NA 224x224; vgg-16 MORPH trained PwMord-vgg (±0.08) 84.4 (±0.9) 224x224; vgg-16 MORPH trained Table 5.3 MORPH II database: Age estimation. We conclude that the more complex vgg-16 network outperforms the simpler Deep9 network. Except complexity, the higher dimensional (224x224) colour images the network processes can be another reason for the better vgg-16 results. They carry more information than the 60x40 grayscale images being fed into Deep9 network. What is more surprising, our experiments show that data augmentation has only negligible impact on the age and gender classification errors. The choice of a right prediction model greatly affects estimation accuracy of both the age (see tables 5.3, 5.5) and gender 14
25 5.2 Identity Classification and Verification maleasfem. fem.asmale note SVM 2.99 (±0.21) 3.33 (±0.28) 60x40; LBPPYR features Deep9-lpip 20.7 (±0.88) 18.5 (±1.85) 60x40; Deep9 trained on LPIP SVM-Deep9-lpip 6.45 (±0.41) 5.86 (±0.69) 60x40; Deep9 trained on LPIP Deep (±0.12) 5.44 (±0.30) 60x40; Deep9 trained on MORPH SVM-Deep (±0.12) 2.63 (±0.42) 60x40; Deep9 trained on MORPH vgg-16-lpip 6.99 (±0.37) 24.2 (±0.27) 224x224; vgg-16 trained on LPIP SVM-vgg-16-lpip 4.50 (±0.70) 4.30 (±0.33) 224x224; vgg-16 trained on LPIP vgg (±0.10) 2.29 (±0.67) 224x224; vgg-16 trained on MORPH SVM-vgg (±0.38) 1.07 (±0.26) 224x224; vgg-16 trained on MORPH Table 5.4 MORPH II database: Gender estimation. MAE CS5 [%] note SVORIMC 9.18( ±0.19) 39.8 (±0.80) 60x40, LBPPYR features PwMord 7.27 (±0.13) 56.7 (±0.67) 60x40; LBPPYR features Deep (±0.12) NA 60x40; Deep9 trained on LPIP PwMord-Deep (±0.17) 65.1 (±0.8) 60x40; Deep9 trained on LPIP vgg (±0.36) NA 224x224; vgg-16 trained on LPIP PwMord-vgg (±0.11) 74.3 (±0.5) 224x224; vgg-16 trained on LPIP Table 5.5 LPIP: Age estimation. (tables 5.4, 5.6). PwMord and SVM outperform the native 16 class classifier for each CNN configuration. The SVM makes the gender estimation errors (maleasfemale and femaleasmale) more balanced. What s more, the CNN features provide a better input for PwMord and SVM than the LBPPYR features. This can be also seen in all the four tables. Both our CNNs improve on the state of the art of age estimation on MORPH, namely from 4.2 MAE [8] to 3.04 and 3.9 for vgg-16 and deep9 respectively (table 5.3). We also obtain better results on LPIP in age estimation than PwMord and LBPPYR with MAE 7.27, precisely 5.76 for deep9 and 4.30 for vgg-16 (table 5.5). The SVM gender classification is also significantly improved by Deep9 and vgg-16 features (tables 5.4, 5.6). maleasfemale femaleasmale note SVM (±1.37) (±2.57) 60x40; LBPPYR features Deep (±1.23) (±0.46) 60x40; Deep9 trained on LPIP SVM-Deep (±0.78) 7.63 (±1.38) 60x40; Deep9 trained on LPIP vgg (±0.77) 7.03 (±1.05) 224x224; vgg-16 trained on LPIP SVM-vgg (±0.82) 4.07 (±1.43) 224x224; vgg-16 trained on LPIP Table 5.6 LPIP: Gender estimation. 5.2 Identity Classification and Verification Performance of our algorithms in this chapter is evaluated under two LFW protocols. Unsupervised and the supervised Unrestricted with labeled outside data. Most of this chapter is devoted to the supervised setting, only the last subsection of this chapter 15
26 5 Experiments presents the Unsupervised results CNN Trained on an Identity Classification Task In the supervised setting, we train both Deep9 and vgg-16 CNN architectures by letting them classify into 464 classes (the amount of identities in FaceScrub + PubFig dataset). When a network has been well trained (a low FaceScrub + PubFig validation error), we extract the features of all LFW images by the network and employ one of the prediction models. However, PCA and LDA training is done only on FaceScrub + PubFig dataset. As a result, we have used from LFW only the testing samples for benchmarking our algorithms Effects of Training Data Changes We have done some experiments to understand how various changes of the training data set impact the classification/verification performance. All these experiments are realized on vgg-16 CNN. Figure 5.1 shows that augmented training data significantly improve both validation and LFW test errors. However, 2x data augmentation (original and mirrored image) seems to cause the largest improvement so further augmentation probably would not help a lot. Data Augmentation vs. Validation and LFW Test Error LFW Test Error Validation 16 Error LFW Test Error [%] Validation Error [%] Augmentation X Times Original Dataset Figure 5.1 Identity classification (validation) and LFW test errors are affected by training data augmentation. The number of identities represented in the data set seems to affect performance (Figure 5.2). The classification task becomes harder with more identities in the data set so in accordance with our expectations the validation error rises. Although the LFW performance improves with more identities, adding much more of them may be of no use. According to DeepFace [18], the amount of image samples per identity has a significant impact on the performance. We have tried to verify this finding on our own (Figure 5.3). It seems that altering the amount of samples per identity has no effect 16
27 5.2 Identity Classification and Verification Number of Identities Used for Training vs. Validation and LFW Test Error LFW Test Error [%] Validation Error [%] LFW Test Error Validation Error Number of Identities Used for Training Figure 5.2 Identity classification (validation) and LFW test errors are affected by the number of identities included in the training data. on LFW performance. However, we have too few samples per identity (about 150 on average, DeepFace has about 1000) so that the experiment is not much valuable. 17
28 5 Experiments Images per Identity Used for Training vs. Validation and LFW Test Error LFW Test Error Validation Error LFW Test Error [%] Validation Error [%] Images per Identity Used for Training [% of available images] Figure 5.3 Identity classification (validation) and LFW test errors are affected by the amount of image samples per each identity in the training dataset. Please note that 100 % per ID is about 150 images in our case which may be too few for such evaluation. DeepFace [18], for example, utilizes up to 1000 images per identity in their training dataset PCA+LDA Tuning PCA and LDA projections are trained on 4096 dimensional vgg-16 extracted features of non-augmented (original) images. The output dimensions of PCA and LDA projections have to be set in a way which minimizes the validation error. Figures 5.4 and 5.5 show how the FaceScrub + PubFig validation error is affected by various combinations of PCA and LDA output dimensions. The Euclidean distance version achieves the optimum at PCA dimension 81 and LDA dimension 70. Further raising the dimensions brings no improvement. In contrast, the dot product version reaches its optimum at PCA dim. 391 and LDA dim The error may decrease further but we cannot substantially increase the dimensions as we have only 400 identities in the training data set. LDA output dimension cannot be larger than the number of training identities. We can say that better results are achieved when the LDA output dimension is closer to the PCA output dimension. 18
29 5.2 Identity Classification and Verification PCA and LDA Output Dimensions vs. Validation Error PCA dimension Validation Error LDA dimension Figure 5.4 PCA + LDA + Euclidean distance identity verification. PCA and LDA Output Dimensions vs. Validation Error PCA dimension Validation Error LDA dimension 0.02 Figure 5.5 PCA + LDA + L2 normalization + dot product identity verification. 19
30 5 Experiments The Supervised Results and the State of the Art Comparison The following tables and ROC curves compare the results of our algorithms with each other (table 5.8, figure 5.6) and also our best algorithm with the state of the art on LFW (table 5.7, figure 5.7). Algorithm Success Rate Vgg-16, PCA 391, LDA 280, L2 norm, dot ± DeepFace-ensemble [18] ± Simile classifiers [11] ± Eigenfaces, original [19] ± Table 5.7 LFW Unrestricted with labeled outside data test results, state-of-the-art comparison. Number written after PCA or LDA is the output dimension of the projection. dot denotes the dot product, L2 norm is L2 normalization. Configuration: Error Type Error Deep9: FaceScrub + PubFig validation 7.7% Deep9, X2: LFW ± 1.97% Deep9, L2 norm, dot: LFW ± 1.31% Vgg-16: FaceScrub + PubFig validation 3.6% Vgg-16, X2: LFW test ± 2.10% Vgg-16, PCA 81, LDA 70, X2: LFW ± 2.20% Vgg-16, L2 norm, dot: LFW ± 1.21% Vgg-16, PCA 391, LDA 280, L2 norm, dot: LFW 9.40 ± 1.26% Table 5.8 Deep9 and vgg-16 results. FaceScrub + Pubfig Validation and LFW test errors on various prediction models are presented. Number written after PCA or LDA is the output dimension of the projection. X2 denotes Euclidean distance, dot the dot product, L2 norm is L2 normalization. All LFW results are in compliance with the Unrestricted with labeled outside data protocol. We again conclude that the more complex vgg-16 network outperforms the simpler Deep9 network. However, even our best solution (vgg-16) cannnot compete with one of the best peer-reviewed algorithms to date (DeepFace [18]) under the Unrestricted with labeled outside data setting. 20
