Modelling of hydrophobic surfaces by the Stokes problem with the stick-slip boundary conditions

Rozměr: px
Začít zobrazení ze stránky:

Download "Modelling of hydrophobic surfaces by the Stokes problem with the stick-slip boundary conditions"

Transkript

1 Modelling of hydrophobic surfaces by the Stokes problem with the stick-slip boundary conditions S. Fialová, J. Haslinger 2,3, R. Ku era 2, F. Pochylý, and V. átek 2 Brno University of Technology, Technická 2896/2, Brno, CZ 2 IT4Innovations, V B-TU Ostrava, 7. listopadu 5/272, Ostrava-Poruba, CZ 3 IG CAS, Studentská 768, 78 Ostrava-Poruba, CZ January 3, 26 Abstract Unlike the Navier boundary condition, the present paper deals with the case when the slip may occur only when the shear stress attains certain bound which is given à-priori. The discrete velocity-pressure model is derived using P-bubble/P elements. To release the impermeability condition and to regularize the non-smooth term characterizing the stick-slip behavior in the algebraic formulation, two additional vectors of Lagrange multipliers were introduced. The resulting minimization problem in terms of the dual variables (the pressure, the normal and shear stress) is solved by the interior point type method. Introduction The biggest part of hydraulic losses arises from uid ow near the surface and depends on the uid velocity gradient in the normal direction to the surface. The velocity gradient is subject to liquid adhesion. If the surface is perfectly wetted by the liquid, it is possible to characterize the sticking of the liquid by the Dirichlet boundary condition prescribing zero velocity vector along the surface. This condition is fullled by the majority of known compounds, e.g. metals-water, water-glass, metals-oil, most plastics-water, etc. Reduced adhesion can be achieved by reducing the gradient of the liquid velocity,

2 thereby reducing hydraulic losses. This phenomena is usually modelled by the following boundary condition, which expresses the slip of the liquid at each point of the surface by σ t = κu t, () where u t, σ t denote the tangential components of the velocity and the shear stress along the surface, respectively. Further, κ is a positive adhesive function which generally depends on the spatial variable and its knowledge is assumed [5, 6]. If κ = const. > on the surface then () is the classical Navier condition with the adhesive coecient κ. In this paper we use another type of the slip condition, namely the stickslip boundary conditions. We assume that a nonnegative slip bound function g is prescribed along the surface and we require fulllment of the following relations at each point of the surface: (i) σ t g; (ii) if σ t < g, then u t = ; (iii) if σ t = g, then the slip may occur and its sign is opposite to the sign of σ t. It is worth noticing that the partition of the surface between the stick and slip part is one of unknowns of the problem. The condition (iii) yields the existence of κ s such that σ t = κ s u t. In contrast to (), its value is known only after solving the problem and depends on the computed tangential velocity component: κ s = g u t, u t. (2) It is worth noticing that if g is chosen in such a way that the slip occurs on the whole surface then from (2) and (iii) it follows that σ t = κ s u t. Thus we obtain () with κ = κ s. The conditions analogous to our stick-slip boundary conditions are wellknown in contact problems of solid mechanics. They represent the Tresca friction law on common interfaces of solid bodies [7, ]. As the algebraic problems arising from nite element approximations are formally the same, the algorithms, which are highly ecient for contact problems could serve as natural tools also for solving this type of ow problems. Numerical experiments in [] proved that the algorithm based on an interior point method [] is suitable for this kind of problems, too. In this paper we test this model for physically realistic problems. The paper is organized as follows: Section 2 presents the classical and weak formulation of the Stokes problem with the stick-slip boundary conditions. The algebraic formulation of this problem and its dual form in terms of the pressure, shear and normal stress are derived in Section 3. In Section 4 the path-following interior point method is described. Three model examples, namely ow between parallel plates, ow initialized by rotating 2

3 concentric and eccentric circles are computed. The results of rst two examples are compared with the ones obtained by ANSYS Fluent [6] and also with the analytic solutions [3]. 2 Classical and weak formulation of the problem Let Ω be a bounded domain in R 2 with a suciently smooth boundary Ω that is split into three disjoint parts: Ω = γ D γ N γ C. We consider the model of a viscous incompressible Newtonian uid modelled by the Stokes system with the Dirichlet and Neumann boundary conditions on γ D and γ N, respectively, and with the impermeability and the stick-slip boundary conditions prescribed on γ C : η u + p = f in Ω, u = in Ω, u = u D on γ D, σ = σ N on γ N, u n = on γ C, σ t g on γ C, σ t (x) < g(x) u t (x) = x γ C, σ t (x) = g(x) κ s := κ s (x) : σ t (x) = κ s u t (x) x γ C, (3) where σ = η du pn. Here, u = (u dn, u 2 ) is the ow velocity, p is the pressure, f = (f, f 2 ) represents volume forces acting on the uid, η > is the dynamic viscosity, and u D, σ N are given Dirichlet and Neumann boundary data, respectively. Further n = (n, n 2 ), t = ( n 2, n ) is the unit outer normal and tangential vector to Ω, respectively, while u n = u n, u t = u t is the normal and tangential component of u along γ C, respectively. Finally σ t = σ t is the shear stress and g is a given slip bound function on γ C. Note that κ s is not known à-priori. Its value can be computed by (2) only having the solution of (3) at our disposal. We will assume that γ D and γ C. Next we present the weak velocity-pressure formulation of (3). For the sake of simplicity we will suppose here that u D =. We introduce the following notation: and V (Ω) = {v ( H (Ω) ) 2 : v = on γd, v n = on γ C } a(v, w) = η v : w dx, Ω 3 b(v, q) = q v dx, Ω

4 l(v) = f v dx + Ω σ N v ds, γ N j(v) = g v t ds, γ C where v : w = v w + v 2 w 2, v = (v, v 2 ), w = (w, w 2 ) and g is a bounded, nonnegative function on γ C. Finally, H (Ω) stands for the Sobolev space of functions which are together with their rst derivatives square integrable in Ω (see [2]). The velocity-pressure formulation of (3) reads as follows: Find (u, p) V (Ω) L 2 (Ω) such that a(u, v u) + b(v u, p) + j(v) j(u) l(v u) v V (Ω), (4) b(u, q) = q L 2 (Ω). This problem has a unique solution provided that γ N is nonempty. In the opposite case the pressure is determined up to a constant. These results have been established in [2, 4]. To discretize (4) we use mixed nite elements satisfying the inf-sup stability condition [4]. In particular, we use the P-bubble/P elements [8], for which we observed a stable behavior of the Lagrange multipliers representing the shear stress []. 3 Algebraic formulation of the problem The nite element approximation of (4) leads to the following algebraic problem: Find (u, p) R nu R np such that u A(v u) + (v u) B p + g ( Tv Tu ) l (v u) v R nu, q Bu = q R np, Nu =, where u, p is the vector of the nodal values of the velocity u and the pressure p, respectively, A R nu nu is a symmetric and positive denite stiness matrix, B R np nu, T, N R nc nu are full row-rank matrices, l R nu, g R nc + are the load vector and the vector of the nodal values of g on γ C, respectively. Further x = ( x,..., x nc ) for x R nc ; n p is the total number of the nodes of a used triangulation contained in Ω, n c is the number of the nodes lying on γ C \γ D, and n u is the dimension of the solution component representing the velocity u. It is easy to show that (5) is equivalent to the following minimization problem: Find u V such that J (u) J (v) v V, (6) 4 (5)

5 where J (v) = 2 v Av v l + g Tv and V = {v R nu : Nv =, Bv = }. To release the discrete impermeability condition Nv = and to regularize the last non-dierentiable slip term in J, we introduce two algebraic Lagrange multipliers λ n and λ t, respectively, and dene the Lagrangian L : R nu Λ R by L(v, λ) = 2 v Av v l + λ Cv, where Λ = {λ t R nc : λ t g} R nc+np, λ = (λ t, λ n, p ) Λ, and C = (T, N, B ). The minimization problem (6) is equivalent to the following saddle-point formulation: Find (u, λ) } R nu Λ such that L(u, λ) L(u, λ) L(v, λ) (v, λ) R nu Λ. From the second inequality in (7) we see that (7) u = A (l C λ). (8) Inserting (8) into the rst inequality in (7) we get the dual problem in terms of λ only: Find λ Λ such that S( λ) S(λ) λ Λ (9) with S(λ) = 2 λ Fλ λ d, where F = CA C is symmetric, positive definite and d = CA l. The dual formulation (9) is the minimization of the strictly quadratic function S subject to a small number (n c ) of constrained unknowns versus a large number (n c +n p = n c +O(n 2 c)) of the unconstrained ones. The optimization algorithm appropriate for problems with this structure is described in the next section. 4 Path-following interior point algorithm The Lagrangian associated with (9) is dened by L(λ, µ) = S(λ) + µ ( λ t g) + µ 2 (λ t g), where µ = (µ, µ 2 ) R 2nc is the Lagrange multiplier releasing two sided constraint appearing in the denition of Λ. Let z := µ L(λ, µ) be the new variable used in the function G : R 6nc+np R 6nc+np dened by G(w) := ( λ L(λ, µ), ( µ L(λ, µ) + z), e MZ), 5

6 where w = (λ, µ, z ) R 6nc+np, M = diag(µ), Z = diag(z), and e R 2nc is the vector whose all components are equal to. The solution λ to (9) is the rst component of the vector w = ( λ, µ, z ) which satises G(w) =, µ, z, () since () is equivalent to the respective Karush-Khun-Tucker conditions. To derive the path-following algorithm, we replace () by the following perturbed problem: G(w) = (,, τe ), µ >, z >, () where τ R +. Solutions w τ to () dene a curve C(τ) in R 6nc+np called the central path. This curve approaches w when τ tends to zero. We combine the damped Newton method for solving () with an appropriate change of τ which guarantees that the iterations belong to a neighbourhood N (c, c 2 ) of C(τ) dened by N (c, c 2 ) = {w = (λ, µ, z ) R 6nc+np : µ i z i c ϑ, i =,..., 2n c, µ, z, λ L(λ, µ) c 2 ϑ, µ L(λ, µ) + z c 2 ϑ}, where c (, ], c 2, and ϑ := ϑ(w) = µ z/(2n c ). In the k-th iteration, we modify τ := τ (k) by the product of ϑ (k) = ϑ(w (k) ) with the centering parameter c (k) chosen as in [3]. To get the monotonically decreasing sequence {ϑ (k) }, the algorithm uses also the Armijo-type condition (3). By J(w) in (2), we denote the Jacobi matrix of G at w. The bounds on the parameters mentioned in the initialization section follow from the convergence analysis presented in []. Algorithm PF: Given c (, ], c 2, < c min c max /2, ω (, ), and ε. Let w () N (c, c 2 ) and set k :=. (i). Choose c (k) [c min, c max ]; (ii). Solve J(w (k) ) w (k+) = G(w (k) ) + (,, c (k) ϑ (k) e ) ; (2) (iii). Set w (k+) = w (k) + α (k) w (k+) with the largest α (k) (, ] satisfying w (k+) N (c, c 2 ) and ϑ (k+) ( α (k) ω( c (k) ))ϑ (k) ; (3) (iv). Return w = w (k+), if err (k) := w (k+) w (k) / w (k+) ε, else set k := k + and go to step (i). 6

7 The computational eciency depends on a method used for solving the inner linear systems (2). The Jacobi matrix is non-symmetric and indenite with the following block structure: J(w (k) ) = F J 2 J 2 I Z M, J 2 = ( I I Eliminating the 2nd and 3rd unknown in w (k+), we get the reduced linear system for λ (k+) with the Schur complement: J SC = F + M Z + M 2 Z 2, where Z = diag(z, Z 2 ) and M = diag(m, M 2 ). As µ (k) >, z (k) >, the matrix J SC is symmetric, positive denite and the reduced linear system can be solved by the conjugate gradient method. In order to guarantee its convergence, we use the preconditioner: P SC = D + M Z + M 2 Z 2, where D = diag(f). All eigenvalues of the preconditioned matrix P SC J SC belong to an interval which does not depend on the iteration and the spectral condition number is bounded by (see []): cond(p SC J SC) cond(d)cond(f). In computations we approximate D so that A in F is replaced by diag(a). The conjugate gradient method in the k-th step of Algorithm PF is initialized and terminated adaptively. The initial iteration is taken as the computed result of the previous iteration and the (inner) iterations are terminated, if the relative residuum is less than the stopping tolerance given by tol (k) = min{r tol err (k ), c fact tol (k ) }, where < r tol <, < c fact <, err ( ) =, and tol ( ) = r tol /c fact. ). 5 Examples of uid slippage ow In this section we present numerical results of three physically realistic problems [6, 4, 5] governed by the Stokes system with the stick-slip boundary conditions. To justify this ow model we compare some characteristic quantities computed using the solutions of the rst two examples with the ones 7

8 resulting from the Stokes problem with the Navier boundary condition () and also with known analytic solutions. The second and the third examples are motivated by a ow inside a concentric and eccentric bearing, respectively. All our codes are implemented in Matlab 23b [7]. The computations were performed by ANSELM supercomputer at IT4I V B-TU Ostrava. We use Algorithm PF with c =., c 2 = 9, c min = 2, c max =.5, ω =., ε = 4, r tol =.5, c fact =.9. It turns out that these values are optimal as follows from numerical tests in []. 5. Flow between parallel plates Let Ω = (.5,.5) (.75,.75) (in meters). The boundary Ω is split into the following parts: γ D = {.5} (.75,.75), γ N = {.5} (.75,.75), and γ C = γ C, γ C,2, γ C, = (.5,.5) {.75}, γ C,2 = (.5,.5) {.75}; see Figure. Further the liquid density ρ = [kg m 3 ], the kinematical viscosity ν =.48 6 [m 2 s ], the dynamical viscosity η = ρν =.3 [Pa s], the volume forces f = [N m 3 ], the inow velocity u D = (., ) [m s ], and the outow stress σ N = [Pa]. The computations are carried out with n u = 2, n p = 25, n c = 8. Figure : Geometry of the channel Ω with diameter d =.5 [m] and length L = [m]. The outow velocity prole for the Stokes system with the Navier condition () and κ = const. > prescribed on the walls of a channel is given by (see [3]): u = p ( x2 2 x 2η r κ r2 2η ) on γ N, (4) 8

9 where u is the rst component of the velocity u. The value of κ [Pa s m ] can be computed from (4): κ = p r (x c ) x u (x c ), (5) where x c := γ C, γ N. To compare the model with the Navier and the stickslip conditions we introduce a new quantity κ num (x c ) which will be computed by (5) but using the solution to (3) this time. Now we solve the problem (3) for several suciently small constant thresholds g chosen in such a way that the slip occurs along the whole γ C. From the found solution we compute κ s at x c by (2) and compare with κ num at x c from (5). Both values practically coincide as seen from Figure 2(a). Note that if g is constant on the whole γ C then due to the symmetry of the setting also u t is constant there and consequently κ s is constant. Figure 2(b) shows that the computed u t (x c ) depends linearly on g for small values of g and hence on σ t which conrms (). The main benet of the stick-slip conditions is automatic switching between the stick/slip mode for g large enough as apparent from Figure 2(b)..2 κ s κ num..9.8 κ(x c ) u t (x c ) (a) g (b) g Figure 2: (a) Comparison of κ num and κ s at x c ; (b) dependence of u t (x c ) on the slip bound g. The computed outow velocity proles on γ C of solutions to (3) for several values of g are depicted in Figure 3. Now we solve the Stokes system with the Navier condition () prescribed on γ C by ANSYS Fluent (based on the nite volume method) for dierent adhesive coecients κ. The computed values of σ t (x c ) and u t (x c ) are summarized in Table. In the next step we solve problem (3) with the constant 9

