8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze

Rozměr: px
Začít zobrazení ze stránky:

Download "8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze"

Transkript

1 KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze

2 Rozhodování za neurčitosti Dosud v UI přednáškách: vyhledávání co nejlepšího řešení problému za deterministických podmínek (bez neurčitosti). Důležitou schopností inteligentních systémů je ale také schopnost vybrat co nejlepší rozhodnutí za nejistých podmínek (s neurčitostí). Příklad: Jet z A do B tramvají, nebo metrem? Tramvaj: rychlejší cesta dle jízdního řádu, ale velmi nejisté dodržení. Metro: delší cesta, ale téměř jisté dodržení. Příklad: kam směřovat dopis s tímto PSČ? 15700? 15706? 15200? 15206? Jak se optimálně rozhodnout? Oba příklady lze formalizovat stejným rámcem.

3 Příklad [Kotek, Vysoký, Zdráhal: Kybernetika 1990] Paní Nováková se vrací z práce. Co uvaří pan Novák k večeři? Napadly ho 3 možnosti rozhodnutí (d - decision): nic... neudělat nic žádná práce, ale zhorší náladu pí. Novákové. pizza... ohřát mraženou pizzu není pracné, ale neohromí. n.h.... nadívaná holoubata udělá jí radost, ale velmi pracné. P. Novák číselně zhodnotí míru nepříjemnosti způsobenou jednotlivými rozhodnutími. Ta závisí na tom, s jakou náladou přijde pí. Nováková domů, což je neznámý stav. Rozlišme tyto možnosti: dobrá... pí. Nováková má dobrou náladu. průměrná... pí. Nováková má průměrnou náladu. špatná... pí. Nováková má špatnou náladu. Pro každou z 9 možných situací (3 možná rozhodnutí 3 možné stavy) je nepříjemnost dána ztrátovou funkcí l(d, s) (l - loss): l(d, s) d = nic d = pizza d = n.h. x = dobrá x = průměrná x = špatná

4 Příklad (pokračování) Neznámý stav - náladu pí. Novákové - zkusí p. Novák odhadnout experimentem: sděĺı jí, že ztratil její obĺıbený časopis a sleduje její reakci. Předpokládá 4 možné reakce: mírná... nic se neděje, časopis najdeme. podrážděná... proč nedáváš věci na své místo? nasupená... proč já si toho Nováka brala? hrozivá... rezignované mlčení Reakce je přímo pozorovatelný příznak (zde nálady). Ze zkušenosti p. Novák ví, jak jsou jednotlivé reakce pravděpodobné při dané náladě: to vystihuje podmíněné rozložení P (x s). P (x s) x = x = x = x = mírná podrážděná nasupená hrozivá s = dobrá s = průměrná s = špatná

5 Rozhodovací strategie Rozhodovací strategie: pravidlo pro výběr rozhodnutí na základě pozorovaného příznaku. Tj. funkce d = δ(x). Příklady možných strategíı p. Nováka: δ(x) x = mírná x = podrážděná x = nasupená x = hrozivá δ 1 (x) = nic nic pizza n.h. δ 2 (x) = nic pizza n.h. n.h. δ 3 (x) = n.h. n.h. n.h. n.h. δ 4 (x) = nic nic nic nic Celkem má k dispozici 3 4 = 81 možných strategíı (3 možná rozhodnutí pro každou ze 4 možných hodnot příznaku). Jak určit, která ze dvou strategíı je lepší? Obecně: jak strategie uspořádat dle kvality? Definujeme riziko strategie při stavu s: střední hodnota ztráty podmíněná stavem s. R(δ, s) = x l(δ(x), s)p (x s)

6 Kritérium MiniMax Příklad: riziko strategie δ 1 při stavu s = dobrá je R(δ 1, dobrá) = l(δ 1 (mírná), dobrá) P (mírná dobrá)+l(δ 1 (podrážděná), dobrá) P (podrážděná dobrá) +l(δ 1 (nasupená), dobrá) P (nasupená dobrá) + l(δ 1 (hrozivá), dobrá) P (hrozivá dobrá) = l(nic, dobrá) l(nic, dobrá) l(pizza, dobrá) l(n.h., dobrá) 0 = = 0.2 Podobně: R(δ 1, průměrná) = 4.4 a R(δ 1, špatná) = 8.3 Maximální riziko strategie δ 1 (přes všechny možné stavy) je tedy 8.3. Podobně: maximální riziko strategie δ 3 je 6. MiniMaxové kritérium: ze dvou strategíı je lepší ta, jejíž maximální riziko je nižší. Tedy podle MiniMaxu je δ 3 lepší než δ 1. Nejlepší strategie δ je podle MiniMaxu ta, která minimalizuje maximální riziko: δ = arg min δ max s R(δ, s) Pro její nalezení bychom v aktuálním příkladě museli spočítat max. rizika všech 81 možných strategíı.

7 Bayesovské kritérium Co když p. Novák ví, že p. Nováková má obvykle dobrou náladu? Obecněji: ví, jak jsou její jednotlivé nálady pravděpodobné, tj. zná rozložení P (s). Např: x = dobrá s = průměrná s = špatná P (s) = MiniMaxové kritérium tuto znalost nezohledňuje. Díky znalosti P (s) lze spočítat střední riziko dané strategie přes všechny možné stavy: r(δ) = s R(δ, s)p (s) Tedy např. r(δ 1 ) = = 1.85 r(δ 3 ) = = 4.4 Bayesovské kritérium: ze dvou strategíı je lepší ta s nižším středním rizikem. Z Bayesovského hlediska je tedy δ 1 lepší než δ 3. Opačně proti MiniMaxovému kritériu!

8 Bayesovsky optimální strategie Bayesovsky optimální strategie je ta, která minimalizuje střední riziko. Tj. δ = arg min δ r(δ) Protože P (x s)p (s) = P (s x)p (x) (Bayesovo pravidlo), platí r(δ) = R(δ, s)p (s) = l(δ(x), s)p (x s)p (s) s s x = l(δ(x), s)p (s x)p (x) = P (x) l(δ(x), s)p (s x) s x x s }{{} Podmíněné riziko Optimální strategii tedy můžeme dostat minimalizací podmíněného rizika zvlášt pro každé x: δ (x) = arg min d l(d, s)p (s x) s Tedy narozdíl od MiniMaxové optimální strategie nemusíme počítat riziko pro všechny možné strategie. Bayesovsky optimální strategii lze sestrojit bod po bodu nalezením optimálního rozhodnutí pro jednotlivá pozorování x.

9 Statistické rozhodování: shrnutí Zadány: Množina možných stavů: S Množina možných rozhodnutí: D Ztrátová funkce: zobrazení l : D S R (reálná čísla) Množina možných hodnot příznaku X Pravděpodobnostní rozložení příznaku za daného stavu P (x s), x X, s S. Definujeme: Strategie: zobrazení δ : X D Riziko strategie δ při stavu s S: R(δ, s) = x l(δ(x), s)p (x s) MiniMaxová úloha: Dále zadána: množina přípustných strategíı. Úloha: nalézt optimální strategii δ = arg min δ max s S R(δ, s) Bayesovská úloha: Dále zadáno: pravděpodobnostní rozložení stavů P (s), s S. Dále definujeme: střední riziko strategie δ: r(δ) = s R(δ, s)p (s) Úloha: nalézt optimální strategii δ = arg min δ r(δ) Řešení: δ (x) = arg min d s l(d, s)p (s x)

10 Příznakové rozpoznávání Systémy pro rozpoznávání. Příklad úlohy: Lze převést na úlohu statistického rozhodování O jakou jde číslici? Příznak = vektor hodnot pixelů. Příznakové rozpoznávání číslic: klasifikace do jedné ze tříd na základě vektoru hodnot pixelů. Speciální případ statistického rozhodování: Příznakový vektor x = (x 1, x 2,... ): hodnoty pixelů č. 1, 2,.... Množina stavů S = množina rozhodnutí D = {0, 1,... 9}. Stav = skutečná třída, Rozhodnutí = rozpoznaná třída. Ztrátová funkce: l(d, s) = Střední riziko = střední chyba klasifikace. { 0, d = s 1, d s

11 Bayesovská klasifikace Obvyklé kritérium: minimalizace střední chyby Bayesovská klasifikační úloha. Optimální klasifikace při příznaku x: δ ( x) = arg min l(d, s) P (s x) = arg max P (s x) d }{{} s s 0 pokud d=s Voĺıme tedy nejpravděpodobnější třídu pro danou hodnotu příznakového vektoru. Obvykle ale není známo rozložení P (s x). Je třeba odhadnout z trénovacích dat (již klasifikovaných příkladů). Trénovací data (příklady): ( x 1, s 1 ), ( x 2, s 2 ),... ( x l, s l ). Odhad: Zásadní problém příznakové klasifikace: P (s x) počet příkladů v nichž x i = x a s i = s počet příkladů v nichž x i = x Počet příkladů l postačující ke spolehlivému odhadu P (s x) roste exponenciálně s počtem složek vektoru x. tj. např. s rozlišením (počtem pixelů) v rozpoznávaných obrazcích. prokletí kombinatorické exploze. Reálné úlohy: jmenovatel často nulový! Bayesovská klasifikace: horní limit kvality klasifikace, v praxi obvykle nedosažitelný.

12 Bayesovská klasifikace Lze též využít Bayesova vztahu: P (s x) = P ( x s)p (s) P ( x) Odhad P ( x s): analogicky jako odhad P (s x). Odhad P (s): jako relativní četnost jednotlivých tříd s v trénovacích datech, tj. P (s) P ( x) není třeba odhadovat. Proč? počet příkladů třídy s l Tento přístup sám o sobě neřeší problém množství dat potřebných k odhadu pravděpodobností. Ale umožňuje ho řešit nepřímo: 1. Hodnoty P (s) jsou často explicitně známy a není nutno je odhadovat. Příklad: při rozpoznávání 1. číslice PSČ je nejčastější číslice 1, např P (1) = 0.6. Takto je do klasifikace zapojena apriorní znalost o pravděpodobnostech tříd. P (s)... apriorní pravděpodobnost. 2. Přístup umožňuje formulovat zjednodušenou, tzv. naivní Bayesovskou klasifikaci, v níž nemusíme odhadovat P ( x s), ale pouze P (x(1) s), P (x(2) s),....

13 Naivní Bayesovská klasifikace Ve výjimečném případě statistické nezávislosti jednotlivých příznakových složek x(i) v rámci každé třídy s platí P ( x s) = P (x(1) s) P (x(2) s)... Stačí tedy odhadnout P (x(i) s) zvlášt pro každé i (a každé s). Např: P (x(3) 8) podíl případů číslice 8 s rozsvíceným 3. pixelem. Žádná kombinatorická exploze (pouze jednosložkové pravděpodobnosti). V praxi: nezávislost se často předpokládá, i když neplatí, příp. platí přibližně. Potom jde o tzv. Naivní Bayesovskou klasifikaci. Často úspěšná metoda. Nezávislost mezi příznakovými složkami je jen jedním z možných předpokladů, jehož splnění vede k zabránění kombinatorické explozi. Alternativní předpoklady jsou např.: Podobné objekty patří do stejné třídy klasifikace dle nejbližších sousedů. Třída je plně určena lineární kombinací složek příznaku klasifikace dle lineárního modelu. Podobně jako u naivní b.k. se metody založené na těchto předpokladech s úspěchem používají, i když jsou předpoklady splněné jen přibližně.

14 Klasifikace dle nejbližších sousedů Podobnost chápeme jako malou vzdálenost v prostoru příznakových hodnot. Funkce měřící vzdálenost dvou příznakových vektorů, tzv. metrika: ρ : X X R + {0} taková, že x, y, z: ρ(x, x) = 0, ρ(x, y) = ρ(y, x), ρ(x, z) ρ(x, y) + ρ(y, z). Příklad: Euklidovská metrika pro vektory x 1, x 2 se reálnými složkami x 1 (i) resp. x 2 (i): ρ E ( x 1, x 2 ) = i (x 1(i) x 2 (i)) 2 Jsou-li složky binární (z {0, 1}), tak ρ E ( x 1, x 2 ) 2 je počet složek, v nichž se x 1 liší od x 2 - tzv. Hammingova metrika. Zadáno: Klasifikace dle k nejbližších sousedů (k-nearest neighbor classification, k-nn). k ℵ trénovací příklady: ( x 1, s 1 ), ( x 2, s 2 ),... ( x l, s l ) metrika ρ : X X R neklasifikovaný objekt s příznakem x. Úloha: klasifikovat x Postup: z trénovacích příkladů vyber k nejbližších k x vzhledem k metrice ρ. Třída, které mezi nimi převládá, budiž třídou x.

15 Flexibilita klasifikace Jak volit k? Obecná odpověd neexistuje, záleží na konkrétních datech. Obecný trend: Uvažujme trénovací data se dvěma třídami (červená/zelená) a šumem (některé s i chybné). Značky - trénovací data, křivka - hranice klasifikace: k = 1: Dobré přizpůsobení trénovacím datům. Velká citlivost k šumu. Bayesovská klasifikace: Méně flexibilní než 1-nn, více než 15-nn. k = 15: Špatné přizpůsobení trénovacím datům. Malá citlivost k šumu. Vzpomeňte: Bayesovská klasifikace δ má nejnižší možné střední riziko r(δ ). Pozn.: Znázorněná Bayesovská vychází z přesných pravděpodobností P (s x), které jsou pro klasifikační algoritmus neznámé! Pozorování: příliš velká flexibilita (malé k) i příliš malá flexibilita (velké k) vedou ke klasifikátorům značně odlišným od Bayesovského, tedy ke zvyšování středního rizika r(δ). Podobný trend i klasifikaci založené na modelech (např. polynomiální model flexibilnější než lineární).

16 Trénovací chyba a střední riziko Střední riziko r(δ) klasifikátoru δ odpovídá relativní četnosti jeho nesprávných klasifikací. Definujme empirické střední riziko r E (δ) (též: trénovací chyba ) jako relativní četnost nesprávně klasifikovaných příkladů v trénovacích datech. Je r E (δ) dobrým odhadem skutečného středního rizika r(δ)? Příklad: 1-nn není dobrý klasifikátor (viz minulou stranu), přestože správně klasifikuje všechny trénovací příklady, tj. má trénovací chybu 0. Trénovací chyba tedy není dobrým odhadem středního rizika. Pro jeho odhad je třeba mít k dispozici trénovací množinu ( x 1, s 1 ),... ( x l, s l ) a nezávislou testovací množinu ( x l+1, s l+1 ),... ( x l+m, s l+m ) (může vzniknout rozdělením původních trénovacích dat např. v poměru 75% a 25%). klasifikátor sestrojit na základě trénovací množiny empirické střední riziko tohoto klasifikátoru spočítat na testovací množině. Empirické střední riziko na testovací množině je nevychýleným odhadem skutečného střední rizika. (Pozor: nevychýlený neznamená přesný!)

17 (Umělé) neuronové sítě Inspirovány poznatky o neuronech a nervových sítích živých organizmů Schopnost učit se = extrahovat a reprezentovat závislosti v datech, které nejsou zřejmé Schopnost řešit silně nelineární úlohy využití pro klasifikaci, regresi a predikci časových řad Základní výpočetní jednotkou je neuron Řešení problému: Volba typu sítě, metody učení Regularizace - návrh topologie, přizpůsobení sítě složitosti úlohy Učení - automatická optimalizace parametrů (vah) na základě trénovacích příkladů. ξ = n i=1 w ix i θ Sumační potenciál f(ξ) = 1 1+e λξ Aktivační funkce Nervová sít. Model neuronu.

18 Typy neuronových sítí Různé typy sítí pro různé typ úloh: vícevrstvá perceptonová (MLP) - viz. dále, Hopfieldova - autoasociační, Kohonenovy mapy - samoorganizující se, druh shlukové analýzy RBF (Radial Basis Function),... Autoasociativní pamět. Samoorganizující se mapy.

19 Perceptron vs. vícevrstvá sít Nejjednodušší dopředná neuronová sít - pouze dvě vrstvy Rosenblatt, 1957 hlavní přínos oproti neuronu je adaptační pravidlo w new = w old + α(out desired out actual )input, α - rychlost učení, konverguje pokud váhy existují Lineární (pro jeden výst. neuron binární) klasifikátor Vhodná demonstrace přechodu od lineární k nelineární klasifikaci Perceptron. Minsky, Papert: Perceptrons, 1969 Zásadní omezení perceptronů, nelze implementovat mj. funkci XOR Řešení až v 80. letech - vícevrstvá sít (navíc skrytá vrstva) Učení algoritmem zpětného šíření (backpropagation) Přirozené rozšíření metody nejmenších čtverců Gradientní optimalizace, chyba je zpětně šířena od výstupů na vnitřní neurony w = η J w, η - rychlost učení, J chybová funkce Aktivační funkcí typicky sigmoida nebo tanh (derivovatelnost)

20 Perceptron vs. vícevrstvá sít XOR jako vícevrstvá sít. [Duda, Hart, Stork: Pattern Classification].

21 Nelineární aproximace vícevrstvou sítí Aproximace nelineární funkce MLP sítí s architekturou Je využito čtyř protilehle umístěných sigmoidálních fcí vnitřních neuronů. [Duda, Hart, Stork: Pattern Classification].

22 Nelineární aproximace vícevrstvou sítí Složitější architektury mohou implementovat libovolné rozhodovací hranice (nekonvexní, oddělené apod.) [Duda, Hart, Stork: Pattern Classification].

KYBERNETIKA A UMĚLÁ INTELIGENCE. 2. Pravděpodobnostní rozhodování a klasifikace

KYBERNETIKA A UMĚLÁ INTELIGENCE. 2. Pravděpodobnostní rozhodování a klasifikace KYBERNETIKA A UMĚLÁ INTELIGENCE 2. Pravděpodobnostní rozhodování a klasifikace laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Daniel Novák Poděkování:

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

Umělé neuronové sítě

Umělé neuronové sítě Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

Lineární klasifikátory

Lineární klasifikátory Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

Rozdělování dat do trénovacích a testovacích množin

Rozdělování dat do trénovacích a testovacích množin Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Trénování sítě pomocí učení s učitelem

Trénování sítě pomocí učení s učitelem Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup

Více

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby

Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Neparametrické odhady hustoty pravděpodobnosti

Neparametrické odhady hustoty pravděpodobnosti Neparametrické odhady hustoty pravděpodobnosti Václav Hlaváč Elektrotechnická fakulta ČVUT Katedra kybernetiky Centrum strojového vnímání 121 35 Praha 2, Karlovo nám. 13 hlavac@fel.cvut.cz Statistické

Více

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi: Neuronové sítě V prezentaci jsou použity podklady zřady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)

Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.

Více

Neuronové sítě v DPZ

Neuronové sítě v DPZ Univerzita J. E. Purkyně v Ústí nad Labem Fakulta životního prostředí Neuronové sítě v DPZ Seminární práce z předmětu Dálkový průzkum Země Vypracovali: Jan Lantora Rok: 2006 Zuzana Vašková Neuronové sítě

Více

Algoritmy a struktury neuropočítačů ASN P3

Algoritmy a struktury neuropočítačů ASN P3 Algoritmy a struktury neuropočítačů ASN P3 SOM algoritmus s učitelem i bez učitele U-matice Vektorová kvantizace Samoorganizující se mapy ( Self-Organizing Maps ) PROČ? Základní myšlenka: analogie s činností

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

oddělení Inteligentní Datové Analýzy (IDA)

oddělení Inteligentní Datové Analýzy (IDA) Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {

Více

ÚVOD DO ROZPOZNÁVÁNÍ

ÚVOD DO ROZPOZNÁVÁNÍ ÚVOD DO ROZPOZNÁVÁNÍ 1/31 Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac Osnova přednášky Modelování

Více

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi: Neuronové sítě V prezentaci jsou použity podklady z řady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech

Více

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Přednáška 13 Redukce dimenzionality

Přednáška 13 Redukce dimenzionality Vytěžování Dat Přednáška 13 Redukce dimenzionality Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ČVUT (FEL) Redukce dimenzionality 1 /

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

Instance based learning

Instance based learning Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění

Více

NG C Implementace plně rekurentní

NG C Implementace plně rekurentní NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty

Více

Umělá inteligence II

Umělá inteligence II Umělá inteligence II 11 http://ktiml.mff.cuni.cz/~bartak Roman Barták, KTIML roman.bartak@mff.cuni.cz Dnešní program! V reálném prostředí převládá neurčitost.! Neurčitost umíme zpracovávat pravděpodobnostními

Více

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu Neuronové sítě L. Horký*, K. Břinda** Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 *horkyladislav@seznam.cz, **brinda@fjfi.cvut.cz Abstrakt Cílem našeho příspěvku je získat uživatelský

Více

Detekce interakčních sil v proudu vozidel

Detekce interakčních sil v proudu vozidel Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Jan Motl (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 7 1/27 Vytěžování znalostí z dat Pavel Kordík, Jan Motl Department of Computer Systems Faculty of Information Technology

Více

Učící se klasifikátory obrazu v průmyslu

Učící se klasifikátory obrazu v průmyslu Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie

Klasifikace a rozpoznávání. Bayesovská rozhodovací teorie Klasifikace a rozpoznávání Bayesovská rozhodovací teorie Extrakce p íznaků Granáty Četnost Jablka Váha [dkg] Pravděpodobnosti - diskrétní p íznaky Uvažujme diskrétní p íznaky váhové kategorie Nechť tabulka

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder

K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam

Více

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:

Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová

Více

Preceptron přednáška ze dne

Preceptron přednáška ze dne Preceptron 2 Pavel Křížek Přemysl Šůcha 6. přednáška ze dne 3.4.2001 Obsah 1 Lineární diskriminační funkce 2 1.1 Zobecněná lineární diskriminační funkce............ 2 1.2 Učení klasifikátoru........................

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

Algoritmy a struktury neuropočítačů ASN - P11

Algoritmy a struktury neuropočítačů ASN - P11 Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

1. Soutěživé sítě. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Jednoduchá soutěživá síť MAXNET

1. Soutěživé sítě. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Jednoduchá soutěživá síť MAXNET Obsah 1. Soutěživé sítě... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Jednoduchá soutěživá síť MAXNET... 2 1.3.1 Organizační dynamika... 2 1.3.2 Adaptační dynamika... 4 1.3.3 Aktivní dynamika...

Více

Strojové učení Marta Vomlelová

Strojové učení Marta Vomlelová Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer

Více

PV021: Neuronové sítě. Tomáš Brázdil

PV021: Neuronové sítě. Tomáš Brázdil 1 PV021: Neuronové sítě Tomáš Brázdil Cíl předmětu 2 Na co se zaměříme Základní techniky a principy neuronových sítí (NS) Přehled základních modelů NS a jejich použití Co si (doufám) odnesete Znalost základních

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová

ÚVOD DO ROZHODOVÁNÍ PŘEDNÁŠKA. OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ Přednáška 1. Zuzana Bělinová PŘEDNÁŠKA 1 ÚVOD DO ROZHODOVÁNÍ Organizační Vyučující Ing., Ph.D. email: belinova@k620.fd.cvut.cz Doporučená literatura Dudorkin J. Operační výzkum. Požadavky zápočtu docházka zápočtový test (21.5.2015)

Více

Jasové transformace. Karel Horák. Rozvrh přednášky:

Jasové transformace. Karel Horák. Rozvrh přednášky: 1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

Algoritmy a struktury neuropočítačů ASN - P1

Algoritmy a struktury neuropočítačů ASN - P1 Algoritmy a struktury neuropočítačů ASN - P1 http://amber.feld.cvut.cz/ssc www.janatuckova.cz Prof.Ing. Jana Tučková,CSc. Katedra teorie obvodů K331 kancelář: 614, B3 tel.: 224 352 098 e-mail: tuckova@fel.cvut.cz

Více

Implementace Bayesova kasifikátoru

Implementace Bayesova kasifikátoru Implementace Bayesova kasifikátoru a diskriminačních funkcí v prostředí Matlab J. Havlík Katedra teorie obvodů Fakulta elektrotechnická České vysoké učení technické v Praze Technická 2, 166 27 Praha 6

Více

Pokročilé neparametrické metody. Klára Kubošová

Pokročilé neparametrické metody. Klára Kubošová Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační

Více

Katedra kybernetiky, FEL, ČVUT v Praze.

Katedra kybernetiky, FEL, ČVUT v Praze. Strojové učení a dolování dat přehled Jiří Kléma Katedra kybernetiky, FEL, ČVUT v Praze http://ida.felk.cvut.cz posnova přednášek Přednáška Učitel Obsah 1. J. Kléma Úvod do předmětu, učení s a bez učitele.

Více

Obsah přednášky Jaká asi bude chyba modelu na nových datech?

Obsah přednášky Jaká asi bude chyba modelu na nových datech? Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich

Více

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013 Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové

Více

Datové struktury 2: Rozptylovací tabulky

Datové struktury 2: Rozptylovací tabulky Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy

Více

Automatické vyhledávání informace a znalosti v elektronických textových datech

Automatické vyhledávání informace a znalosti v elektronických textových datech Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická

Více

5. Umělé neuronové sítě. Neuronové sítě

5. Umělé neuronové sítě. Neuronové sítě Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

VZTAH MEZI STATISTICKÝM A STRUKTURNÍM ROZPOZNÁVÁNÍM

VZTAH MEZI STATISTICKÝM A STRUKTURNÍM ROZPOZNÁVÁNÍM VZTAH MEZI STATISTICKÝM A STRUKTURNÍM ROZPOZNÁVÁNÍM 1/46 Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/

Více

Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy

Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely

Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Učení bez učitele Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Klastrování Kohonenovy mapy LVQ (Učení vektorové kvantizace) Zbývá: Hybridní modely (kombinace učení bez učitele

Více

Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti:

Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Řešení příkladu - klasifikace testovacího subjektu podle minimální vzdálenosti: Postup: I) zvolení metriky pro výpočet vzdáleností dvou bodů II) zvolení metriky pro určení vzdálenosti mezi dvěma množinami

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

NEURONOVÉ SÍTĚ A EVOLUČNÍ ALGORITMY NEURAL NETWORKS AND EVOLUTIONARY ALGORITHMS

NEURONOVÉ SÍTĚ A EVOLUČNÍ ALGORITMY NEURAL NETWORKS AND EVOLUTIONARY ALGORITHMS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

1. Data mining. Strojové učení. Základní úlohy.

1. Data mining. Strojové učení. Základní úlohy. 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co

Více

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.

Optimální rozdělující nadplocha 4. Support vector machine. Adaboost. Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Bayesovské rozhodování - kritétium minimální střední ztráty

Bayesovské rozhodování - kritétium minimální střední ztráty Bayesovské rozhodování - kritétium imální střední ztráty Lukáš Slánský, Ivana Čapková 6. června 2001 1 Formulace úlohy JE DÁNO: X množina možných pozorování (příznaků) x K množina hodnot skrytého parametru

Více