31 5.2 Identity Classification and Verification 1 Vgg-16 and Deep9 LFW Performance True Positive Rate Unsupervised ImageNet Vgg-16 dot 0.3 Unsupervised ImageNet Vgg-16 X2 Supervised Deep9 X2 0.2 Supervised Deep9 dot Supervised Vgg-16 X2 0.1 Supervised Vgg-16 dot Supervised Vgg-16 PCA+LDA dot False Positive Rate Figure 5.6 ROC curves on LFW dataset of both networks. 1 LFW State of the Art Comparison True Positive Rate Eigenfaces Simile classifiers 0.1 Vgg-16 PCA+LDA dot DeepFace False Positive Rate Figure 5.7 Comparison of the ROC curves of our best solution so far (Vgg-16 PCA+LDA dot) with other algorithms on LFW. LFW protocol: Unrestricted with labeled outside data. 21
32 5 Experiments The LFW Unsupervised Protocol Results We have also done some tests under the Unsupervised LFW protocol. Networks trained on ImageNet and on the age and gender estimation task comply with the Unsupervised setting. Vgg-16 configuration trained on the age and gender estimation task and equipped with the Euclidean distance (X2) prediction model is quite comparable to the second best Unsupervised LFW algorithm to date called MRF-MLBP [2]. However, the comparison is probably not completely fair. Many LFW images are included in our age and gender training data set LPIP. See figure 5.8 for the ROC curves and table 5.9 for the AUC results. Algorithm AUC ImageNet Vgg-16 dot ImageNet Vgg-16 X Age Gender Vgg-16 dot Age Gender Vgg-16 X LHS [15] MRF-MLBP [2] Pose Adaptive Filter (PAF) [23] Table 5.9 LFW Unsupervised test results, state-of-the-art comparison. The table includes our results (vgg-16) and the three best state-of-the-art solutions. AUC is the area under the ROC curve. 1 LFW Unsupervised State of the Art Comparison True Positive Rate ImageNet Vgg-16 dot 0.3 ImageNet Vgg-16 X2 Age Gender Vgg-16 dot 0.2 Age Gender Vgg-16 X2 LHS 0.1 MRF-MLBP Pose Adaptive Filter (PAF) False Positive Rate Figure 5.8 Comparison of the ROC curves of Unsupervised algorithms on LFW. Our results (vgg-16) and the three best state-of-the-art solutions are shown. 5.3 CNN Computational Performance Classification accuracy of an algorithm is not the only important information to know when one decides how to solve a real-life problem. In most cases, the computational power demands of an algorithm are also important. Table 5.10 shows how fast our two 22
33 5.3 CNN Computational Performance CNN models are on a computer with Intel(R) Xeon(R) CPU E GHz (32 cores), 126 GB RAM, GPU NVIDIA GeForce GTX TITAN Black (6 GB memory, 3.5 compute capability). In all the performance tests, the input images are either directly preloaded in RAM or are at least already cached from a hard drive. Deep9 configuration is not only much faster, it also requires less GPU memory. Deep9 fits even in 2 GB, whereas vgg-16 requires 6 GB of memory space on the GPU when being trained. It is better to process more images at once (use larger batches), if possible. The speed then rises considerably on the GPU. Implemeting the network models in C/C++ directly, for example, may further boost performance. The CPU performance can be seen in the table The Deep9 performance on the CPU is even better for smaller batches than on the GPU. In contrast, the more complex vgg-16 processes only 2 images per second on the CPU regardless of the batch size. Algorithm Training Speed Feature Extraction Speed Vgg (batch size 10) 64 (bs 20), 31 (bs 2), 20 (bs 1) Deep9 280 (bs 100), 130 (bs 10) 3800 (bs 100), 970 (bs 20), 98 (bs 2), 50 (bs 1) Table 5.10 Computational performance (speed) on the GPU of both Deep9 and vgg-16 network models in processed images per second. Batch size (bs) also affects the speed. Algorithm Feature Extraction Speed Vgg-16 2 images/s (bs 20, 10, 2, 1) Deep9 140 (bs 100), 140 (bs 20), 138 (bs 10), 110 (bs 2), 86 (bs 1) Table 5.11 Computational performance (speed) on the CPU of both Deep9 and vgg-16 network models in processed images per second. bs is batch size. 23
34 6 Conclusions Two deep convolutional neural networks have been tested. Deep9: 9 weight layers, 60x40 grayscale input image, smaller, faster, less accurate results. Vgg-16: 16 weight layers, 224x224 RGB input image, larger, slower, more accurate results. Developed and pretrained on ImageNet by Karen Simonyan and Andrew Zisserman [16]. Good results have been achieved on the Labeled Faces in the Wild data set in two protocols. We obtain area under the ROC curve in the Unsupervised and 90.60% accuracy in the Unrestricted with labeled outside data protocols. It should be noted, however, that none of our algorithms has seen the LFW training data with identity or same/different labels. Only in the case of our best Unsupervised solution, many LFW images have been included in the training data set (LPIP). The following same/different identity prediction models have been tested. Euclidean distance: Works best in the Unsupervised setting, when networks are trained on ImageNet or the age and gender estimation task. L2 normalization and dot product: Serves best in the supervised setting ( Unrestricted with labeled outside data ). Results of both prediction models in the supervised setting are improved by the tuned PCA and LDA face descriptor mappings. Augmentation of training images affects the classification error. However, simple mirroring is sufficient. Further artificial training set enlargement brings only a mild improvement. Both neural networks can well classify into 16 age and gender classes (8 age classes for each gender). The vgg-16 network achieves the best result for this simple approach on the MORPH data set. With 4.09 mean absolute age deviation (MAE), it is already comparable with the current state of the art. With the help of more sophisticated age and gender prediction models (PW-MORD [1] for age estimation and a two-class linear SVM for gender prediciton), both our neural networks reduce the MAE of the current state of the art on the MORPH data set, which is [8] (Han, Human vs. Machine) with MAE 4.2 years. Our Deep9 has MAE 3.90 years (improvement by 7%) and vgg-16 achieves MAE 3.04 years (improvement by 28%). Pretraining the simpler Deep9 network on the identity recognition task improves the final results in the age and gender estimation. All experiments have been carried out in Matlab and MatConvNet toolbox [22]. Computations have mostly run on a GPU. 24
35 Bibliography [1] Kostiantyn Antoniuk, Vojtech Franc, and Vaclav Hlavac. Mord: Multi-class classifier for ordinal regression. In ECML/PKDD (3), pages , , 7, 13, 24 [2] Shervin Rahimzadeh Arashloo and J Kittler. Efficient processing of mrfs for unconstrained-pose face recognition. Proc. Biometrics: Theory, Applications and Systems, [3] Kuang-Yu Chang, Chu-Song Chen, and Yi-Ping Hung. Ordinal hyperplane ranker with cost sensitivities for age estimation. In CVPR, [4] Wei Chu and S. Sathiya Keerthi. New approaches to support vector ordinal regression. In In Proceedings of the 22nd international conference on Machine Learning (ICML), pages , [5] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John Wiley & Sons, New York, NY, USA, 2nd edition, [6] Guodong Guo and Guowang Mu. Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. In Computer Vision and Pattern Recognition, [7] S. Winkler. H.-W. Ng. A data-driven approach to cleaning large face datasets. In Proc. IEEE International Conference on Image Processing (ICIP), Paris, France, pages , Oct [8] Hu Han, Charles Otto, and Anil K. Jain. Age estimation from face images: Human vs. machine performance. In International Conference on Biometrics (ICB), , 14, 15, 24 [9] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October , 9, 11 [10] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and Simile Classifiers for Face Verification. In IEEE International Conference on Computer Vision (ICCV), Oct , 11 [11] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and Simile Classifiers for Face Verification. In IEEE International Conference on Computer Vision (ICCV), Oct [12] M. Minear and D. Park. A life span database of adult facial stimuli. Behavior Research Methods, Instruments & Computers, 36(4): , [13] Karl Ricanek and Tamirat Tesafaye. Morph: A longitudinal image database of normal adult age-progression. In IEEE 7th International Conference on Automatic Face and Gesture Recognition, pages , Southampton, UK, April , 9 25