10 u κ s = noslip / g= κ s = / g=.29 κ s =.5 / g=.225 κ s =. / g=.8 u κ =.69 / g =.29 s κ s =.34 / g γ =.225 N κ s =.66 / g =.8 κ = / g = s γ N x 3 (a) x 3 (b) Figure 3: Outow velocity proles. (a) the same value of g on both parts of γ C ; (b) dierent values of g := g on γ C, and xed value g = on γ C,2 lead to the sticking eect on γ C,2. The values κ s := κ s (x c ) are computed by (2), and (5). slip bounds g := σ t (x c ) with σ t (x c ) taken from Table. Using the respective numerical solutions of (3), the values of κ s (x c ), κ num (x c ) computed by (2), and (5), respectively and u t (x c ) are shown in the columns of Table 2. Comparing Table and 2 we see a very good agreement of the results. κ σ t (x c ) u t (x c ) Table : Stokes problem with the Navier condition () for dierent κ (by ANSYS Fluent). There is yet another verication of the computed results. If a couple (u, p) satises the Stokes system (3),2 in the channel Ω with the right hand side f = together with the impermeability condition (3) 5 on γ C then due to the special geometry of Ω, the following identity holds :

11 g κ s (x c ) by (2) κ num (x c ) by (5) u t (x c ) Table 2: Values of κ s (x c ), κ num (x c ) and u t (x c ) for dierent g. p in p out := d γ ( p dx 2 p dx 2 ) = D γ N d ( σ t dx σ t dx ) (6) γ C, γ C,2 making use of the Green theorem. The left-hand side in (6) represents the hydraulic losses. In particular, (6) holds for solutions (u, p) to (3) whose right hand side f =. Let us observe that the velocity u D = (u D,, ) prescribed on γ D does not appear explicitly but only implicitly through σ t and p in (6). Suppose that we solve (3) with u D := u D xed and g := g, where g is chosen in such a way that the slip occurs along the whole γ C. Then necessarily σ t = g on γ C, and σ t = g on γ C,2 as follows from the stick-slip boundary conditions. Consequently, the right hand side of (6) depends solely on g. Therefore the hydraulic losses are the same for any velocity u D used in (3) 3 which guarantees that the respective shear stress σ t still satises σ t = g on γ C, and σ t = g on γ C,2. In Table 3 we check this property for dierent u D, and xed g = on γ C. One can observe the satisfaction of (6) under the level of the terminating tolerance ε = 4. u D, κ s (x c ) by (2) κ num (x c ) by (5) (p in p out ) 2g L/d Table 3: Verication of (6) for dierent u D,. It is evident that the slip bound g (and the adhesive coecient κ) significantly inuences the hydraulic losses.one can expect that wall features will fundamentally aect more sophisticated turbulence models.

12 Figure 4 shows the dependence of the hydraulic losses on the adhesive coecient κ num which is equal to κ s dened by (2) as mentioned above. From the practical point of view, surfaces with κ num < 2 are desired hydraulic losses κ num 3 4 Figure 4: Dependence of the hydraulic losses on the adhesive coecient κ num. 5.2 Flow initialized by a rotating concentric inner cylinder Let Ω = {(x, x 2 ) R 2 : R 2 < x 2 + x 2 2 < R 2 2}, where R =.2 [m] and R 2 =.23 [m]. The decomposition of the boundary Ω is as follows: γ D = {(x, x 2 ) R 2 : x 2 +x 2 2 = R 2 }, γ C = {(x, x 2 ) R 2 : x 2 +x 2 2 = R 2 2}, and γ N =. The problem (3) is solved for f =, η =.3, and u D = ω R t, where t is the unit vector tangential to γ D and ω = 2πf q = [rad s ] is the angular velocity of rotating cylinder γ D with the frequency f q = [Hz]; see Figure 5(a). Assuming γ D as perfectly wetted, the nonzero velocity u D simulates the initialization of owing by a rotation of the concentric inner cylinder. We assume the outer cylinder γ C partially wettable that is modelled by dierent g (and κ). Our computations are performed with n u = 55826, n p = 323, n c = 337. A MATLAB nite element mesh generator was used for the triangulation of Ω, see [9]. Due to the setting of the problem, the velocity eld u solving the Stokes system with the Navier condition on γ C is rotationally symmetric, i.e. it can be expressed in the polar coordinates with the radial function u := u(r) 2

13 9 8 κ s 7 κ num 6 5 κ (a) g (b) Figure 5: (a) Rotating cylinder γ D and the stick-slip boundary conditions on γ C ; (b) comparison of κ s and κ num on γ C. which depends only on the radius r. The velocity prole of this ow in Ω is given by ( ω R 2 R 2 u(r) = 2 R2 2 + R(2η/(κR 2 2 ) ) r r + 2ηr ), r R, R 2. (7) κr 2 The tangential velocity u t (x), x γ C is equal to u(r 2 ), i.e. ( ) ω R 2 2η u(r 2 ) =. (8) R2 2 + R(2η/(κR 2 2 ) ) κ Let us mention that u t and σ t are constant on γ C. The constant value of κ on γ C can be expressed from (8) as κ = 2ηR 2 ω u(r 2 )/R 2 (R2 2 R)u(R 2 2 ). (9) The presentation of the results has the same structure as in the previous example. First, problem (3) is computed for small values of g = const. which guarantee that the slip occurs on γ C. Clearly, u t and σ t are again constant on γ C and so κ s is. In Figure 5(b) we compare κ s computed by (2) with κ num computed by (9) but using the solution to (3) for dierent values of g. We see that κ s and κ num are the same. The dependence of u t on g, κ num is depicted in Figure 6(a), and (b), respectively. We see that u t is a 3

14 linear function of g which conrms () while the graph of u t as a function of κ num coincides with the graph of the right hand side of (8) considered as a function of κ u t.8 u t g (a) κ num (b) Figure 6: Dependence of u t on (a) the slip bound g, (b) the adhesive coecient κ num. Then we compute by ANSYS Fluent the Stokes system with the Navier condition () for dierent κ (Table 4-left). The rst row (no slip) of this table is obtained from the solution with the no slip boundary condition u t = on γ C. The resulting σ t denes the slip bound g which will be used now in (3). Table 4-right now collects the results: κ s computed by (2), the tangential velocity u t and the tangential velocity u t computed by (8) but using κ s in place of κ. 5.3 Flow initialized by a rotating eccentric inner cylinder The previous two examples were used to compare solutions of the Stokes system with the Navier boundary condition on one hand and the stick-slip conditions on the other hand. In the next example we chose data to obtain all three modes: complete stick or slip on γ C and simultaneous stick on one part and slip on another part of γ C. We modify the domain from the previous example by shifting the inner cylinder. Let Ω = {(x, x 2 ) R 2 : x 2 + x 2 2 < R 2 2} \ ω, where ω = {(x, x 2 ) R 2 : (x e) 2 + x 2 2 < R 2 } with e =.5 [m], γ D = ω and γ C = Ω \ γ D ; 4

15 Navier by Fluent Stick-slip by MATLAB κ σ t u(r 2 ) g κ s by (2) u t u t by (8) no slip e4.73e-4.62e Table 4: left - Stokes problem with the Navier condition for dierent κ (solved by ANSYS Fluent); right - the adhesive coecient κ s and u t on γ C for different g (except the rst row) solved by MATLAB. see Figure 7(a). The remaining data of the problem are the same as in Subsection 5.2. Our computations are performed with n u = 33, n p = 754, n c = 248. A MATLAB nite element mesh generator was used for the triangulation of Ω, see [9]. A part of the zoomed mesh is in Figure 7(b) x (a) x (b) Figure 7: Example: (a) eccentric rotating cylinder; (b) zoom of the mesh. First we solve problem (3) with the slip bound g =.894 when the slip occurs on the whole γ C. In Figure 8(a),(b) we see the distribution of κ s computed by (2) and u t, respectively along γ C. Next we solve problem (3) with the constant slip bound g =.633 on γ C (a part of the circle of radius g is in red in Figure 9(a)). The distribution 5

16 κ s u t clockwise from A (a) γ γ 25 C C clockwise from A Figure 8: Distribution of: (a) adhesive coecient κ s (b) tangential velocity u t on γ C for g =.894. (b) of σ t is in green and γ C itself in blue. One can see that there is a small part of γ C (on the left) where σ t is below g and accordingly to (3) 7 the tangential component u t should be equal to zero there. This is conrmed by Figure 9(b) which depicts the distribution of u t on γ C. γ C.5 g u t.5 σ t (a) clockwise from A (b) γ C Figure 9: Distribution of (a) shear stress σ t (b) tangential velocity u t on γ C for g =.633. Finally, we solve (3) with g = 5. In this case σ t is strictly less than g on the whole γ C and so u t = on γ C, see Figure. Let us note that in this case the solution is the same as the one to the Stokes system with the no-slip boundary condition u = on γ C. One can observe the reverse ow in a part of the domain which is a consequence of the continuity equation for incompressible ows, see Fig- 6

17 ure (g = 5). This eect is caused by a relatively high velocity gradient in the wider part of the domain. g γ C σ t Figure : The distribution of σ t on γ C for g = 5. Velocity elds in the part of Ω highlighted in Figure 7(a) and the distribution of the pressure on γ C are shown in Figure and 2, respectively x x x γ C γ D 2 γ C γ D 2 γ C γ D x x x g =.894 g =.633 g = 5 Figure : Zoomed velocity elds u. 7

18 p p p 5 γ clockwise from A C clockwise from A γ C clockwise from A g =.894 g =.633 g = 5 Figure 2: Distribution of the pressure p on γ C. γ C 6 Conclusions and future plans The paper is devoted to numerical solution of the Stokes system with stickslip boundary conditions prescribed on a part of the boundary. Unlike the classical Navier condition, this time the slip may occur only when the shear stress attains a threshold g given à-priori. The resulting numerical model leads to minimization of a strictly convex quadratic function subject to a small number of simple constraints. The minimization itself was carried out by the interior point method. In order to validate this ow model, the obtained numerical results of two model examples for small values of g are compared with the ones computed by ANSYS Fluent and also with the known analytic solutions. The results are practically identical. As the next step of our research we plan to extend the stick-slip boundary conditions to the case when the threshold g depends on the solution itself (this seems to be more practical for the real hydrophobic materials), more precisely g := g( u t ) and to the stick-slip conditions of the Coulomb type. Acknowledgement This work has been supported by the IT4IXS - IT4Innovations Excellence in Science project (LQ62) (JH,RK,VS). Grant Agency of the Czech Republic within the project and GA/5-662S is gratefully acknowledged for the support of this work (SF,FP). References [] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity prob- 8

19 lems. Nonlinear Dynamics, 4:23247, 997. [2] M. Ayad, L. Baco, M. K. Gdoura, and T. Sassi. Error estimates for Stokes problem with Tresca friction conditions. ESAIM: Mathematical Modelling and Numerical Analysis (accepted), 24. [3] M. Brdi ka, L. Samek, and S. Bruno. Mechanika kontinua. Academia, 2. [4] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford, 25. [5] S. Fialová. Identication of the properties of hydrophobic layers and its usage in technical practice. Habilitation thesis, VUTIUM. (submitted 25). [6] S. Fialová and F. Pochylý. Identication and experimental verication of the adhesive coecient of hydrophobic materials. Wasserwirtschaft Extra, pages 2529, 25. [7] J. Haslinger, I. Hlavá ek, and J. Ne as. Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Volume IV, Part 2, North Holland, Amsterdam, 4:33485, 996. [8] J. Koko. Vectorized Matlab codes for the Stokes problem with P-bubble/P nite element, 22. url: sim$jkoko/codes.html [online]. [9] J. Koko. A MATLAB mesh generator for the two-dimensional nite element method. Applied Mathematics and Computation, 25:65664, 25. [] R. Ku era, J. Haslinger, V. átek, and M. Jaro²ová. Ecient methods for solving the Stokes problem with slip boundary conditions. Mathematics and Computers in Simulation, submitted 25. [] R. Ku era, J. Machalová, H. Netuka, and P. šen ák. An interior point algorithm for the minimization arising from 3d contact problems with friction. Optimization Methods and Software, 6(28):9527, 23. [2] J. Ne as. Les Méthodes Directes en Théorie des Equations Elliptiques. Masson, Paris,

20 [3] J. Nocedal, A. Wächter, and R. A. Waltz. Adaptive barrier strategies for nonlinear interior methods. TR RC 23563, IBM T.J. Watson Research Center, 25. [4] F. Pochylý, S. Fialová, and M. Kozubková. Journal bearings with hydrophobic surface. In Vibronadeºnos i germeti nos centrobeºnyh ma²in. Technical study - monography, pages 3432, 2. [5] F. Pochylý, S. Fialová, and E. Malenovský. Bearing with magnetic uid and hydrophobic surface of the lining. IOP Conference Series: Earth and Environmental Science, 5(2):9, 22. [6] ANSYS Fluent. Fluent. Accessed: [7] MATLAB - The Language of Technical Computing. mathworks.com/products/matlab/. Accessed:

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK.   Mathematics. Teacher: Student: WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.

Více

The Over-Head Cam (OHC) Valve Train Computer Model

The Over-Head Cam (OHC) Valve Train Computer Model The Over-Head Cam (OHC) Valve Train Computer Model Radek Tichanek, David Fremut Robert Cihak Josef Bozek Research Center of Engine and Content Introduction Work Objectives Model Description Cam Design

Více

Transportation Problem

Transportation Problem Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n

Více

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation

Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms

Více

DC circuits with a single source

DC circuits with a single source Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován

Více

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG

Více

WORKSHEET 1: LINEAR EQUATION 1

WORKSHEET 1: LINEAR EQUATION 1 WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable

Více

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová

Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace

Více

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK.  cz SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,

Více

The influence of the partial surface wetting on the flow field in a pipe with circular cross-section

The influence of the partial surface wetting on the flow field in a pipe with circular cross-section DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a s t r o j n í / M e c h a n i c a l S e r i e s þÿx a d a s t r o j n í. 0 1 1, r o. 5 7 / M e c h a n i c a l S e r i e s The influence of the partial

Více

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients

A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients KYBERNETIKA VOLUME 8 (1972), NUMBER 6 A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients JAROSLAV KRAL In many applications (for example if the effect

Více

Compression of a Dictionary

Compression of a Dictionary Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction

Více

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová

Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension

Více

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT

Více

Extrakce nezávislé komponenty

Extrakce nezávislé komponenty Extrakce nezávislé komponenty Zbyněk Koldovský Acoustic Signal Analysis and Processing Group, Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University in Liberec, https://asap.ite.tul.cz

Více

Database systems. