Polymorfismus II příklady polymorfních systémů. Bohumil Kratochvíl
|
|
- Martin Pravec
- před 6 lety
- Počet zobrazení:
Transkript
1 Polymorfismus II příklady polymorfních systémů Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017
2 Chemické a fyzikální typy API, která má farmacie k dispozici pro formulace kresba: J.Budka kresba: J.Budka
3 Polymorfismus ranitidinu hydrochloridu Ranitidin hydrochlorid - léčba žaludečních vředů (polymorf I, polymorf II) polymorf I polymorf II
4 Polymorfismus ranitidinu hydrochloridu Originál od firmy GlaxoSmithKline Generika ranitidinu vyrábí 43 firem a je registrováno 70 generických názvů Ramanova spektra polymorfů I a II
5 Polymorfismus ranitidinu hydrochloridu Polymorf I Polymorf II RTG difraktogram polymorf I RTG difraktogram polymorf II
6 Polymorfismus ritonaviru Ritonavir inhibitor HIV proteasy Ritonavir tvoří dva konformační polymorfy (forma II je stálejší a daleko pomaleji rozpustná než forma I)
7 Polymorfismus námelových alkaloidů trans-d-tergurid (5R,8S,10R) Forma A: tergurid. 2/3 H 2 O 1 F: tergurid. 2/3 H 2 O B: tergurid. H 2 O 2 E: tergurid. EtOH C: tergurid 1 (Schering,Teluron ) M: tergurid. MeOH 3 D: tergurid. H 2 O tergurid hydrogenmaleát monohydrát 4 (Zentiva, Mysalfon ) (5R,8S,10S)cis-tergurid 2-brombenzoát 5 1. Hušák M., Kratochvíl B., Císařová I., Cvak L., Jegorov A., Böhm: Coll. Czech. Chem.Commun. 67, 479 (2002). 2. Kratochvíl B., Ondráček J., Novotný J., Hušák M., Jegorov A., Stuchlík J.: Z.Kristallogr. 206, 77 (1993). 3. Kratochvíl B., Novotný J., Hušák M., Had J., Stuchlík J., Jegorov A.: Coll.Czech.Chem.Commun. 59, 149 (1994). 4. Hušák M., Kratochvíl B., Sedmera P., Stuchlík J., Jegorov A.: Coll.Czech.Chem.Commun. 58, 2944 (1993). 5. Hušák M., Kratochvíl B., Sedmera P., Havlíček V., Votavová H., Cvak L., Bulej P., Jegorov A.:Coll. Czech. Chem.Commun. 63, 425 (1998).
8 Pakovací polymorfismus námelového alkaloidu terguridu (parametry u formy F nejsou známy, tato fáze byla pouze identifikována z RTG difraktogramu) forma A: tegurid. 2/3H 2 O; forma B: tergurid. H 2 O; forma C A : tergurid nesolvatovaný a, Å 7,9340(2) 38,262(4) 8,1640(3) b, Å 12,8148(3) 7,834(3) 23,3159(6) c, Å 56,467(1) 13,497(2) 19,9975(8), o , o ,69(2) 95,870(2), o P.grupa P C 2 P 2 1 forma D: tegurid.h 2 O; forma E: tegurid. EtOH; forma F: tegurid. 2/3H 2 O; forma M: tegurid. MeOH 10,637(1) 13,147(6)? 10,438(1) 13,529(2) 10,442(6)? 13,200(4) 14,103(3) 16.19(16)? 15,495(5) 90 90? ? ? 90 orthorombická orthorombická? P
9 Molekulární pakování krystalových forem trans-d-terguridu Tergurid (forma C) Tergurid. 2/3 H 2 O (forma A) Tergurid. H 2 O (forma B) Tergurid. MeOH (forma M) Celkem 12 symetricky nezávislých terguridových molekul
10 Flexibilita/rigidita trans-d-terguridové molekuly forma C: molekula 1 (světle červená) C: molekula 2 v1 a (tmavě zelená) C: molekula 2 v2 a (tmavě fialová) C: molekula 3 (světle modrá) C: molekula 4 (šedivá) A: molekula 1 (tmavě žlutá) A: molekula 2 (modrozelená) A: molekula 3 (světle fialová) B: molekula 1 (světle žlutá) B: molekula 2 (tmavě modrá) M: molekula v1 a (tmavě červená) M: molekula v2 a (světle zelená) a v1, v2 jsou neuspořádané ( disordrované ) formy Překryv 12 molekul Močovinový boční řetezec je flexibilní, ergolinový skelet je rigidní! Experimentální RTG data jsou v souhlase s ab-initio výpočtem
11 Polymorfní transformace v systému trans-d-terguridu E: tergurid. EtOH A: tergurid. 2/3 H 2 O M: tergurid. MeOH T> 40 o C suspenze ve vodě 1 hodina na vzduchu nebo 3 dny při 75% RH B: tergurid. H 2 O 6 hod, 70 o C suspenze ve vodě několik měsíců při 75% RH suspenze ve vodě C: tergurid D: tergurid. H 2 O F: tergurid. 2/3 H 2 O Stabilní fází v systému je monohydrát. Obecně ale neplatí, že solváty jsou stabilnější než ansolváty!!!
12 Polymorfismus atorvastatinu vápenatého (v příbalovém letáku se uvádí: sůl, hydrát; neuvádí se polymorf, amorfát) Do 12/2010 asi patentováno 70 krystalických forem + 30 patentů na amorfní formu Stabilní forma: atorvastatin vápenatý. 3H2O (forma I) Sortis (Pfizer), originál expirace 36 měsíců (forma I) Torvacard (Zentiva) expirace 18 měsíců (amorfát) Atorvastatin Actavis (Actavis) Atorvastatin Phab (Lek) Atorvastatin AV MED (Krka) Atorvastatin-Krka (Krka) Atorvastatin-Ratiopharm (Hoechst-Biotika) Atoris (Krka) Tulip (Lek) Triglyx (Teva) Hájková M., Kratochvíl B., Rádl S: Chem. Listy 102, 3 (2008). expirace 36 měsíců expirace 24 měsíců expirace 18 měsíců expirace 24 měsíců expirace 24 měsíců expirace 18, 24 měsíců expirace 24 měsíců expirace 24 měsíců
13 Polymorfismus felodipinu Léčba vysokého krevního tlaku
14 Příklady polymorfních systémů teoreticky zajímavé a prakticky důležité dimorfní kyselina acetylsalycilová Forma I Forma II Wishweshwar P. et al.:jacs 127, (2005).
15 Prakticky důležité a teoreticky zajímavé polymorfní systémy Teoreticky zajímavé O HO O O Nízkoteplotní polymorfy simvastatinu: O H 261 K 223 K Room Temp. fáze nízkoteplotní fáze I nízkoteplotní fáze II P P P 2 1 Hušák M., Kratochvíl B., Jegorov A.: Acta Crystallogr. A64, C211 (2008).
16 Příklady polymorfních přechodů Prakticky důležité Monotropní ( solvent mediated ) přechod mezi dvěma fázemi nicergolinu (směsný pakovací a konformační polymorfismus): polymorf I, krystaluje z polárních rozpouštědel (methanol, ethanol) polymorf II, krystaluje z nepolárních rozpouštědel (toluen) Překryv tří krystalograficky nezávislých molekul nicergolinu (červená polymorf I, molekula 1, žlutá polymorf I, molekula 2, zelená polymorf II)
17 Námelový alkaloid nicergolin Léková forma: Sermion (Pfizer) Nicergolin - léčba příznaků mozkové ischémie Nicergolin je dimorfní
18 Polymorfismus nicergolinu prakticky důležité (terapeuticky využívána forma I, forma II nečistota) Struktura formy I, krystaluje z polárních rozpouštědel (ethanol, methanol) Struktura formy II, krystaluje z nepolárních rozpouštědel (toluen) Stanovení forem I a II ve směsi metodou RTG práškové analýzy
19 Flexibilita/rigidita nicergolinové molekuly Překryv tří krystalograficky nezávislých molekul nicergolinu (červená polymorf I molekula 1, žlutá polymorf I molekula 2, zelená polymorf II)
20 Nepeptidické námelové alkaloidy cabergolin Lékové formy: Dostinex (Pharmitalia), Cabaser (Pharmacia & Upjohn) léčba poruch menstruačního cyklu a infertility způsobené zvýšenou hladinou prolaktinu
21 Polymorfní systém cabergolinu prakticky důležité I (ansolvát, P21), II (ansolvát, P212121), VII (ansolvát, P21), VIII (tert-butylmethylether solvát 1:1), IX (toluen solvát 1:1), XV (cyklohexan solvát 1:1), XVI (p-xylen solvát 1:1), XVII (1,2,4-trimethyl benzen solvát 1:1) VII (ansolvát, P21), linkování N1-H O24i I (ansolvát, P21) linkování N1-H N6i IX (toluen solvát 1:1, P212121) analogické formě II, linkování N1-H N6i
22 Překryv molekul cabergolinu ve formách I (zelená), II (černá) a VII (červená a modro-žlutě neuspořádaná ( disorderovaná )) Hodnoty torzního úhlu C7-C8-C20-N22 (I: 174 o, II: 151 o, VII: 63 o a 88 o )
23 Intensity / cps Teoretické práškové difrakční záznamy Cyklohexan solvát 3000 Toluen solvát 2000 TBE solvát 1000 forma II θ / forma I
24 Práškové difrakční záznamy cabergolinu
25 Kombinace polymorfního složení Prakticky důležité Dostinex, Pfizer (příbalová informace, PIL neuvádí polymorfy): Léčivou látkou je cabergolinum 0,5 mg v jedné tabletě. Pomocnými látkami jsou laktosa (plnivo, pojivo) a leucin (ochucovadlo) Cabergolin 4 polymorfy (I, II, VII, L) Lék pro regulaci tvorby mléka u žen Laktosa 2 polymorfy (, ) Pro polymorfní složení Dostinexu připadá v úvahu 8 kombinací
26 Cabergoline and lactose polymorphs Cabergoline I (P21), Cabergoline II (P212121) Cabergoline VII (P21) Overlap of cabergoline molecules - lactose - lactose
27 Cabergolin efekt solventu na distorzi kruhů C a D (vzdálenost atomu od roviny) 1 C 4 D: nejlepší rovina proložená atomy N6, C10, C9, C7 E 3 C: nejlepší rovina proložená atomy C3, C4, C5, C10, C11 Vzdálenost, Å: rovina v kruhu C C10: XVII (-0,094) > XVI (-0,108) > IX (-0,179) > > VIII (-0,192) > XV (-0,195) Vzdálenost, Å: rovina v kruhu D C8: XVII (-0,686) > XVI (-0,700) >IX (-0,711) > > VIII (-0,716) > XV (-0,737) Nalezení cabergolinového solvátu jehož desolvatací vzniká forma I
28 Čistý pakovací polymorfismus sulfathiazolu Prakticky důležité
29 Polymorfismus cyklosporinů CsA = cyclo(-mebmt 1 -Abu 2 -Sar 3 -MeLeu 4 -Val 5 -MeLeu 6 -Ala 7 -D-Ala 8 -MeLeu 9 - MeLeu 10 -MeVal 11 -) cyklický undekapetid Přírodní cyklosporiny, kromě Cs A, formulované jako jeho substituční deriváty
30 Polymorfismus cyklosporinu A chemický a molekulární skelet CsA
31 Působení komplexu droga/receptor Receptor: Cyklofilin A Princip zámku a klíče droga receptor Cyklosporin A Mechanismus účinku: konformační změna vyvolá biochemickou reakci: komplex cyklosporin A / cyklofilin A blokuje produkci interleukinu-2,který je růstovým faktorem T-lymfocytů. T-lymfocyty (bílé krvinky) jsou odpovědné za imunitu organismu.
32 Imunosupresivum cyklosporin A (Cs A) Cyklosporin A v krystalickém dihydrátu a konformace jeho molekuly Lékové formy
33 Identifikace krystalické fáze v tobolce CsA Dimethylisorbid (DMI) uvažovaná komponenta do mikroemulze Nežádoucí krystalická fáze v tobolce Krystalický Cs A. DMI solvát Změna konformace molekuly CsA.DMI proti CsA.2H 2 O
34 Analýza kavit - screening solvátů cyklosporinů Struktura Cs A di-n-butylether solvátu Kavita je obklopena 6 molekulami Cs A Rozložení kavit v krystalové struktuře Vyplnění kavity molekulou di-n-butyletheru
35 Polymorfismus Cs A CsA monohydrát, prostorová grupa P CsA dihydrát P 4 1 CsA monohydrát bis(aceton) solvát P 4 1 CsA dimethylisosorbid P 2 1 CsA di-n-butylether solvát P 2 1 CsA tetrahydrofuran solvát P 2 1 CsA ( )-n-butyl-laktát P 2 1 cyklosporinové klatráty cyklosporinové klatráty Dva konformační typy skeletu Cs A
36 Polymorfismus Cs A Cs A. 2H2O Cs A. dimethylisosorbid Konformace Cs A v krystalickém dihydrátu (vlevo) a v krystalickém dimethylisosorbidu (vpravo)
37 Polymorfismus Cs E Me Skelet Cs E Srovnání skeletů Cs A a Cs E CsE monohydrát bis(2-butanol) solvát PG P 2 1 CsE monohydrát aceton solvát P 2 1 cyklosporinové klatráty CsE ( )-n-butyl-laktát P 2 1 Imunosupresivita Cs E je ve srovnání s Cs A asi 20%
38 Přístup k polymorfismu cyklosporinů molekuly solventu obsazují cyklosporinové kavity Kavita ve struktuře Cs E monohydrátu aceton solvátu
39 Vznik kavit stanovení pozice malého solventu vedle velké organické molekuly na mapě elektronové hustoty (např. Cs A má 85 non-h atomů; di-n-butylether 9 non-h atomů) Cs A di-n-butylether solvát, hydrofóbní povrch CsA Kavita ve struktuře Cs A di-n-butylether solvátu je obklopena 6 molekulami Cs A
40 Lokalizace solventu v kavitě výpočet diferenční mapy elektronové hustoty pouze pro předpokládanou oblast lokalizace solventu (kavitu) Lokalizace di-n-butyletheru v kavitě, P 21/c (jasný případ)
41 Lokalizace solventu v kavitě Lokalizace dimethylisosorbidu v kavitě, P 21/c (zapeklitější případ)
42 Velikost kavity a její tvar je výsledkem experimentálního stanovení rozložení elektronové hustoty a nikoliv modelování Řez kavitou v Cs A di-n-butylether solvátu tvořenou VdW sférami atomů Cs A, intenzita modré barvy značí stupeň hydrofobicity
43 Rozložení kavit v krystalové struktuře a vyplňování kavit molekulami solventů Rozložení kavit ve struktuře CsA di-n-butylether solvátu prostorová grupa P 2 1, Z=2 Skutečný počet non H-atomů solventu v kavitě: 9 atomů Teoretická kapacita kavity (pro pakovací koeficient 19,4 pro CSD): 17 atomů Teoretická kapacita kavity (pro pakovací koeficient 21,15 pro Cs): 9 atomů
44 Cyklosporinové klatráty vyplňování kavit molekulami solventů CsA.H2O CsA.2H2O CsA. H2O CsA. dime CsA.di-n Bu CsA. di-n Bu CsA.butyl bis(aceton) isosorbid ether(150k) ether(293k) laktát Buňka V (Å 3 ) Všech non-h atomů v buňce Atomů solventu v kavitách buňky (341-4*85) = 1 (373-4*85) = 33 (366-4*85) = 26 (194-2*85) = 24 (187-2*85) = 17 (196-2*85) = 26 (188-2*85) = 18 Atomů v kavitě teor. pro Atomů v kavitě teor. pro 19.4 Realita atomů solventu 1/4 33/4 = 8 32/4 = 8 67/4 = 17 26/4 = 7 60/4 = 15 24/2 = 12 42/2 = 21 17/2 = 9 34/2 = 17 26/2 = 13 43/2 = 21 18/2 = 9 35/2 = Průměrný pakovaci koeficient pro cyklosporiny ( )/6=21.15
45 Závěr Polymorfní systémy jsou z hlediska farmaceutického vývoje buď prakticky důležité nebo teoreticky zajímavé Pro rozlišení polymorfů od jedné chemické entity může být užita celá plejáda analytických technik pro identifikaci a stanovení polymorfů vedle sebe Obejití problému polymorfismu spočívá ve výběru jiné pevné fyzikální nebo chemické formy aktivní molekuly Je třeba rozlišovat čistý polymorfismus a všechny pevné formy aktivní molekuly
Polymorfismus II příklady polymorfních systémů. Bohumil Kratochvíl
Polymorfismus II příklady polymorfních systémů Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2015 Chemické a fyzikální typy API, která má farmacie k dispozici pro formulace kresba: J.Budka
Polymorfismus II příklady polymorfních systémů. Bohumil Kratochvíl
Polymorfismus II příklady polymorfních systémů Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2018 Chemické a fyzikální typy API, která má farmacie k dispozici pro formulace List of Various
Martina Urbanová, Ivana Šeděnková, Jiří Brus. Polymorfismus farmaceutických ingrediencí, 13. C CP-MAS NMR, 19 F MAS NMR a faktorová analýza
Martina Urbanová, Ivana Šeděnková, Jiří Brus Polymorfismus farmaceutických ingrediencí, 13 C CP-MAS NMR, F MAS NMR a faktorová analýza Proč studovat polymorfismus ve farmacii? Důvody studia polymorfismu:
Pevná fáze ve farmacii
Úvod - Jaké jsou hlavní technologické operace při výrobě léčivých přípravků? - Co je to API, excipient, léčivý přípravek, enkapsulace? - Proč se provádí mokrá granulace? - Jaké hlavní normy se vztahují
ší šířen 7. Polymorfní systémy 7.1. Polymorfie námelových alkaloidů
7. Polymorfní systémy 7.1. Polymorfie námelových alkaloidů Přírodních námelových alkaloidů je popsáno více než 80 a jejich semisyntetických derivátů okolo 300. Většina z nich vykazuje výraznou biologickou
Příspěvek k poznání polymorfie farmaceutických substancí
Akademie věd České republiky Teze doktorské disertační práce k získání vědeckého titulu doktor věd ve skupině chemických věd Příspěvek k poznání polymorfie farmaceutických substancí Komise pro obhajoby
Pevná fáze ve farmacii. Bohumil Kratochvíl
Pevná fáze ve farmacii Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2018 Pevná fáze ve farmacii Organická syntéza (farmakochemie) molekula Finální produkt (substance) je pevná fáze: Fáze
Pevná fáze ve farmacii. Bohumil Kratochvíl
Pevná fáze ve farmacii Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Pevná fáze ve farmacii Organická syntéza (farmakochemie) molekula Finální produkt (substance) je pevná fáze: Fáze
12. Predikce polymorfů. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
12. Predikce polymorfů Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Výpočetní chemie Predikce polymorfů rychle se vyvíjející se oblast růst výkonu počítačů možnost vypočítat
Možnosti automatizace v rané fázi vývoje generického léčiva
Možnosti automatizace v rané fázi vývoje generického léčiva Josef Beránek Automatizace v přípravě vzorků 2. 10. 2014 1 C A R D I O V A S C U L A R F E M A L E H E A L T H C A R E R E S P I R A T O R Y
Molekulární krystal vazebné poměry. Bohumil Kratochvíl
Molekulární krystal vazebné poměry Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2017 Složení farmaceutických substancí - API Z celkového portfolia API tvoří asi 90 % organické sloučeniny,
Patenty pevných API. Bohumil Kratochvíl. Chemie a fyzika pevných léčiv 2014
Patenty pevných API Bohumil Kratochvíl Chemie a fyzika pevných léčiv 2014 Patent je právní titul, který po omezenou dobu (8+2+1+0,5 let v EU), chrání zákonem vynález. Majitel patentu má výlučné právo vynález
6. Polymorfy, hydráty, solváty, soli, kokrystaly, amorfní formy
6. Polymorfy, hydráty, solváty, soli, kokrystaly, amorfní formy 6.1. Úvod U pevných substancí a také u excipientů nás zajímá, zda se vyskytují ve formě polymorfů, hydrátů, solvátů nebo v amorfním stavu.
Polymorfismus I - základní pojmy, význam, teorie. Bohumil Kratochvíl
Polymorfismus I - základní pojmy, význam, teorie Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2015 Historický úvod Jean Baptiste Louis Romé de l Isle (1730-1790): kuchyňská sůl krystaluje
Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství
Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie
Výroba lékůl. sně regulované CO BYSTE CHTĚLI VĚDĚT O VÝROBĚ LÉKŮ? Prof. RNDr. Bohumil Kratochvíl, DrSc.
UNIVERZITA. VĚKU UV FAKULTA CEMICKÉ TECNLGIE 2008-2009 Prof. RNDr. Bohumil Kratochvíl, DrSc. vedoucí Ústavu chemie pevných látek, profesor šéfredaktor Chemických listů Pedagogická činnost: C BYSTE CTĚLI
Chemie a fyzika pevných látek p3
Chemie a fyzika pevných látek p3 strukturní faktor, monokrystalové a práškové difrakční metody Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
RNDr. Jaroslav Maixner, CSc. technologická v Praze. Praha, říjen 2005
Současn asné trendy v RTG difrakční analýze RNDr. Jaroslav Maixner, CSc. Vysoká škola chemicko-technologick technologická v Praze Praha, říjen 2005 Princip RTG difrakce Krystalová struktura a Krystalová
Vývoj léčiv. FarmChem 05
Vývoj léčiv FarmChem 05 Fáze vývoje (Drug Development) Hlavním cílem vývoje je reprodukovatelná a schválená výroba účinného a bezpečného a povoleného léčiva U originálních léčiv je vývoj nejnákladnější
Speciální analytické metody pro léčiva
Speciální analytické metody pro léčiva doc. RNDr. Ing. Pavel Řezanka, Ph.D. E-mail: pavel.rezanka@vscht.cz Místnost: A234 Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Harmonogram
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
Metody pro studium pevných látek
Metody pro studium pevných látek Metody Metody termické analýzy Difrakční metody ssnmr Predikce krystalových struktur Metody termické analýzy Termogravimetrie (TG) Diferenční TA (DTA) Rozdíl teplot mezi
3. Termická analýza. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
3. Termická analýza Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 DMA Dynamicko-mechanická analýza měření tvrdosti a tuhosti materiálů měření viskozity vzorku na materiál je
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 SAR Isosterie a bioisosterie Část 2 Isosterie a bioisosterie 12. Bioisostery aromátů Isosterie
ší šířen 5. Polymorfismus 5.1. Úvod
5. Polymorfismus 5.1. Úvod Pojem polymorfismus resp. polymorfie (z řeckého: polys = mnohý, morfé = tvar) žil poprvé Mitscherlich v roce 1822. Všiml si, že u některých arseničnanů a fosforečnanů může jedna
Analytické laboratoře výzkumu a vývoje aktivních farmaceutických substancí (API) generické farmaceutické firmy. Aleš Gavenda
Analytické laboratoře výzkumu a vývoje aktivních farmaceutických substancí (API) generické farmaceutické firmy Aleš Gavenda 20.10.2015 1 Teva Czech Industries, s.r.o. Historie firmy 1883 Gustav Hell zakládá
Rentgenová difrakce a spektrometrie
Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz
Voda polární rozpouštědlo
VY_32_INVACE_30_BEN05.notebook Voda polární rozpouštědlo Temacká oblast : Chemie anorganická chemie Datum vytvoření: 2. 8. 2012 Ročník: 2. ročník čtyřletého gymnázia (sexta osmiletého gymnázia) Stručný
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 LRR/CHPB2 Chemie pro biology 2 Stereochemie organických molekul a izomerie Lucie Szüčová Osnova: stereochemie organických sloučenin
METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D PharmDr. Zdenka Šklubalová, Ph.D
METODY FARMACEUTICKÉ TECHNOLOGIE ČL 2009, D 2010 PharmDr. Zdenka Šklubalová, Ph.D. 10.6.2010 ZMĚNY D 2010 (harmonizace beze změn v textu) 2.9.1 Zkouška rozpadavosti tablet a tobolek 2.9.3 Zkouška disoluce
Chemie a fyzika pevných látek p2
Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl
Biochemický ústav LF MU (V.P.) 2010
1 * Biochemický ústav LF MU (V.P.) 2010 2 1. seminář LC Biochemický ústav LF MU (V.P.) 2010 3 Mol : jednotka látkového množství (látkové množství je veličina úměrná počtu látkových částic) 4 Mol : jednotka
Phenomenon of polymorphism in pharmacy (in nature)
DEPARTMENT OF SOLID STATE CHEMISTRY Phenomenon of polymorphism in pharmacy (in nature) Bohumil Kratochvíl Chemie a fyzika pevných léčiv 2018 1 Polymorphism Polymorphism is the ability of existence multiple
Phenomenon of polymorphism in nature
DEPARTMENT OF SOLID STATE CHEMISTRY Phenomenon of polymorphism in nature Bohumil Kratochvíl Chemie a fyzika pevných léčiv 2017 1 Polymorphism Polymorphism is the ability of existence multiple forms from
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
VÝZNAM STANOVENÍ RTG KRYSTALOVÝCH STRUKTUR PRO FARMACII
VÝZNAM STANOVENÍ RTG KRYSTALOVÝCH STRUKTUR PRO FARMACII BOHUMIL KRATOCHVÍL a, MICHAL HUŠÁK a, ELENA I. KOROTKOVA b a ALEXANDR JEGOROV c a Ústav chemie pevných látek, Fakulta chemické technologie, Vysoká
Phenomenon of polymorphism in nature
DEPARTMENT OF SOLID STATE CHEMISTRY Phenomenon of polymorphism in nature Bohumil Kratochvíl Chemie a fyzika pevných léčiv 2016 1 Polymorphism Polymorphism is the ability of existence multiple forms from
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii
ARENY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: devátý
Autor: Mgr. Stanislava Bubíková ARENY Datum (období) tvorby: 13. 9. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí s areny. V rámci tohoto
Krystalografie a strukturní analýza
Krystalografie a strukturní analýza O čem to dneska bude (a nebo také nebude): trocha historie aneb jak to všechno začalo... jak a čím pozorovat strukturu látek difrakce - tak trochu jiný mikroskop rozptyl
Nekovalentní interakce
Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty
FARMACEUTICKÉ AMORFNÍ HYDRÁTY. BOHUMIL KRATOCHVÍL a IVA KOUPILOVÁ. 2. Farmaceutické amorfní fáze. Obsah. 1. Úvod
FARMACEUTICKÉ AMORFNÍ HYDRÁTY BOHUMIL KRATOCHVÍL a IVA KOUPILOVÁ Ústav chemie pevných látek, Fakulta chemické technologie, Vysoká škola chemicko-technologická v Praze, Technická 5, 166 28 Praha 6 bohumil.kratochvil@vscht.cz,
1. nitrosloučeniny R-NO 2 CH 3 -NO aminosloučeniny R-NH 2 CH 3 -NH 2
DUSÍKATÉ DERIVÁTY UHLOVODÍKŮ Dusíkaté deriváty uhlovodíků obsahují ve svých molekulách atom dusíku vázaný přímo na atom uhlíku. Atom dusíku přitom bývá součástí funkční skupiny, podle níž dusíkaté deriváty
Barva produkovaná vibracemi a rotacemi
Barva produkovaná vibracemi a rotacemi Hana Čechlovská Fakulta chemická Obor fyzikální a spotřební chemie Purkyňova 118 612 00 Brno Barva, která je produkována samotnými vibracemi je relativně mimořádná.
Studijní program: Analytická a forenzní chemie
Studijní program: Analytická a forenzní chemie Studijní program: Analytická a forenzní chemie První rok je studium společné a dělí se až od druhého roku na specializace Specializace 1: Analytická chemie,
Opakování
Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony
Chemie a fyzika pevných látek l
Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Organická chemie 3.ročník studijního oboru - kosmetické služby.
Organická chemie 3.ročník studijního oboru - kosmetické služby. T-7 Funkční a substituční deriváty karboxylových kyselin Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu:
Základy Mössbauerovy spektroskopie. Libor Machala
Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických
POLYMORFY A JINÉ PEVNÉ FORMY FARMACEUTICKÝCH POMOCNÝCH LÁTEK
POLYMORFY A JINÉ PEVNÉ FORMY FARMACEUTICKÝCH POMOCNÝCH LÁTEK LENKA SEILEROVÁ a, HANA BRUSOVÁ b a BOHUMIL KRATOCHVÍL a a Ústav chemie pevných látek, Vysoká škola chemickotechnologická v Praze, Technická
Studentská vědecká konference 2004
tudentská vědecká konference 2004 ekce: ORGANICKÁ CHEMIE II Ústav organické chemie, 26.11.2004 Zahájení v cca 11.30, budova A, mistnost č. 250 Komise (ústav 110): Prof. Ing. Ivan tibor, Cc. (VŠCHT) - předseda
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Optické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
Přehled pedagogické činnosti - Doc. RNDr. Ivan Němec, Ph.D.
Přehled pedagogické činnosti - Doc. RNDr. Ivan Němec, Ph.D. Studijní programy: Chemie, Biochemie, Klinická a toxikologická analýza (KATA) Pedagogická činnost: Akademický rok 2005/2006 Pokročilé praktikum
1 Teoretický úvod. 1.2 Braggova rovnice. 1.3 Laueho experiment
RTG fázová analýza Michael Pokorný, pok@rny.cz, Střední škola aplikované kybernetiky s.r.o. Tomáš Jirman, jirman.tomas@seznam.cz, Gymnázium, Nad Alejí 1952, Praha 6 Abstrakt Rengenová fázová analýza se
Ethery, thioly a sulfidy
Ethery, thioly a sulfidy Úvod becný vzorec alkoholů je R--R. Ethery Názvosloví etherů Názvy etherů obsahují jména alkylových a arylových sloučenin ze kterých tvořeny v abecedním pořadí následované slovem
Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření
Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá
Vlastnosti kapalin. Povrchová vrstva kapaliny
Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří
OPVK CZ.1.07/2.2.00/
OPVK CZ.1.07/2.2.00/28.0184 Základní principy vývoje nových léčiv OCH/ZPVNL Mgr. Radim Nencka, Ph.D. ZS 2012/2013 Molekulární interakce SAR Možné interakce jednotlivých funkčních skupin 1. Interakce alkoholů
Kapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie
Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované
Studium enzymatické reakce metodami výpočetní chemie
Studium enzymatické reakce metodami výpočetní chemie 2. kolo Petr Kulhánek, Zora Střelcová kulhanek@chemi.muni.cz CEITEC - Středoevropský technologický institut Masarykova univerzita, Kamenice 5, 625 00
Teva Czech Industries s.r.o.
Studijní materiál k předmětu Chemická exkurze C6950 Brno 2011 Teva Czech Industries s.r.o. Vypracovaly: Bc. Martina Klašková, Bc. Milada Schulzová Úpravy: Mgr. Zuzana Garguláková, doc. Ing. Vladimír Šindelář,
BIOLOGICKÁ MEMBRÁNA Prokaryontní Eukaryontní KOMPARTMENTŮ
BIOMEMRÁNA BIOLOGICKÁ MEMBRÁNA - všechny buňky na povrchu plazmatickou membránu - Prokaryontní buňky (viry, bakterie, sinice) - Eukaryontní buňky vnitřní členění do soustavy membrán KOMPARTMENTŮ - za
Molekuly 1 12/4/2011. Molekula definice IUPAC. Molekuly. Proč existují molekuly? Kosselův model. Představy o molekulách
1/4/011 Molekuly 1 Molekula definice IUPC elektricky neutrální entita sestávající z více nežli jednoho atomu. Přesně, molekula, v níž je počet atomů větší nežli jedna, musí odpovídat snížení na ploše potenciální
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Vysoká škola chemicko-technologická v Praze. Krystalizace. Bohumil Kratochvíl
Vysoká škola chemicko-technologická v Praze Krystalizace Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2014 Obsah - Solidifikace, krystalizace, parametry produktu - Růst krystalů, mechanismus
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ
CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ Lukáš ZUZÁNEK Katedra strojírenské technologie, Fakulta strojní, TU v Liberci, Studentská 2, 461 17 Liberec 1, CZ,
ZÁKLADY KONFORMAČNÍ ANALÝZY CYKLOHEXANU
ZÁKLDY KONFORMČNÍ NLÝZY CYKLOEXNU Potenciální energie mezních konformací cyklohexanového kruhu je znázorněna v následujícím diagramu: E 43 kj/mol položidlička 25 kj/mol vanička 21 kj/mol zkřížená vanička
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch
Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba
ÚSTAV ORGANICKÉ TECHNOLOGIE
LABORATOŘ OBORU ÚSTAV ORGANICKÉ TECHNOLOGIE (111) M FORMULACE LÉČIVÝCH PŘÍPRAVKŮ Vedoucí práce: Ing. Barbora A. Čuříková Dr. rer. nat. Jarmila Zbytovská Umístění práce: laboratoř A73 Úvod Formulace léčiv
Chemie a fyzika pevných léčiv úvod: vymezení pojmů, základní procesy
Vysoká škola chemicko-technologická v Praze Chemie a fyzika pevných léčiv úvod: vymezení pojmů, základní procesy Bohumil Kratochvíl Předmět: Chemie a fyzika pevných léčiv, 2013 http://www.vscht.cz/min/
Potravinářské a biochemické technologie
Potravinářské a biochemické technologie část Technologie cukru P.Kadlec, E. Šárka - PTB-cukr 1 P.Kadlec, E. Šárka - PTB-cukr 2 VÝROBA CUKRU V ČR A VE SVĚTĚ Počátky průmyslové výroby cukru u nás - rok 1831
Zpracování informací a vizualizace v chemii (C2150) 1. Úvod, databáze molekul
Zpracování informací a vizualizace v chemii (C2150) 1. Úvod, databáze molekul Organizační pokyny Přednášející: Martin Prokop Email: martinp@chemi.muni.cz Pracovna: INBIT/2.10 (v dubnu/květnu přesun do
Stereochemie. Přednáška 6
Stereochemie Přednáška 6 Stereoheterotopické ligandy a NMR spektroskopie Stereoheterotopické ligandy a NMR spektroskopie NMR může rozlišit atomy v odlišném okolí stíněny jinou měrou rozdíl v chemických
Substituční deriváty karboxylových kyselin
Substituční deriváty karboxylových kyselin Vznikají substitucemi v, ke změnám v karboxylové funkční skupině. Poloha nové skupiny se často ve spojení s triviálními názvy označuje řeckými písmeny: Mají vlastnosti
5. Stavy hmoty Kapaliny a kapalné krystaly
a kapalné krystaly Vlastnosti kapalin kapalných krystalů jako rozpouštědla Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti kapaliny nestálé atraktivní interakce (kohezní síly) mezi molekulami,
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny
Autor: Tomáš Galbička Téma: Alkany a cykloalkany Ročník: 2.
Alkany uhlovodíky s otevřeným řetězcem a pouze jednoduchými vazbami vazby sigma, největší výskyt elektronů na spojnici jader v názvu mají koncovku an Cykloalkany uhlovodíky s uzavřeným řetězcem a pouze
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1. Jan Sýkora
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti LC-NMR 1 Jan Sýkora LC/NMR Jan Sýkora (ÚCHP AV ČR) LC - NMR 1 H NMR (500 MHz) mez detekce ~ 1 mg/ml (5 µmol látky) NMR parametry doba
Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm
Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.
Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.
Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod
Ústav Makromolekulární chemie AV ČR, v.v.i. Heyrovského nám. 2 Praha 6
3. Ústav Makromolekulární chemie AV ČR, v.v.i. Heyrovského nám. 2 Praha 6 Společná laboratoř NMR spektroskopie pevného stavu ÚMCH AV ČR, v.v.i. a ÚJH AV ČR, v.v.i. pořádají dne 23.10. 2008 v klubu B Ústavu
Požární pojmy ve stavebním zákoně
1 - Hořlavé látky 2 - Výbušniny 3 - Tuhé hořlavé látky a jejich skladování 4 - Kapalné hořlavé látky a jejich skladování 5 - Plynné hořlavé látky a jejich skladování 6 - Hořlavé a nehořlavé stavební výrobky
Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné
Otázka: Obecná chemie Předmět: Chemie Přidal(a): ZuzilQa Základní pojmy v chemii, periodická soustava prvků Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné -setkáváme
6. Isotermická kalorimetrická analýza. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
6. Isotermická kalorimetrická analýza Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Analýza chemických reakcí Isotermická titrační kalorimetrie 2 Analýza chemických reakcí -
KRYSTALIZACE FARMACEUTICKÝCH SUBSTANCÍ BOHUMIL KRATOCHVÍL. Obsah. 2. Nukleace
KRYSTALIZACE FARMACEUTICKÝCH SUBSTANCÍ BOHUMIL KRATOCHVÍL Ústav chemie pevných látek, Vysoká škola chemickotechnologická v Praze, Technická 5, 166 28 Praha 6 bohumil.kratochvil@vscht.cz Došlo 15.10.06,
Třídění látek. Chemie 1.KŠPA
Třídění látek Chemie 1.KŠPA Systém (soustava) Vymezím si kus prostoru, látky v něm obsažené nazýváme systém soustava okolí svět Stěny soustavy Soustava může být: Izolovaná = stěny nedovolí výměnu částic
Potravinářské a biochemické technologie
Potravinářské a biochemické technologie část Technologie cukru P.Kadlec, E. Šárka - PTB-cukr 1 P.Kadlec, E. Šárka - PTB-cukr 2 VÝROBA CUKRU V ČR A VE SVĚTĚ Počátky průmyslové výroby cukru u nás - rok 1831
Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto H 3 C Vymezení arenů V aromatickém cyklu dochází k průniku orbitalů kolmých k rovině cyklu. Vzniká tzv. delokalizovaná vazba π. Stabilita benzenu
Seminář z chemie. Charakteristika vyučovacího předmětu
Seminář z chemie Časová dotace: 2 hodiny ve 3. ročníku, 4 hodiny ve 4. Ročníku Charakteristika vyučovacího předmětu Seminář je zaměřený na přípravu ke školní maturitě z chemie a k přijímacím zkouškám na
Téma: odborný úvod k podávání a aplikaci léků - formy, názvy a způsob označení
Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649
8. Povrchová analýza Dynamická sorpce par. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
8. Povrchová analýza Dynamická sorpce par Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Intramolekulární síly - existují ve všech skupenstvích a jsou za tato skupenství zodpovědná
13. Patentování. Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253
13. Patentování Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Patentování Patenty jsou přirozenou součástí průmyslového výzkumu a vývoje největší ohlas vyvolalo patentování
Odevzdání před termínem na hodinách chemie
Máte před sebou PRACOVNÍ LIST č. 4 Jestliže ho zpracujete, máte možnost získat známku, která má nejvyšší hodnotu v elektronické žákovské knížce. Ovšem je nezbytné splnit následující podmínky: - pracovní
Výpočet stechiometrického a sumárního vzorce
Výpočet stechiometrického a sumárního vzorce Stechiometrický (empirický) vzorec vyjadřuje základní složení sloučeniny udává, z kterých prvků se sloučenina skládá a v jakém poměru jsou atomy těchto prvků
3. Konformační analýza alkanů a cykloalkanů
Konformační analýza alkanů a cykloalkanů 45 3. Konformační analýza alkanů a cykloalkanů Konformace je prostorové uspořádání molekuly vzniklé rotací kolem jednoduché vazby. Konformer je konformace v lokálním