36 Bibliography [14] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels. MIT Press, [15] Gaurav Sharma, Sibt ul Hussain, and Frédéric Jurie. Local higher-order statistics (lhs) for texture categorization and facial analysis. In Proceedings of the 12th European Conference on Computer Vision - Volume Part VII, ECCV 12, pages 1 12, Berlin, Heidelberg, Springer-Verlag. 22 [16] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/ , , 24 [17] Sören Sonnenburg and Vojtěch Franc. Coffin: A computational framework for linear svms. In Proceedings of the 27th Annual International Conference on Machine Learning (ICML 2010), Madison, USA, June Omnipress. 12 [18] Yaniv Taigman, Ming Yang, Marc Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages IEEE, , 8, 16, 18, 20 [19] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. In Computer Vision and Pattern Recognition, Proceedings CVPR 91., IEEE Computer Society Conference on, pages , Jun [20] Michal Uřičář, Vojtěch Franc, and Václav Hlaváč. Detector of facial landmarks learned by the structured output SVM. In Gabriela Csurka and José Braz, editors, VISAPP 12: Proceedings of the 7th International Conference on Computer Vision Theory and Applications, volume 1, pages , Porto, Portugal, February SciTePress - Science and Technology Publications. 12 [21] Vladimir N. Vapnik. Statistical learning theory. Adaptive and Learning Systems. Wiley, New York, New York, USA, [22] A. Vedaldi and K. Lenc. Matconvnet convolutional neural networks for matlab. CoRR, abs/ , , 24 [23] Dong Yi, Zhen Lei, and Stan Z. Li. Towards pose robust face recognition. In CVPR, pages IEEE,
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.
1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím
Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015
Příklady použití metod strojového učení v rozpoznávání tváří Vojtěch Franc Centrum strojového vnímání, Katedra kybernetiky, FEL ČVUT v Praze Eyedea Recognition s.r.o MLMU 29.4.2015 Stavební bloky systému
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.
Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová
Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16
zákaznická linka: 840 50 60 70 DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Apr 16 1999 Apr 23 str 1 Dodavatel: GM electronic, spol. s r.o., Křižíkova 77, 186 00 Praha
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Aneta Milsimerová Fakulta strojní, Západočeská univerzita Plzeň, 306 14 Plzeň. Česká republika. E-mail: anetam@kto.zcu.cz Hlavním
Czech Technical University in Prague DOCTORAL THESIS
Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS
PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I
E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční
Příloha I Seznam tabulek Tabulka 1 Stav členské základny SK Praga Vysočany k roku 2015 Tabulka 2 Výše členských příspěvků v SK Praga Vysočany Tabulka 3 Přehled finanční odměny pro rozhodčí platný od roku
DC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
LOGOMANUÁL / LOGOMANUAL
LOGOMANUÁL / LOGOMANUAL OBSAH / CONTENTS 1 LOGOTYP 1.1 základní provedení logotypu s claimem 1.2 základní provedení logotypu bez claimu 1.3 zjednodušené provedení logotypu 1.4 jednobarevné a inverzní provedení
The Over-Head Cam (OHC) Valve Train Computer Model
The Over-Head Cam (OHC) Valve Train Computer Model Radek Tichanek, David Fremut Robert Cihak Josef Bozek Research Center of Engine and Content Introduction Work Objectives Model Description Cam Design
USER'S MANUAL FAN MOTOR DRIVER FMD-02
USER'S MANUAL FAN MOTOR DRIVER FMD-02 IMPORTANT NOTE: Read this manual carefully before installing or operating your new air conditioning unit. Make sure to save this manual for future reference. FMD Module
Náhradník Náhradník 9.A
9. (Testovací klíč: PGEEJXR) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 23 Poslech Čtení s porozuměním Gramatika Slovní zásoba Konverzace 05 02 06 06 04 Obecná škola Otázka
VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace
VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
Vánoční sety Christmas sets
Energy news 7 Inovace Innovations 1 Vánoční sety Christmas sets Na jaře tohoto roku jste byli informováni o připravované akci pro předvánoční období sety Pentagramu koncentrátů a Pentagramu krémů ve speciálních
Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products
Energy news2 1 Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products Doposud jste Energy znali jako výrobce a dodavatele humánních přírodních doplňků stravy a kosmetiky.
TechoLED H A N D B O O K
TechoLED HANDBOOK Světelné panely TechoLED Úvod TechoLED LED světelné zdroje jsou moderním a perspektivním zdrojem světla se širokými možnostmi použití. Umožňují plnohodnotnou náhradu žárovek, zářivkových
By David Cameron VE7LTD
By David Cameron VE7LTD Introduction to Speaker RF Cavity Filter Types Why Does a Repeater Need a Duplexer Types of Duplexers Hybrid Pass/Reject Duplexer Detail Finding a Duplexer for Ham Use Questions?
Radiova meteoricka detekc nı stanice RMDS01A
Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah
Čtvrtý Pentagram The fourth Pentagram
Energy News 4 1 Čtvrtý Pentagram The fourth Pentagram Na jaře příštího roku nabídneme našim zákazníkům již čtvrtý Pentagram a to Pentagram šamponů. K zavedení tohoto Pentagramu jsme se rozhodli na základě
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting Petr Macháček PETALIT s.r.o. 1 What is Redwood. Sensor Network Motion Detection Space Utilization Real Estate Management 2 Building
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika: 5-2013
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY Servisní Informace Datum vydání: 20.2.2013 Určeno pro : AMS, registrované subj.pro montáž st.měř. Na základě SI VDO č./datum: Není Mechanika
EXACT DS OFFICE. The best lens for office work
EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide
PAINTING SCHEMES CATALOGUE 2012
Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika
Informace o písemných přijímacích zkouškách (úplné zadání zkušebních otázek či příkladů, které jsou součástí přijímací zkoušky nebo její části, a u otázek s výběrem odpovědi správné řešení) Doktorské studijní
Chapter 7: Process Synchronization
Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris
Náhradník Náhradník 9.A
9. (Testovací klíč: WZRHSW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 23 Poslech Čtení s porozuměním Slovní zásoba Gramatika Konverzace 05 02 06 06 04 Obecná škola Otázka
FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/
FIRE INVESTIGATION Střední průmyslová škola Hranice Mgr. Radka Vorlová 19_Fire investigation CZ.1.07/1.5.00/34.0608 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/21.34.0608 Šablona: III/2 Inovace a zkvalitnění
TKGA3. Pera a klíny. Projekt "Podpora výuky v cizích jazycích na SPŠT"
Projekt "Podpora výuky v cizích jazycích na SPŠT" Pera a klíny TKGA3 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR Pera a klíny Pera a klíny slouží k vytvoření rozbíratelného
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová VZDĚLÁVÁNÍ V ČR VY_32_INOVACE_AH_3_03 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět
AIC ČESKÁ REPUBLIKA CZECH REPUBLIC
ČESKÁ REPUBLIKA CZECH REPUBLIC ŘÍZENÍ LETOVÉHO PROVOZU ČR, s.p. Letecká informační služba AIR NAVIGATION SERVICES OF THE C.R. Aeronautical Information Service Navigační 787 252 61 Jeneč A 1/14 20 FEB +420
CZ.1.07/1.5.00/ Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Autor: Sylva Máčalová Tematický celek : Gramatika Cílová skupina : mírně pokročilý - pokročilý Anotace Materiál má podobu pracovního listu, který obsahuje cvičení, pomocí nichž si žáci procvičí rozdíly
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O. Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová práce 2013 Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová
Právní formy podnikání v ČR
Bankovní institut vysoká škola Praha Právní formy podnikání v ČR Bakalářská práce Prokeš Václav Leden, 2009 Bankovní institut vysoká škola Praha Katedra Bankovnictví Právní formy podnikání v ČR Bakalářská
II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona Označení materiálu II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách VY_22_INOVACE_Mrh16 Vypracoval(a),
SPECIFICATION FOR ALDER LED
SPECIFICATION FOR ALDER LED MODEL:AS-D75xxyy-C2LZ-H1-E 1 / 13 Absolute Maximum Ratings (Ta = 25 C) Parameter Symbol Absolute maximum Rating Unit Peak Forward Current I FP 500 ma Forward Current(DC) IF
Stojan pro vrtačku plošných spojů
Střední škola průmyslová a hotelová Uherské Hradiště Kollárova 617, Uherské Hradiště Stojan pro vrtačku plošných spojů Závěrečný projekt Autor práce: Koutný Radim Lukáš Martin Janoštík Václav Vedoucí projektu:
Perception Motivated Hybrid Approach to Tone Mapping
Perception Motivated Hybrid Approach to Tone Mapping Martin Čadík Czech Technical University in Prague, Czech Republic Content HDR tone mapping Hybrid Approach Perceptually plausible approach Cognitive
11.12. 100 ΕΙΣΟΔΟΣ = E / ENTRANCE = E = = 1174 550 ΤΥΠΟΠΟΙΗΜΕΝΟ ΚΥ = 2000 (ΕΠΙΛΟΓΗ: 2100) / CH STANDARD = 2000 (OPTIONAL: 2100) 243 50 ΚΥ/CH + 293 ΚΥ/CH +103 100 ΚΥ /CH 6 11 6 20 100 0,25 ΚΑ (CO) + 45
Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic
Dynamic Development of Vocabulary Richness of Text Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Aim To analyze a dynamic development of vocabulary richness from a methodological point
CHAIN TRANSMISSIONS AND WHEELS
Second School Year CHAIN TRANSMISSIONS AND WHEELS A. Chain transmissions We can use chain transmissions for the transfer and change of rotation motion and the torsional moment. They transfer forces from
Why PRIME? 20 years of Erasmus Programme Over 2 million students in total Annually
What is PRIME? Problems of Recognition In Making Erasmus European-wide research project Conducted by ESN with the support of the European Commission Two editions: 1 st in 2009 Follow-up in 2010 Why PRIME?
Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic
ROBUST 13. září 2016 regression regresních modelů Categorical Continuous - explanatory, Eva Fišerová Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University
Geometry of image formation
eometry of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: July 4, 2008 Talk Outline Pinhole
Image Analysis and MATLAB. Jiří Militky
Image Analysis and MATLAB Jiří Militky Basic Matlab commands 0.5 0.8 IMREAD Read image from graphics file IMHIST Display histogram of image data. 0.694 GRAYTHRESH Compute global image threshold using Otsu's
MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Číslo materiálu: VY 32 INOVACE 29/18. Číslo projektu: CZ.1.07/1.4.00/
Číslo materiálu: Název materiálu: Ironic Číslo projektu: CZ.1.07/1.4.00/21.1486 Zpracoval: Mgr. Petra Březinová IRONIC 1. Listen to the song Ironic from the singer Alanis Morissette. For the first time
Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.
CURRICULUM VITAE - EDUCATION Jindřich Bláha Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Bc. Jindřich Bláha. Dostupné z Metodického
Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová
Air Quality Improvement Plans 2019 update Analytical part Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová vlcek@chmi.cz Task specification by MoE: What were the reasons of limit exceedances
Research infrastructure in the rhythm of BLUES. More time and money for entrepreneurs
Research infrastructure in the rhythm of BLUES More time and money for entrepreneurs 1 I. What is it? II. How does it work? III. References Where to find out more? IV. What is it good for? 2 I. What is
User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com
1/ 11 User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 2/ 11 Contents 1. MINIMUM SYSTEM REQUIREMENTS... 3 2. SŘHV ON-LINE WEB INTERFACE... 4 3. LOGGING INTO SŘHV... 4 4. CONTRACT
ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ
ANGLICKÁ KONVERZACE PRO STŘEDNĚ POKROČILÉ MGR. VLADIMÍR BRADÁČ ROZVOJ KOMPETENCÍ MANAGEMENTU A PRACOVNÍKŮ VŠ MSK (S PODPOROU ICT) PROJEKT OP VK 2.2: CZ.1.07/2.2.00/15.0176 OSTRAVA 2012 Tento projekt je
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Projekt: ŠKOLA RADOSTI, ŠKOLA KVALITY Registrační číslo projektu: CZ.1.07/1.4.00/21.3688 EU PENÍZE ŠKOLÁM
ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 email: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA
Progressive loyalty V1.0. Copyright 2017 TALENTHUT
Progressive loyalty Copyright 2017 TALENTHUT www.talenthut.io 1. Welcome The Progressive Loyalty Siberian CMS module will allow you to launch a loyalty program and reward your customers as they buy from
Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list
VY_32_INOVACE_AJ_133 Present Perfect x Past Simple Předpřítomný čas x Minulý čas Pracovní list PhDr. Zuzana Žantovská Období vytvoření: květen 2013 Ročník: 1. 4. ročník SŠ Tematická oblast: Gramatika slovesa
Mikrokvadrotor: Návrh,
KONTAKT 2011 Mikrokvadrotor: Návrh, Modelování,, Identifikace a Řízení Autor: Jaromír r Dvořák k (md( md@unicode.cz) Vedoucí: : Zdeněk Hurák (hurak@fel.cvut.cz) Katedra řídicí techniky FEL ČVUT Praha 26.5.2011
Některé potíže s klasifikačními modely v praxi. Nikola Kaspříková KMAT FIS VŠE v Praze
Některé potíže s klasifikačními modely v praxi Nikola Kaspříková KMAT FIS VŠE v Praze Literatura J. M. Chambers: Greater or Lesser Statistics: A Choice for Future Research. Statistics and Computation 3,
Výukový materiál zpracovaný v rámci projektu EU peníze do škol. illness, a text
Výukový materiál zpracovaný v rámci projektu EU peníze do škol ZŠ Litoměřice, Ladova Ladova 5 412 01 Litoměřice www.zsladovaltm.cz vedeni@zsladovaltm.cz Pořadové číslo projektu: CZ.1.07/1.4.00/21.0948
IT4Innovations Centre of Excellence
IT4Innovations Centre of Excellence Supercomputing for Applied Sciences Ivo Vondrak ivo.vondrak@vsb.cz: VSB Technical University of Ostrava http://www.it4innovations.eu Motto The best way to predict your
Fourth School Year PISTON MACHINES AND PISTON COMPRESSORS
Fourth School Year PISTON MACHINES AND PISTON COMPRESSORS 1. Piston machines Piston machines are classified as machines working with volume changes. It means that the working medium is closed by a in a
1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.
Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving
SPECIAL THEORY OF RELATIVITY
SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory
Risk management in the rhythm of BLUES. Více času a peněz pro podnikatele
Risk management in the rhythm of BLUES Více času a peněz pro podnikatele 1 I. What is it? II. How does it work? III. How to find out more? IV. What is it good for? 2 I. What is it? BLUES Brain Logistics
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
místo, kde se rodí nápady
místo, kde se rodí nápady a private european network of information centres on materials and innovative products. Created in 2001 in Paris, it provides members with a large selection of specific, reproducible
Project Life-Cycle Data Management
Project Life-Cycle Data Management 1 Contend UJV Introduction Problem definition Input condition Proposed solution Reference Conclusion 2 UJV introduction Research, design and engineering company 1000
Instrukce: Cvičný test má celkem 3 části, čas určený pro tyto části je 20 minut. 1. Reading = 6 bodů 2. Use of English = 14 bodů 3.
Vážení studenti, na následujících stranách si můžete otestovat svou znalost angličtiny a orientačně zjistit, kolik bodů za jazykové kompetence byste získali v přijímacím řízení. Maximální počet bodů je
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: Education Označení materiálu: VY_32_INOVACE_MAT27 Datum vytvoření: 10.10.2013
Caroline Glendinning Jenni Brooks Kate Gridley. Social Policy Research Unit University of York
Caroline Glendinning Jenni Brooks Kate Gridley Social Policy Research Unit University of York Growing numbers of people with complex and severe disabilities Henwood and Hudson (2009) for CSCI: are the
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost
Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Číslo projektu: Číslo šablony: Název materiálu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 CZ.1.07/1.5.00/34.0410 II/2 Parts of a computer IT English Ročník: Identifikace materiálu: Jméno
Nová éra diskových polí IBM Enterprise diskové pole s nízkým TCO! Simon Podepřel, Storage Sales 2. 2. 2011
Nová éra diskových polí IBM Enterprise diskové pole s nízkým TCO! Simon Podepřel, Storage Sales 2. 2. 2011 Klíčovéatributy Enterprise Information Infrastructure Spolehlivost Obchodní data jsou stále kritičtější,
Biosensors and Medical Devices Development at VSB Technical University of Ostrava
VŠB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Biosensors and Medical Devices Development at VSB Technical University of Ostrava Ing. Martin Černý Ph.D. and
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
Aktuální trendy ve výuce a testování cizích jazyků v akademickém prostředí
Jazykové centrum Aktuální trendy ve výuce a testování cizích jazyků v akademickém prostředí 15. 1. 2018 Projekt Zvýšení kvality vzdělávání a jeho relevance pro potřeby trhu práce CZ.02.2.69/0.0/16_015/0002362
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Matrix Leadframe Dual Gage Introduction
Product Group: DIODES / September 4, 215 / PCN-DD-28-215 Rev Matrix Leadframe Dual Gage Introduction DESCRIPTION OF CHANGE: Vishay Semiconductors announces the change of D-PAK s lead-frame, from Single
SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91
SEZNAM PŘÍLOH Příloha 1 Dotazník Tartu, Estonsko (anglická verze)... 90 Příloha 2 Dotazník Praha, ČR (česká verze)... 91 Příloha 3 Emailové dotazy, vedení fakult TÜ... 92 Příloha 4 Emailové dotazy na vedení
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona