StatSoft Úvod do neuronových sítí
|
|
- Dušan Horák
- před 10 lety
- Počet zobrazení:
Transkript
1 StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem neuronová síť? Neuronová síť Neuronová síť je algoritmus, který si bere za vzor činnost lidského mozku. Již v dřívějších dobách bylo zjištěno, že mozek je tvořen velkým množstvím vzájemně propletených buněk, které nazýváme neurony, jež spolu komunikují pomocí elektrických impulzů. Od vzniku prvních počítačů se programátorské kapacity snaží vytvořit algoritmus, který bude činnost lidského mozku napodobovat. Vzniká tak pojem umělá inteligence, který výsledky takového snažení někdy více a někdy méně reprezentuje. Princip neuronových sítí je v dnešní době implementován v řadě dostupných analytických a rozhodovacích softwarů a v různých oborech lidské činnosti podává extrémně dobré výsledky, tedy ve srovnání se standardními typy rozhodovacích algoritmů. Princip sítě Princip softwarové neuronové sítě, jak už bylo řečeno a je odhadnutelné z názvu, se inspiruje biologickou neuronovou sítí, kde je základním stavebním kamenem (zjednodušeně řečeno) nervová buňka neuron. Jednotlivé neurony jsou vzájemně propojeny spoji ohodnocenými vahami. Takovéto propojení a schopnost tyto váhy adaptovat (učit se) na základě trénovacích vzorů v datech, dává neuronové síti nové široké možnosti v oblasti analýzy dat. Jak již bylo řečeno, hlavní předností neuronové sítě je schopnost učit se, tedy zapamatovat si kombinace, které vedly k požadovanému výstupu a u nových vstupů se potom obracet na svou paměť a na základě zkušeností odhadovat nový výsledek. V tomto případě mluvíme o generalizaci (zevšeobecňování), která je další velkou předností algoritmu neuronových sítí. Zjednodušeně řečeno, jde o přiměřenou dovednost správně zareagovat i na vstupy, které nebyly součástí trénovacích dat, a vyvodit z nich obecné závěry o datech. Schopnost učit se bývá někdy dokonce považována za definici umělé inteligence. Často v praxi nemáme ani dostatek apriorních znalostí o tom, co způsobuje konkrétní variabilitu zkoumané proměnné, a není proto jiná možnost než se vlivy snažit popsat na základě historický naměřených dat. Učení se z historických dat je dnes součástí mnoha oborů, včetně Data Miningu, do kterého v našem pojetí neuronové sítě řadíme.
2 Další vlastností neuronových sítí je schopnost řešit i silně nelineární úlohy. Využití neuronové sítě v analýze dat má smysl všude tam, kde selhávají klasické modely jako například regrese. V některých případech se stává, že není možné najít nějakou jednoduchou matematickou funkci, která by vhodně postihla všechny vlivy, které variabilitu sledované proměnné ovlivňují. Potom jsou neuronové sítě vhodná alternativa. Neuronové sítě jsou také do jisté míry schopné pracovat s nepřesnými daty a šumy. My však doporučujeme provést vždy čištění a přípravu dat. Možností aplikace neuronových sítí je celá řada, dají se využít na následující typy ůloh. Vpravo vidíme menu softwaru STATISTICA, podle kterého možnosti využití shrneme. Regrese regresní analýza se zabývá předpovídáním spojité proměnné na základě vstupů (spojitých či kategorických prediktorů nezávislých proměnných). Klasifikace neboli zařazování do tříd. Na základě úrovně cílové proměnné a kombinace vstupů, které ke konkrétnímu výsledku vedou, bude vytvořen model, který dokáže klasifikovat nová data. Typickým příkladem jsou bankovní problémy, které řeší otázky bonity klienta, schopnost jeho splácení, ale také problémy typu poslat či neposlat pacienta na podrobné vyšetření, detekce spamu apod. Časové řady (regrese) slouží k modelování spojitých proměnných, které prochází vývojem v čase, resp. časových řad. V této situaci můžeme vybrat buď pouze jedinou závislou proměnnou, kde model bude vycházet ze zpožděných hodnot této časové řady, nebo máme možnost zvolit další proměnné, které budou tuto řadu vysvětlovat. Časové řady (klasifikace) tento typ analýzy použijeme tehdy, je-li naše cílová (závislá) proměnná kategorické povahy. Závislou proměnnou lze vysvětlovat opět pouze svým historickým průběhem v čase, případně je možné zvolit další spojité i kategorické prediktory jako nezávislé vysvětlující proměnné. Shluková analýza tento typ analýzy nepoužívá závislou proměnnou (učení bez učitele), cílem je detekovat netriviální shluky v datech. Jde o tzv. Kohonenovu síť. Vstupem jsou pouze hodnoty (vstupních) nezávislých proměnných. Kohonenovu síť (též Self-organizing Feature Map SOFM) chápejme jako druh shlukové analýzy (vektorovou kvantizaci). Poznamenejme, že máme také možnost zvolit více závislých proměnných pro analýzu. Což znamená například možnost modelovat vícerozměrnou časovou řadu.
3 Model neuronu Jak již bylo naznačeno, neuronové sítě se skládají z neuronů propojených vazbami. Model jednoho neuronu zachycuje obrázek níže: x 0 = 1 x 1 x 2 w 1 w 2 w 0 = θ w n ξ y = f ( ξ ) x n Zdroj: Skripta STATISTICA NEURONOVÉ SÍTĚ (Doc. RNDr. Ing. Marcel Jiřina, Ph.D.) Model neuronu se skládá ze tří částí vstupní, výstupní a funkční. Na základě vah mohou být jednotlivé vstupy potlačeny, nebo naopak zvýhodněny. Funkční část zpracuje informace ze vstupů a vygeneruje výstup. Výstupní část potom přivede výslednou informaci na vstup jiných neuronů. Tedy výstup neuronu f(ξ) je spočítán ve chvíli, když suma vstupů do neuronu vynásobených jejich konkrétními vahami překročí určitou hodnotu, kterou nazýváme práh ( ). Neuron lze popsat tímto způsobem: = Kde je konkrétní hodnota na i-tém vstupu, je potom váha tohoto vstupu, je prahová hodnota, je celkový počet vstupů, je transformační funkce a hodnota na výstupu. Skupina neuronů Toto byl pouze jeden neuron, ten sám o sobě není schopen vykonávat o nic moc složitější funkci než klasická regresní analýza. Síla neuronové sítě se však projeví až při propojení neuronů mezi sebou do větších struktur. Neurony jsou uspořádány do vrstev. Nezapomeňme, že algoritmus se učí sám a všechny váhy si sám volí. Vzorem takové jednoduché neuronové sítě je například následující obrázek: Příklad uspořádání třívrstvé NS se třemi vstupy a dvěma výstupy
4 Pokud si představíme, jak takovouto sítí proudí příchozí data, je nám jasné, že právě díky složitosti spojení dokáže neuronová síť najít i složitější a nelineární vztahy, na druhou stranu je ale pravda, že ze získané neuronové sítě nikdy nebudeme schopni získat interpretaci, proč to u konkrétního pozorování dopadlo, jak to dopadlo. Je to tedy metoda typu black box nejsme schopni jednoduše interpretovat výsledky či získat jednoduchý předpis závislosti mezi závislou a nezávislými proměnnými. Tato vlastnost nám vůbec nevadí, pokud nám jde pouze o předpověď veličiny v oblasti našeho zájmů, nicméně pokud chceme zjistit i důvody výsledku, pak nám tato metoda příliš nepomůže. V modulu STATISTICA Automatické neuronové sítě máte na výběr několik typů sítí. MLP - Vícevrstvou perceptronovou síť RBF - Radial Basis Function) SOFM - Kohonenovu síť Lineární síť Bayesovské sítě (PNN a GRNN) Každý typ sítě má různé vlastnosti, výběr závisí na povaze úlohy a charakteru dat. Hrozba přeučení sítě Obecně platí, že pokud síť obsahuje malý počet neuronů, její schopnost vystihnou a popsat závislosti v trénovacích datech je slabší. Pokud bude síť naopak obsahovat příliš velký počet neuronů, tato síť pravděpodobně nebude mít problém navést a reprezentovat závislosti v trénovacích datech, ale její schopnost generalizace, tedy vystihnou správný výsledek na nových datech, může být horší. Takovému jevu se říká přeučení sítě (overfitting). K přeučení také může docházet ve chvíli, kdy model obsahuje velký počet vstupních parametrů a relativně málo pozorování. Cílem tedy není maximalizace výkonu sítě na trénovacích datech, ale rozumný kompromis mezi trénovacím výkonem a schopností zevšeobecňovat znalosti i na nových datech. S tím, o čem zde píšeme, úzce souvisí následující princip rozdělení datového souboru, který neuronové sítě implicitně používají. Jedná se o rozdělení dat na trénovací, testovací a případně validační množinu. Trénovací množina náhodně vybraná část dat, která slouží pro učení sítě Testovací množina další část dat sloužící k zastavení trénovaní, aby nedošlo k přeučení sítě Validační množina zbytek dat, na kterém ověříme konečnou kvalitu modelu. Jde o data, která dosud model k dispozici neměl Typicky se toto rozdělení dělá v poměru , případně Ve výsledcích je pak reportován výkon na každé z těchto množin, přičemž většinou vybíráme model, který nemá příliš velké výkyvy mezi výkony na jednotlivých množinách.
5 Využití neuronových sítí Neuronové sítě mají (někdy až pozoruhodnou) schopnost extrahovat pravidla a trendy z komplikovaných průběhů v datech. Další vlastností je, při správné aplikaci, schopnost velmi přesně předpovědět údaje, které nebyly součástí trénovacích dat, tedy schopnost zobecňovat. Tuto schopnost mají samozřejmě i jiné typy algoritmů, které spadají do Data Miningu. Neuronové sítě se nejčastěji používají např. k Odhadu dynamické stability u energetických systémů Rozpoznání poruch strojů a výpočetní techniky Lékařství detekce a odhad velikosti tumoru, chemická diagnostika Dopravní signalizace Rozpoznání kvality výrobku bez nutnosti laboratorních experimentů Předpověď finančních časových řad včetně velmi dynamických řad (burza, směnné kurzy) Samoobslužné mechanismy (subsystémy řízení budov) Optické rozpoznávání textů, písma a podpisů NN byla nasazena také v systémech pro převod mluvené řeči do písemné podoby Reakce spotřebitelů na nové zboží Detekce úvěrového rizika Odhad kvality ropných produktů Konkrétní využití neuronových sítí v praxi naleznete například pod následujícími odkazy: UNIPETROL RPA Česká rafinérská Více o aplikaci neuronových sítí se můžete dozvědět například na našem odborném kurzu. V nějakém z příštích čísel bychom Vás rádi provedli konkrétním příkladem v modulu STATISTICA Automatické neuronové sítě.
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Diagnostika regrese pomocí grafu 7krát jinak
StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Neuronové sítě v DPZ
Univerzita J. E. Purkyně v Ústí nad Labem Fakulta životního prostředí Neuronové sítě v DPZ Seminární práce z předmětu Dálkový průzkum Země Vypracovali: Jan Lantora Rok: 2006 Zuzana Vašková Neuronové sítě
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
StatSoft Úvod do data miningu
StatSoft Úvod do data miningu Tento článek je úvodním povídáním o data miningu, jeho vzniku, účelu a využití. Historie data miningu Rozvoj počítačů, výpočetní techniky a zavedení elektronického sběru dat
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1
METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS Veronika NEVTÍPILOVÁ Gisáček 2013 Katedra Geoinformatiky Univerzita Palackého v Olomouci Cíle otestovat kvalitu interpolace pomocí
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Pokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu
Neuronové sítě L. Horký*, K. Břinda** Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 *horkyladislav@seznam.cz, **brinda@fjfi.cvut.cz Abstrakt Cílem našeho příspěvku je získat uživatelský
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
Klasifikace předmětů a jevů
Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Neuronové sítě (11. přednáška)
Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,
StatSoft Jak poznat vliv faktorů vizuálně
StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení
Data Miner Recipes. StatSoft
StatSoft Data Miner Recipes V tomto článku Vám ukážeme postup dataminingového modelování ve výukovém modulu Data Miner Recipes, který je vhodný pro začínající uživatele, protože Vás krok po kroku provede
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
Emergence chování robotických agentů: neuroevoluce
Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové
IBM SPSS Neural Networks
IBM Software IBM SPSS Neural Networks Nové nástroje pro tvorbu prediktivních modelů Aby mohla Vaše organizace zlepšit rozhodovaní ve všech procesních postupech, potřebuje odhalit vztahy a souvislosti v
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
10. Předpovídání - aplikace regresní úlohy
10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
Rozpoznávání písmen. Jiří Šejnoha Rudolf Kadlec (c) 2005
Rozpoznávání písmen Jiří Šejnoha Rudolf Kadlec (c) 2005 Osnova Motivace Popis problému Povaha dat Neuronová síť Architektura Výsledky Zhodnocení a závěr Popis problému Jedná se o praktický problém, kdy
Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:
Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Numerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze
KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti
Učící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Algoritmy a struktury neuropočítačů ASN - P1
Algoritmy a struktury neuropočítačů ASN - P1 http://amber.feld.cvut.cz/ssc www.janatuckova.cz Prof.Ing. Jana Tučková,CSc. Katedra teorie obvodů K331 kancelář: 614, B3 tel.: 224 352 098 e-mail: tuckova@fel.cvut.cz
Vytěžování znalostí z dat
Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.
Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
STATISTICKÝ SOUBOR. je množina sledovaných objektů - statistických jednotek, které mají z hlediska statistického zkoumání společné vlastnosti
ZÁKLADNÍ STATISTICKÉ POJMY HROMADNÝ JEV Statistika pracuje s tzv. HROMADNÝMI JEVY cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů: velkého počtu jedinců
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Příprava dat v softwaru Statistica
Příprava dat v softwaru Statistica Software Statistica obsahuje pokročilé nástroje pro přípravu dat a tvorbu nových proměnných. Tyto funkcionality přinášejí značnou úsporu času při přípravě datového souboru,
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti
Statistické zkoumání faktorů výšky obyvatel ČR
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopravní 1. blok studia Statistické zkoumání faktorů výšky obyvatel ČR Statistika 2012/2013 Semestrální práce Studijní skupina: 2_37 Vedoucí práce: Ing. Tomáš
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 13 0:40 Implementace Umělá inteligence (UI) Umělá inteligence
Plánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
Pro zvládnutí této kapitoly budete potřebovat 4-5 hodin studia.
Úvod (Proč se zabývat statistikou?) Statistika je metoda analýzy dat, která nachází široké uplatnění v celé řadě ekonomických, technických, přírodovědných a humanitních disciplín. Její význam v poslední
VÝBĚR A JEHO REPREZENTATIVNOST
VÝBĚR A JEHO REPREZENTATIVNOST Induktivní, analytická statistika se snaží odhadnout charakteristiky populace pomocí malého vzorku, který se nazývá VÝBĚR neboli VÝBĚROVÝ SOUBOR. REPREZENTATIVNOST VÝBĚRU:
Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů
Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci
Regresní a korelační analýza
Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).
Obsah. Seznam obrázků... XV. Seznam tabulek... XV
Obsah Seznam obrázků... XV Seznam tabulek... XV 1. Úvod.... 1 1.1 Benchmarking, benchmarkingové modely... 3 1.1.1 Teorie benchmarkingu... 4 1.1.2 Základní typy benchmarkingu a jeho další modifikace...
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
UČENÍ BEZ UČITELE. Václav Hlaváč
UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení
4EK201 Matematické modelování. 11. Ekonometrie
4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
Využití strojového učení k identifikaci protein-ligand aktivních míst
Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita
Základy umělé inteligence
Základy umělé inteligence Úvod Základy umělé inteligence - úvod. Vlasta Radová, ZČU, katedra kybernetiky 1 Zavedení pojmu umělá inteligence Inteligence je schopnost získávat a aplikovat vědomosti a tedy
STATISTICKÉ PROGRAMY
Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné STATISTICKÉ PROGRAMY VYUŽITÍ EXCELU A SPSS PRO VĚDECKO-VÝZKUMNOU ČINNOST Elena Mielcová, Radmila Stoklasová a Jaroslav Ramík Karviná
Manuální kroková regrese Newsletter Statistica ACADEMY
Manuální kroková regrese Newsletter Statistica ACADEMY Téma: Logistická regrese Typ článku: Novinka verze 12, návody Dnes si popíšeme funkcionalitu, která Vám pomůže při tvorbě regresního modelu (v našem
Předpovídejte snadno a rychle
Předpovídejte snadno a rychle Newsletter Statistica ACADEMY Téma: Časové řady, exponenciální vyrovnávání Typ článku: Příklad Dnes se budeme zabývat situací, kdy chceme předpovídat, jak se bude v čase vyvíjet
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Téma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
Miroslav Čepek. Fakulta Elektrotechnická, ČVUT. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 12 Kombinování modelů Miroslav Čepek Pavel Kordík a Jan Černý (FIT) Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL)
Uvod Modely n-tic Vyhodnocov an ı Vyhlazov an ı a stahov an ı Rozˇ s ıˇ ren ı model u n-tic Jazykov e modelov an ı Pavel Smrˇ z 27.
Jazykové modelování Pavel Smrž 27. listopadu 2006 Osnova 1 Úvod motivace, základní pojmy 2 Modely n-tic 3 Způsob vyhodnocování 4 Vyhlazování a stahování 5 Rozšíření modelů n-tic 6 Lingvisticky motivované
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme