Neuronové sítě (11. přednáška)
|
|
- Tadeáš Pešan
- před 8 lety
- Počet zobrazení:
Transkript
1 Neuronové sítě (11. přednáška)
2 Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů, aby postup (model) dával řešení našeho problému. Příklad Chceme převést stupně Celsia na stupně Farenheita. Modelem výpočtu bude lineární funkce f(x) = αx + b, která je daná dvěma parametry α, b. Vhodné nastavení parametrů v tomto případě je α = 9/5 a b = 32. Při strojovém učení zvolíme dostatečně silný model a nastavení parametrů chceme nalézt automaticky na základě vzorových řešení daného problému (např. víme, že 0 o C = 32 o F a 100 o C = 212 o F ).
3 Strojové učení Proč Slogan Chceme, aby se stroj naučil řešit zadaný problém na základě vzorových řešení řešení je příliš komplikované problém se často mění, vyvíjí lidská práce je drahá (v porovnání se strojovou)
4 Strojové učení typické aplikace Rozpoznávání vzorců věci na fotkách osoby na fotkách výrazy tváře mluvená slova Rozpoznávání anomálií netypické sekvence finančních transakcí netypická data přicházející ze senzorů v atomové elektrárně Předpovídání vývoj ceny akcií na burze / vývoj měnového kurzu jaké filmy bude mít daný člověk rád
5 Strojové učení příklad Rozpoznávání věcí na fotkách (zdroj: G. Hinton, Neural Networks for ML) 40 vydra 15 křepelka 7 tetřev 6 koroptev 85 sněžný pluh 6 vrtná plošina 6 záchranný člun 2 popelářské auto 15 žížala 12 gilotina 7 orangutan 6 koště
6 Strojové učení různé přístupy Výpočetní modely Rozhodovací stromy (decision trees) Bayesovské sítě Support Vector Machines Genetické algoritmy Neuronové sítě
7 Proč neuronové sítě? studium mozku lidského myšlení zajímavý výpočetní model
8 Biologie neuronu Dendrity Neurotransmitter SYNAPSE Váčky s neurotransmitterem Receptor Synaptická štěrbina Synapse (axon-tělo) Ranvierovy zářezy Jádro Membrána Odstupový konus axonu Jádro (Schwannova buňka) Myelinová pochwa (Schwannova buňka) Synapse (axon-dendrit) Dendrity Axon
9 mají hezké derivace proto se s nimi dobře pracuje Stochastické neurony výstup se interpretuje jako pravděpodobnost Matematický neuron N : X 1 X n Y Lineární neurony n N(X) = b + x i w i i=0 Binární prahové neurony McCulloch & Pitts, 1943 spike pravdivostní hodnota výroku neuron počítá se pravdivostní hodnotu jiného výroku ze vstupních výroků Lineární prahové neurony Sigmoidy (logistická funkce, příp. tanh) 1 n N(X) = 1 + e z, z = b + x i w i i=0
10 Jednoduché rozpoznávání znaků dvouvrstvá síť vstupní neurony = pixely výstupní neurony = jednotlivé znaky pixel může hlasovat pokud je zabarvený pixel může hlasovat pro víc znaků znak s největším počtem hlasů vyhrává V každém kroku: Proces učení zvyš váhy z aktivních pixelů do správné třídy následně sniž váhy z aktivních pixelů do aktuálně uhádnuté třídy
11 Rozpoznávání znaků učení v obrázcích
12 Typy učících úloh řízené učení (supervised learning) regrese klasifikace reinforcement learning neřízené učení (unsupervised learning)
13 Typy neuronových sítí feed forward (hluboké >2 vnitřní vrstvy) rekurentní neuronové sítě symetrické (Hopfieldova síť)
14 Síla rekurentních sítí I. Sutskever (2011) trénoval Neuronovou síť tak, aby uhodla následující znak v posloupnosti znaků. Trénovací data: Wikipedie. Výsledek (generovaný po jednom znaku) In 1974 Northern Denver had been overshadowed by CNL, and several Irish intelligence agencies in the Mediterranean region. However, on the Victoria, Kings Hebrew stated that Charles decided to escape during an alliance. The mansion house was completed in 1882, the second in its bridge are omitted, while closing is the proton reticulum composed below it aims, such that it is the blurring of appearing on any well-paid type of box printer. (zdroj: G. Hinton, Neural Networks for ML)
15 Perceptron
16 Hopfieldova síť
17 Zdroje
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
Neuronové sítě Ladislav Horký Karel Břinda
Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
NG C Implementace plně rekurentní
NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013
Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové
PV021: Neuronové sítě. Tomáš Brázdil
1 PV021: Neuronové sítě Tomáš Brázdil Cíl předmětu 2 Na co se zaměříme Základní techniky a principy neuronových sítí (NS) Přehled základních modelů NS a jejich použití Co si (doufám) odnesete Znalost základních
Strojové učení Marta Vomlelová
Strojové učení Marta Vomlelová marta@ktiml.mff.cuni.cz KTIML, S303 Literatura 1.T. Hastie, R. Tishirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference and Prediction. Springer
Algoritmy a struktury neuropočítačů ASN - P1
Algoritmy a struktury neuropočítačů ASN - P1 http://amber.feld.cvut.cz/ssc www.janatuckova.cz Prof.Ing. Jana Tučková,CSc. Katedra teorie obvodů K331 kancelář: 614, B3 tel.: 224 352 098 e-mail: tuckova@fel.cvut.cz
Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc
Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron
Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.
Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová
Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky
Neuronové sítě Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Motivace pro výzkum umělých neuronových sítí lidský mozek pracuje jiným způsobem než běžné číslicové počítače počítače přesně
Moderní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
Umělé neuronové sítě
Umělé neuronové sítě 17. 3. 2018 5-1 Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce 5-2 Neuronové aktivační
Markovovy modely v Bioinformatice
Markovovy modely v Bioinformatice Outline Markovovy modely obecně Profilové HMM Další použití HMM v Bioinformatice Analýza biologických sekvencí Biologické sekvence: DNA,RNA,protein prim.str. Sekvenování
Strojové učení se zaměřením na vliv vstupních dat
Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications
Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu
Neuronové sítě L. Horký*, K. Břinda** Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 *horkyladislav@seznam.cz, **brinda@fjfi.cvut.cz Abstrakt Cílem našeho příspěvku je získat uživatelský
Lineární diskriminační funkce. Perceptronový algoritmus.
Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015
Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační
Rozpoznávání v obraze
Rozpoznávání v obraze AdaBoost a detekce objektů IKR, 2013 Roman Juránek www.fit.vutbr.cz/~ijuranek/personal Detekce objektů Úloha - v daném obraze nalézt objekty určitých tříd
Neuronové sítě v DPZ
Univerzita J. E. Purkyně v Ústí nad Labem Fakulta životního prostředí Neuronové sítě v DPZ Seminární práce z předmětu Dálkový průzkum Země Vypracovali: Jan Lantora Rok: 2006 Zuzana Vašková Neuronové sítě
Úvod do umělé inteligence Učení, rozhodovací stromy, neuronové sítě E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Úvod do umělé inteligence /2 /37 Učení UČENÍ učení je klíčové pro neznámé
Využití strojového učení k identifikaci protein-ligand aktivních míst
Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita
Rosenblattův perceptron
Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného
Obsah: Rozhodovací stromy. Úvod do umělé inteligence 11/12 1 / 41
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Rozhodovací stromy Hodnocení úspěšnosti učícího algoritmu Neuronové sítě Úvod do umělé
StatSoft Úvod do neuronových sítí
StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem
Nervová soustává č love ká, neuron r es ení
Nervová soustává č love ká, neuron r es ení Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0110 Nervová soustava člověka je pravděpodobně nejsložitěji organizovaná hmota na Zemi. 1 cm 2 obsahuje 50 miliónů
Neuronové sítě. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Neuronové sítě Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Neuronové sítě Úvod do problematiky Doc. RNDr. Iveta Mrázová, CSc.
Algoritmy a struktury neuropočítačů ASN P4. Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby
Algoritmy a struktury neuropočítačů ASN P4 Vícevrstvé sítě dopředné a Elmanovy MLNN s učením zpětného šíření chyby Vrstevnatá struktura - vícevrstvé NN (Multilayer NN, MLNN) vstupní vrstva (input layer)
Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group
Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme
3. Vícevrstvé dopředné sítě
3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze
Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU
Dálkový průzkum Země Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU Klasifikace založené na strojovém učení Strojové učení je podoblastí umělé inteligence, zabývající se algoritmy
Klasifikace a rozpoznávání. Lineární klasifikátory
Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber
Neuropočítače. podnět. vnímání (senzory)
Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního
Obsah: Rozhodovací stromy. Úvod do umělé inteligence 11/12 1 / 44
Učení, rozhodovací stromy, neuronové sítě Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Učení Rozhodovací stromy Hodnocení úspěšnosti učícího algoritmu Neuronové sítě Úvod do umělé
Úvod do umělé inteligence, rozhodovací stromy, neuronové sítě UČENÍ Obsah: E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ učení je klíčové pro neznámé prostředí (kde návrhář není vševědoucí) učení
Algoritmy a struktury neuropočítačů ASN - P2. Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy
Algoritmy a struktury neuropočítačů ASN - P2 Topologie neuronových sítí, principy učení Samoorganizující se neuronové sítě Kohonenovy mapy Topologie neuronových sítí (struktura, geometrie, architektura)
Učící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky
Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/OBBC LRR/OBB Obecná biologie Živočišné tkáně II. Mgr. Lukáš Spíchal, Ph.D. Cíl přednášky Popis a charakteristika nervové
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
Pravděpodobně skoro správné. PAC učení 1
Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy)
Buňka Neuron Nervová soustava Centrální nervový systém (CNS) mozek mícha Periferní nervový systém (nervy) Základní stavební jednotky Neuron přenos a zpracování informací Gliové buňky péče o neurony, metabolická,
Toolbox pro neuronové sítě pro prostředí Mathematica
Toolbox pro neuronové sítě pro prostředí Mathematica Toolbox for Neural Networks in the environment Mathematica Bc. Martin Macháč Diplomová práce 2009 UTB ve Zlíně, Fakulta aplikované informatiky, 2009
Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely
Učení bez učitele Už bylo: Učení bez učitele (unsupervised learning) Kompetitivní modely Klastrování Kohonenovy mapy LVQ (Učení vektorové kvantizace) Zbývá: Hybridní modely (kombinace učení bez učitele
Jednotlivé historické modely neuronových sítí
Jednotlivé historické modely neuronových sítí Tomáš Janík Vícevrstevná perceptronová síť opakování Teoretický model obsahue tři vrstvy perceptronů; každý neuron první vrstvy e spoen s každým neuronem z
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
Fakulta informačních technologií VUT Brno. Předmět: Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum:
Fakulta informačních technologií VUT Brno Předmět: Projekt: SRE Srovnání klasifikátorů Autor : Jakub Mahdal Login: xmahda03 Datum: 9.12.2006 Zadání Vyberte si jakékoliv 2 klasifikátory, např. GMM vs. neuronová
Neurony a neuroglie /
Nervová tkáň Jedna ze 4 základních typů tkání Vysoce specializovaná - přijímá /dráždivost/, vede /vodivost/, porovnává, ukládá, vytváří informace, zabezpečuje přiměřenou reakci Původ: neuroektoderm CNS
NEURONOVÉ SÍTĚ A EVOLUČNÍ ALGORITMY NEURAL NETWORKS AND EVOLUTIONARY ALGORITHMS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Úloha - rozpoznávání číslic
Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání
přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat
Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního
Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:
Neuronové sítě V prezentaci jsou použity podklady z řady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech
Technická fakulta. Katedra technologických zařízení staveb. Využití neuronových sítí pro integraci PZTS do inteligentních budov.
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Technická fakulta Katedra technologických zařízení staveb Využití neuronových sítí pro integraci PZTS do inteligentních budov diplomová práce Vedoucí práce: Ing. Zdeněk
Odečítání pozadí a sledování lidí z nehybné kamery. Ondřej Šerý
Odečítání pozadí a sledování lidí z nehybné kamery Ondřej Šerý Plán Motivace a popis úlohy Rozdělení úlohy na tři části Detekce pohybu Detekce objektů Sledování objektů Rozbor každé z částí a nástin několika
Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:
Neuronové sítě V prezentaci jsou použity podklady zřady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný
Optimální rozdělující nadplocha 4. Support vector machine. Adaboost.
Optimální rozdělující nadplocha. Support vector machine. Adaboost. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics Opakování Lineární diskriminační
1. Data mining. Strojové učení. Základní úlohy.
1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Preceptron přednáška ze dne
Preceptron 2 Pavel Křížek Přemysl Šůcha 6. přednáška ze dne 3.4.2001 Obsah 1 Lineární diskriminační funkce 2 1.1 Zobecněná lineární diskriminační funkce............ 2 1.2 Učení klasifikátoru........................
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Organismus je řízen dvojím způsobem, hormonálně a nervově. Nervový systém se dělí na centrální a periferní.
Otázka: Centrální nervový systém Předmět: Biologie Přidal(a): wewerka68 Dělení nervové soustavy, nervová tkáň, koncový mozek, kůra, korové analyzátory, mozkové laloky a dutiny, mozkomíšní mok, obaly mozku,
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Framework pro neuronovou sít Flexible Neural Tree Flexible Neural Tree Framework
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Framework pro neuronovou sít Flexible Neural Tree Flexible Neural Tree Framework 2013 Pavel Piskoř Na tomto
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení. PAC učení 1
Výpočetní teorie strojového učení a pravděpodobně skoro správné (PAC) učení PAC učení 1 Cíl induktivního strojového učení Na základě omezeného vzorku příkladů E + a E -, charakterizovat (popsat) zamýšlenou
Neuronové sít. aneb to málo, co o nich vím. J. Doubravová. Seminá o seismologickém softwaru, Teorie Ukázka Webnet a výhledy
aneb to málo, co o nich vím J. Doubravová Seminá o seismologickém softwaru, 2014 J. Doubravová Outline 1 2 3 J. Doubravová Outline 1 2 3 J. Doubravová Tro²ka historie W. McCulloch, W. Pitts 1943 - matematický
Zpracování biologických signálů umělými neuronovými sítěmi
Zpracování biologických signálů umělými neuronovými sítěmi Jana Tučková Katedra teorie obvodů - Laboratoř umělých neuronových sítí FEL ČVUT v Praze tuckova@fel.cvut.cz http://amber.feld.cvut.cz/user/tuckova
Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner
Vysoká škola ekonomická v Praze Analýza dat pomocí systému Weka, Rapid miner a Enterprise miner Dobývání znalostí z databází 4IZ450 XXXXXXXXXXX Přidělená data a jejich popis Data určená pro zpracování
Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ DEPARTMENT OF COMPUTER SYSTEMS KNIHOVNA PRO NÁVRH
Vojtěch Franc. Biometrie ZS Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost
Rozpoznávání tváří I Vojtěch Franc Centrum strojového vnímání, ČVUT FEL Praha Biometrie ZS 2013 Poděkování Janu Šochmanovi za slajdy vysvětlující AdaBoost Úlohy rozpoznávání tváří: Detekce Cíl: lokalizovat
Automatické vyhledávání informace a znalosti v elektronických textových datech
Automatické vyhledávání informace a znalosti v elektronických textových datech Jan Žižka Ústav informatiky & SoNet RC PEF, Mendelova universita Brno (Text Mining) Data, informace, znalost Elektronická
Úvod do optimalizace, metody hladké optimalizace
Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS AKCELEROVANÉ NEURONOVÉ
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ DECKÁ FAKULTA DIPLOMOVÁ PRÁCE
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ DECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Statistické modely a neuronové sítě Vedoucí diplomové práce Mgr. Jana Vrbková
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami. Josef Keder
K možnostem krátkodobé předpovědi úrovně znečištění ovzduší statistickými metodami Josef Keder Motivace Předpověď budoucí úrovně znečištění ovzduší s předstihem v řádu alespoň několika hodin má význam
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Národní informační středisko pro podporu kvality
Národní informační středisko pro podporu kvality 19.6.2008 Využití umělých neuronových sítí - seminář ČSJ 1 Seminář ČSJ - J. NPJ Tupa Využití umělých neuronových sítí pro řešení predikčních, regresních
8-9. Pravděpodobnostní rozhodování a predikce. Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze
KYBERNETIKA A UMĚLÁ INTELIGENCE 8-9. Pravděpodobnostní rozhodování a predikce laboratory Gerstner Gerstnerova laboratoř katedra kybernetiky fakulta elektrotechnická ČVUT v Praze Rozhodování za neurčitosti
Pokročilé metody učení neuronových sítí. Tomáš Řehořek tomas.rehorek@fit.cvut.cz
Pokročilé metody učení neuronových sítí Tomáš Řehořek tomas.rehorek@fit.cvut.cz Problém učení neuronové sítě (1) Nechť N = (V, I, O, S, w, f, h) je dopředná neuronová síť, kde: V je množina neuronů I V
logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
7. Nervová soustava člověka
7. Nervová soustava člověka anatomie nervové soustavy a stavba neuronu Nervová soustava člověka je rozlišena na: 1. CNS - centrální nervovou soustavu (hlava - řídící centrum, mícha zprostředkovává funkce)
Whale detection Brainstorming session. Jiří Dutkevič Lenka Kovářová Milan Le
Whale detection Brainstorming session Jiří Dutkevič Lenka Kovářová Milan Le Signal processing, Sampling theorem Spojitý signál může být nahrazen diskrétní posloupností vzorků, aniž by došlo ke ztrátě informace,
Univerzita Hradec Králové. Fakulta informatiky a managementu. Katedra informatiky a kvantitativních metod
Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informatiky a kvantitativních metod Biometrická autentizace Diplomová práce Autor: Bc. Jan Kozlovský Studijní obor: AI2 P Vedoucí práce:
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS
Testování neuronových sítí pro prostorovou interpolaci v softwaru GRASS GIS Veronika NEVTÍPILOVÁ Gisáček 2013 Katedra Geoinformatiky Univerzita Palackého v Olomouci Cíle otestovat kvalitu interpolace pomocí
Neuron je tvořen a) buněčným tělem (cyton = perikarion), uvnitř kterého leží většina buněčných organel;
Neuron (neurocyt) základní stavební a funkční jednotka nervové tkáně; tvar těla neuronu je rozmanitý: oválný, kulovitý, hruškovitý, hvězdicovitý; velikost je různá: 4-6µm buňky mozečku, Purkyňovy buňky
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Trénování sítě pomocí učení s učitelem
Trénování sítě pomocí učení s učitelem! předpokládá se, že máme k dispozici trénovací množinu, tj. množinu P dvojic [vstup x p, požadovaný výstup u p ]! chceme nastavit váhy a prahy sítě tak, aby výstup
ÚVOD DO ROZPOZNÁVÁNÍ
ÚVOD DO ROZPOZNÁVÁNÍ 1/31 Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac Osnova přednášky Modelování
logistická regrese Miroslav Čepek Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování Dat Přednáška 9 Lineární klasifikátor, rozšíření báze, LDA, logistická regrese Miroslav Čepek Fakulta Elektrotechnická, ČVUT Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
APLIKACE NEURONOVÝCH SÍTÍ VE ZPRACOVÁNÍ OBRAZU
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
GENETICKÝ NÁVRH KLASIFIKÁTORU S VYUŽITÍM NEURONOVÝCH SÍTÍ NEURAL NETWORKS CLASSIFIER DESIGN USING GENETIC ALGORITHM
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS GENETICKÝ NÁVRH
Dnes budeme učit agenty, jak zlepšit svůj
Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Úvodem Dnes budeme učit agenty, jak zlepšit svůj výkon při ř řešení š í budoucích úloh na základě pozorování
Obr. 1 Biologický neuron
5.4 Neuronové sítě Lidský mozek je složen asi z 10 10 nervových buněk (neuronů) které jsou mezi sebou navzájem propojeny ještě řádově vyšším počtem vazeb [Novák a kol.,1992]. Začněme tedy nejdříve jedním