Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
|
|
- Martina Machová
- před 8 lety
- Počet zobrazení:
Transkript
1 Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX
2 Přidělená data a jejich popis Data určená pro zpracování jsou označená jako Vote. Jedná se o hlasování kongresu USA z roku K dispozici je celkem 17 atributů, z čehož je jeden hlavní - class (rozložení sil v kongresu 267 demokratů a 168 republikánů). Ostatní atributy jsou kategoriálního typu (pro / proti). Weka Na prvním snímku je vidět stav po načtení dat do systému Weka. Cílem je najít takový algoritmus, který data zanalyzuje s nejlepším vypovídajícím hodnocením. Celý soubor dat bude pro aplikaci jednotlivých algoritmů rozdělen na 2/3 dat trénovacích a 1/3 testovacích.
3 ZeroR Jako první algoritmus bylo aplikováno pravidlo zero rule, které hledá dominantní třídu (skupinu objektu se stejnými charakteristikami). Zde je vidět, že tento algoritmus neposkytuje dostatečně silný výsledek, neboť má chybovost přes 40%
4 OneR Dalším algoritmem je one rule, algoritmus určí pravidlo pro každý ukazatel a ten který má nejmenší počet chyb je stanoven jako one rule a všechny ostatní indikátory jsou s ním poměřovány. Tento algoritmus dosáhl velmi slušného výsledku s přesností přesahující 96%.
5 J48 Třetím algoritmem je rozhodovací strom, který lze použít především na kategoriální atributy (tedy náš případ). Pokud by uživatel chtěl použít rozhodovací strom na nominální atributy, musel by data patřičným způsobem upravit (např. pomocí intervalů, rozdělení do skupin atp.) Nejprve jsem zde uvedl obrázek stromu pro představu, kolik větví má. Na dalším obrázku je potom možné vidět velmi solidní výsledek s přesností na 97%, což představuje pouhé 4 chyby.
6
7 BayesNet Bayesovská síť využívá pravděpodobnostních vztahů mezi jevy. Tento algoritmus nabízí výsledek s téměř 92% přesností.
8 MultilayerPerceptron Předposledním algoritmem je neuronová síť jež zanáší jednotlivé výskyty do mnohovrstevného grafu. Toto testování nabízí zatím nejlepší výsledek s přesností na 98,6%, tedy s pouze dvěma chybami.
9 IB1 Jedná se o zkratku instance based learning algorithm. Tento algoritmus se snaží najít nejbližší příklad v tréninkové části dat tomu v testovací části a dle toho určit jeho třídu. Výsledkem je 12 chybných zařazení.
10 Shrnutí Weka Následující tabulka je seřazena podle spolehlivosti jednotlivých algoritmů. Na základě daných výsledků bych volil mezi neuronovou sítí a rozhodovacím stromem. Respektive, i když má neuronová síť lepší výsledek, vzhledem k plochosti a jednoduchosti stromu, bych dal nejspíš přednost právě tomuto algoritmu. Počet chyb Spolehlivost MultilayerPerceptron 2 98,6% J ,3% OneR 5 96,6% BayesNet 12 91,9% IB ,9% ZeroR 62 58,1%
11 Rapid miner Tento software má podstatně lepší grafické UI, které umožňuje lepší orientaci v práci s daty. Na druhou stranu klade větší požadavky na znalosti a dovednosti uživatele, aby daný výstup fungoval tak, jak má. Já jsem použil pro všechny níže uvedené modely následující strukturu: Vstupní data -> vyhodnocení (stejně jako u weky 66% jsou data trénovací a zbytek testovací) Ve vyhodnocení se bude měnit testovací model dle jednotlivých testů (na obrázku decision tree ).
12 Single rule Decision tree
13 BayesNet Random tree
14 Neural net Zde bylo potřeba upravit vstupní data na numerické, jelikož tento model neuměl pracovat s binomickými atributy
15 Shrnutí Rapid miner Stejně jako u předchozího SW jsem dané výstupy zaznamenal do tabulky a seřadil dle spolehlivosti předpovědi jednotlivých výskytů. Zde se nejlépe jeví použití single rule (obdoba OneR z weky) nebo random tree. Počet chyb Spolehlivost Single rule 10 93,2% Random tree 10 93,2% Decision tree 12 91,9% Neural net 13 91,2% BayesNet 22 85,1%
16 Enterprise miner Hlavním nedostatkem tohoto systému spatřuji v tom, že neexistuje možnost si daný software vyzkoušet bez zakoupení (ať už formou LITE verze kdy jsou uživateli zpřístupněny jen některé základní funkce; nebo třeba TRIAL verze, která bývá většinou omezena časovým oknem). S tímto omezením se vážou i moje osobní problémy s daným softwarem, kdy ke zpracování zadané úlohy je potřeba využívat školní PC, které svojí hardwarovou kapacitou nedostačují k plynulé práci s daným softwarem. Decision tree Na prvním obrázku je vidět aplikované schéma, které je výchozím pro následnou analýzu pomocí různých metod. Zde je zvolenou metodou decision tree.
17 Výsledkem je následující matice správných a chybných přiřazení: Vzhledem k tomu, že Enterprise miner rozděluje danou matici na všechny nastalé jevy, je pro srovnání potřeba sečíst ty správné výskyty neboli první a poslední řádek (Target: democrat, Outcome: democrat; Target: republican, Outcome: republican). Zde se dostaneme na číslo 95,37%. Tento výsledek byl dosažen na testovacích datech, které představovali 40% z celkového souboru.
18 Autoneural S touto funkcí bylo dosaženo přesnosti pouhých 84,96% na stejných datech se stejným rozdělením.
19 Neural network Zajímavé je, že u nerálních sítí bylo na testovacích datech dosaženo 100% přesnosti, ale na validační části dat (30% z celku) pouze 96,15%.
20 Regression Stejně je tomu tak i u regresní funkce kdy je rozdíl mezi přesností trénovacích a validačních dat ještě větší neboli 100% ku 94,61%.
21 Shrnutí Enterprise miner Tento software ve srovnání s předchozími dvěma je rozhodně nejsložitější na znalosti uživatele. Vše lze parametricky upravovat, a tudíž umožňuje uživateli absolutní kontrolu nad prováděnou analýzou. Taktéž nabízí poměrně širokou škálu formy výstupu (grafické i numerické). Osobně bych tento program označil za velmi dobrý pro profesionální práci ovšem absolutně nevhodný pro začátečníky, či uživatele bez velmi hlubokých znalostí veškerých použitých algoritmů (právě z důvodu rozličného množství potřebných parametrů při jejich aplikaci). A nakonec výsledná tabulka: Počet chyb Spolehlivost - trénovací data Spolehlivost - validační data Decision tree 8 / 6 95,37% 95,38% Autoneural 26 / 20 84,96% 84,61% Neural network 0 / 5 100,00% 96,15% Regression 0 / 7 100,00% 94,61% Na základě těchto výsledků bych nejspíše volil rozhodovací strom, neboť jeho spolehlivost nemá takové výkyvy jako regrese a neurální síť a přitom dosahuje velmi vysokých hodnot. Shrnutí práce Po vyzkoušení všech tří navrhovaných softwarů se při zpracování následujícího úkolu budu rozhodovat mezi Rapid minerem a Wekou. Výstupy jsou pro mě čitelné ve všech testovaných případech stejně. S Wekou je jednoduší práce, ovšem Rapid miner má přívětivější uživatelské rozhraní.
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ
PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.
Instance based learning
Učení založené na instancích Instance based learning Charakteristika IBL (nejbližších sousedů) Tyto metody nepředpokládají určitý model nejsou strukturované a typicky nejsou příliš užitečné pro porozumění
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma
Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS Veronika NEVTÍPILOVÁ Gisáček 2013 Katedra Geoinformatiky Univerzita Palackého v Olomouci Cíle otestovat kvalitu interpolace pomocí
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Doplňování chybějících hodnot v kategoriálních datech 2.00
Doplňování chybějících hodnot v kategoriálních datech 2.00 1. Cíle programu Účelem programu je umožnit uživateli doplnění chybějících hodnot v kategoriálních datech. Pro doplnění chybějících hodnot je
Úvod do RapidMineru. Praha & EU: Investujeme do vaší budoucnosti. 1 / 23 Úvod do RapidMineru
Vytěžování dat, cvičení 2: Úvod do RapidMineru Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 23 Úvod do RapidMineru Dnes vám ukážeme jeden z mnoha
Měření průtoku kapaliny s využitím digitální kamery
Měření průtoku kapaliny s využitím digitální kamery Mareš, J., Vacek, M. Koudela, D. Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky, Technická 5, 166 28, Praha 6 e-mail:
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404
SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem
Moˇ znosti testov an ı Jiˇr ı Dvoˇr ak 19. ledna 2012 Jiˇ r ı Dvoˇ r ak Moˇ znosti testov an ı
19. ledna 2012 Běžné schéma Vytvoření testu Volba tématu Volba cílů Vytvoření úloh Sestavení testu Běžné schéma Vytvoření testu Volba tématu Volba cílů Vytvoření úloh Sestavení testu Běžné schéma Vytvoření
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
Velmi stručný úvod do použití systému WEKA pro Data Mining (Jan Žižka, ÚI PEF)
Velmi stručný úvod do použití systému WEKA pro Data Mining (Jan Žižka, ÚI PEF) Systém WEKA, implementovaný v jazyce Java, lze získat nejlépe z následující URL: . Dále
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Zadání soutěžních úloh
16. až 18. dubna 2015 Krajské kolo 2014/2015 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou úlohu můžete dostat maximálně 10 bodů, z nichž je většinou 9 bodů
MI-PAA. úkol č.3. Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem
Jakub Holý holyjak1@fit.cvut.cz MI-PAA úkol č.3 Řešení problému batohu dynamickým programováním, metodou větví a hranic a aproximativním algoritmem Zadání Naprogramujte řešení problému batohu: 1. metodou
Učící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
Pokročilé neparametrické metody. Klára Kubošová
Klára Kubošová Další typy stromů CHAID, PRIM, MARS CHAID - Chi-squared Automatic Interaction Detector G.V.Kass (1980) nebinární strom pro kategoriální proměnné. Jako kriteriální statistika pro větvení
Uživatelská příručka. 06/2018 Technické změny vyhrazeny.
Uživatelská příručka 1 OBSAH 1 ÚVOD... 3 1.1 Merbon SCADA... 3 1.1.1 K čemu program slouží...3 2 Přihlášení a odhlášení z programu... 4 3 Projekty... 5 3.1 Výběr zobrazení... 5 3.2 Schémata... 6 3.3 Grafy...
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
V Brně dne a
Aktiva v ISMS V Brně dne 26.09. a 3.10.2013 Pojmy ISMS - (Information Security Managemet System) - systém řízení bezpečnosti č informací Aktivum - (Asset) - cokoli v organizaci, co má nějakou cenu (hmotná
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ
DOBÝVÁNÍ ZNALOSTÍ Z DATABÁZÍ Úvod a oblasti aplikací Martin Plchút plchut@e-globals.net DEFINICE A POJMY Netriviální extrakce implicitních, ch, dříve d neznámých a potenciáln lně užitečných informací z
Získávání dat z databází 1 DMINA 2010
Získávání dat z databází 1 DMINA 2010 Získávání dat z databází Motto Kde je moudrost? Ztracena ve znalostech. Kde jsou znalosti? Ztraceny v informacích. Kde jsou informace? Ztraceny v datech. Kde jsou
Sběr dat pro CIE. Oto Potluka. IREAS a VŠE Praha HTTP://CIE.VSE.CZ
Sběr dat pro CIE Oto Potluka IREAS a VŠE Praha HTTP://CIE.VSE.CZ Tři datové soubory pro CIE Výzva Vzdělávejte se! - 3357 firem Grantové výzvy 1481 podpořená firma Kontrolní skupina 3000 4000 firem Odmítnutí
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
Základy počtu pravděpodobnosti a metod matematické statistiky
Errata ke skriptu Základy počtu pravděpodobnosti a metod matematické statistiky K. Hron a P. Kunderová Autoři prosí čtenáře uvedeného studijního textu, aby případné další odhalené chyby nad rámec tohoto
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů
Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Spojení OntoUML a GLIKREM ve znalostním rozhodování
1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková et al. 1 Osnova předmětu 1. Dobývání znalostí - popis a metodika procesu a objasnění základních pojmů 2. Nástroje pro modelování klasifikovaných dat a jejich
Procesní řízení. Hlavní zásady a praxe dodavatele Komix
Procesní řízení Hlavní zásady a praxe dodavatele Komix 1 Obsah prezentace Teoretická část (menšího objemu) orientace na zákazníka hodnocení procesu podmínky procesního řízení cyklus zlepšování procesu
Lineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
Neuronové sítě (11. přednáška)
Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,
Kritérium Orange Weka KEEL KNIME TANAGRA AlphaMiner RA, RS, RP, S, AP, DS, NS, BM, MNS, GA, + TXT, XLS, CSV, C45, ARF, + CSV, XLS, ARF, + BMP, PNG, +
4 Srovnání sad Následující kapitola shrnuje ohodnocení všech kritérií dle jednotlivých pohledů. Hodnocení vychází ze slovního popisu z předchozí kapitoly. První tři pohledy jsou pro přehlednost uspořádány
Metody založené na analogii
Metody založené na analogii V neznámé situaci lze použít to řešení, které se osvědčilo v situaci podobné případové usuzování (Case-Based Reasoning CBR) pravidlo nejbližšího souseda (nearest neighbour rule)
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT RNDr. Eva Janoušová INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ HODNOCENÍ ÚSPĚŠNOSTI KLASIFIKACE A SROVNÁNÍ KLASIFIKÁTORŮ ÚVOD Vstupní data Subjekt Objem hipokampu Objem komor Skutečnost
Vícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
1. VYMEZENÍ ODBORNÉ STÁŽE
1. VYMEZENÍ ODBORNÉ STÁŽE Šablona stáže představuje základní rámec odborné stáže pro typovou pozici a obsahuje požadavky na obsah a průběh stáže, na stážistu i na poskytovatele stáže. Bílá pole označují
Hodnoticí standard. Programátor (kód: M) Odborná způsobilost. Platnost standardu. Skupina oborů: Informatické obory (kód: 18)
Programátor (kód: 18-003-M) Autorizující orgán: Ministerstvo vnitra Skupina oborů: Informatické obory (kód: 18) Týká se povolání: Programátor Kvalifikační úroveň NSK - EQF: 4 Odborná způsobilost Název
Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy
Centrum Digitální Optiky Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy Výzkumná zpráva projektu Identifikační čí slo výstupu: TE01020229DV003 Pracovní balíček: Zpracování dat S-H senzoru
GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané
Zpráva o výsledcích šetření za rok 2012. Ministerstvo pro místní rozvoj ČR Odbor veřejného investování
Vytvoření adekvátního systému získávání informací o legislativních, veřejných zakázek a informací od jednotlivých zadavatelů ohledně přijímání elektronických obchodních praktik Objednatel: Ministerstvo
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Státnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
Dobývání dat a strojové učení
Dobývání dat a strojové učení Dobývání znalostí z databází (Knowledge discovery in databases) Non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns
Neuronové sítě v DPZ
Univerzita J. E. Purkyně v Ústí nad Labem Fakulta životního prostředí Neuronové sítě v DPZ Seminární práce z předmětu Dálkový průzkum Země Vypracovali: Jan Lantora Rok: 2006 Zuzana Vašková Neuronové sítě
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ KATEDRA KONTROLY A ŘÍZENÍ JAKOSTI Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku
Specializace Návrhář software na základě analýzy vytváří návrh softwarových aplikací ve formě schémat a diagramů.
Návrhář software Návrhář software na základě analýzy vytváří návrh softwarových aplikací ve formě schémat a diagramů. Odborný směr: Informační technologie Odborný podsměr: nezařazeno do odborného podsměru
Informace k e-learningu
Informace k e-learningu Příprava na testy bude probíhat samostatně formou e-learningových školení přístupných způsobem popsaným níže. Zkušební testy, pomocí kterých se budete připravovat na závěrečný test,
1. VYMEZENÍ ODBORNÉ STÁŽE
1. VYMEZENÍ ODBORNÉ STÁŽE Šablona stáže představuje základní rámec odborné stáže pro typovou pozici a obsahuje požadavky na obsah a průběh stáže, na stážistu i na poskytovatele stáže. Bílá pole označují
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Rozvoj tepla v betonových konstrukcích
Úvod do problematiky K novinkám v požární odolnosti nosných konstrukcí Praha, 11. září 2012 Ing. Radek Štefan prof. Ing. Jaroslav Procházka, CSc. Znalost rozložení teploty v betonové konstrukci nebo její
PRACUJEME S TSRM. Modul Samoobsluha
PRACUJEME S TSRM Modul Samoobsluha V této kapitole Tato kapitola obsahuje následující témata: Téma Na straně Přehled kapitoly 6-1 Užití modulu Samoobsluha 6-2 Přihlášení k systému 6-3 Hlavní nabídka TSRM
CASE. Jaroslav Žáček
CASE Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Co znamená CASE? Definice dle SEI A CASE tool is a computer-based product aimed at supporting one or more software engineering activities
=PREZENTACE= stručná příručka základů. (verze 2007)
(verze 2007) ÚVOD Program MS Power Point patří softwarově do skupiny uživatelských aplikací, které slouží k vytváření prezentací. Tento program je spolu s programy MS Word a MS Excel základním pilířem
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických
Manažerská ekonomika KM IT
KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout
Diplomová práce Prostředí pro programování pohybu manipulátorů
Diplomová práce Prostředí pro programování pohybu manipulátorů Štěpán Ulman 1 Úvod Motivace: Potřeba plánovače prostorové trajektorie pro výukové účely - TeachRobot Vstup: Zadávání geometrických a kinematických
Statistická teorie učení
Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální
PHOTO-ON Profesionální on-line správa fotografií
PHOTO-ON Profesionální on-line správa fotografií Softwarový produkt PHOTO-ON je především určen k evidenci, zařazování a archivaci statického obrazového materiálu např. fotografie, obrazová dokumentace
Předzpracování dat. Lenka Vysloužilová
Předzpracování dat Lenka Vysloužilová 1 Metodika CRISP-DM (www.crisp-dm.org) Příprava dat Data Preparation příprava dat pro modelování selekce příznaků výběr relevantních příznaků čištění dat získávání
Dolování z textu. Martin Vítek
Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Klasifikační a regresní lesy Pokročilé neparametrické metody Klasifikační a regresní lesy Klasifikační les Klasifikační les je klasifikační model vytvořený
Informatika a výpočetní technika 1. Ing. Ladislav Nagy Technická univerzita v Liberci FT / KOD / 2011
Informatika a výpočetní technika 1 Ing. Ladislav Nagy Technická univerzita v Liberci FT / KOD / 2011 Úvod Základní informace Podmínky zápočtu, docházka Pravidla chovaní v PC učebně Náplň cvičení EXCEL
Získávání znalostí z dat
Získávání znalostí z dat Informační a komunikační technologie ve zdravotnictví Získávání znalostí z dat Definice: proces netriviálního získávání implicitní, dříve neznámé a potencionálně užitečné informace
Bohuslav Mach, Správce úkolů. pro informační systém firmy s-cape.cz 1/6
Správce úkolů pro informační systém firmy s-cape.cz 1/6 Popis aplikace - D1 Aplikace umožňující uživateli s vytvořeným účtem v informačním systému firmy s-cape.cz prohlížet a editovat s nim spojené úkoly.
PowerOPTI Řízení účinnosti tepelného cyklu
PowerOPTI Řízení účinnosti tepelného cyklu VIZE Zvýšit konkurenceschopnost provozovatelů elektráren a tepláren. Základní funkce: Spolehlivé hodnocení a řízení účinnosti tepelného cyklu, včasná diagnostika
Použití Virtual NAT interfaces na Cisco IOS
Použití Virtual NAT interfaces na Cisco IOS Lukáš Czakan (CZA0006) Marek Vašut (VAS0064) Abstrakt: Tato práce obsahuje praktické srovnání použití klasického NATu s NAT virtuálním rozhraním a jejich použití
Vzdělávací obsah vyučovacího předmětu
Vzdělávací obsah vyučovacího předmětu Informatika 6. ročník Zpracovala: Mgr. Ivana Kubátová Vyhledávání informací a komunikace ověřuje věrohodnost informací a informačních zdrojů, posuzuje jejich závažnost
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Informatika a výpočetní technika (IVT) Úvod do předmětu, základní pojmy IVT, operační systém MS Windows, Internet, netiketa, číselné soustavy a uložení dat
Typy souborů ve STATISTICA. Tento článek poslouží jako přehled hlavních typů souborů v programu
StatSoft Typy souborů ve STATISTICA Tento článek poslouží jako přehled hlavních typů souborů v programu STATISTICA, ukáže Vám jejich možnosti a tím Vám dovolí využívat program efektivněji. Jistě jste již
WORD. (zobecněno pro verzi 2007)
WORD (zobecněno pro verzi 2007) Program MS Word patří softwarově do skupiny uživatelských aplikací, které se nazývají textové editory. Slouží především k editacím či-li úpravám textů vč. vkládání grafických
5.1 Rozhodovací stromy
5.1 Rozhodovací stromy 5.1.1 Základní algoritmus Způsob reprezentování znalostí v podobě rozhodovacích stromů je dobře znám z řady oblastí. Vzpomeňme jen nejrůznějších klíčů k určování různých živočichů
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Dobývání a vizualizace znalostí
Dobývání a vizualizace znalostí Olga Štěpánková, Lenka Vysloužilová, et al. https://cw.fel.cvut.cz/wiki/courses/a6m33dvz/start 1 Osnova přednášky Úvod: data, objem, reprezentace a základní terminologie
FORTANNS. havlicekv@fzp.czu.cz 22. února 2010
FORTANNS manuál Vojtěch Havlíček havlicekv@fzp.czu.cz 22. února 2010 1 Úvod Program FORTANNS je software určený k modelování časových řad. Kód programu má 1800 řádek a je napsán v programovacím jazyku
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Rozdělování dat do trénovacích a testovacích množin
Rozdělování dat do trénovacích a testovacích množin Marcel Jiřina Rozpoznávání je důležitou metodou při zpracování reálných úloh. Rozpoznávání je definováno dvěma kroky a to pořízením dat o reálném rozpoznávaném
Podrobná analýza k aktivitě č. 3 - implementace procesního řízení do praxe úřadu
Příjemce dotace: Město Moravská Třebová Název projektu: Zvýšení kvality řízení a poskytovaných služeb MÚ Moravská Třebová Registrační číslo projektu: CZ.1.04/4.1.01/89.00116 Podrobná analýza k aktivitě
Praktické aspekty ABC
Praktické aspekty ABC Metoda maticového propočtu 1. Zjednodušený procesní model 2. Produktový přístup k nákladům 3. Analýza vnitřních produktů 4. Sestavení ABC rozpočtů 5. Maticový propočet Tomáš Nekvapil
Ing. Jiří Fejfar, Ph.D. Geo-informační systémy
Ing. Jiří Fejfar, Ph.D. Geo-informační systémy Definice, budování a život GIS Kapitola 1: Vztahy strana 2 Data, informace, IS, GIS Kapitola 1: Vztahy strana 3 Rozhodnutí Znalosti Znalostní systémy. Informace
Využití neuronové sítě pro identifikaci realného systému
1 Portál pre odborné publikovanie ISSN 1338-0087 Využití neuronové sítě pro identifikaci realného systému Pišan Radim Elektrotechnika 20.06.2011 Identifikace systémů je proces, kdy z naměřených dat můžeme
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Návrh uživatelských rozhraní NOV-WEB. Jakub Bartoš, Pavel Dvořák, Jakub Motyčka, Kamil Procházka
Návrh uživatelských rozhraní D3 NOV-WEB Web pro stránky předmětů Jakub Bartoš, Pavel Dvořák, Jakub Motyčka, Kamil Procházka Prototyp - Prototyp je vytvořen formou webové stránky. Výchozí stránka prototypu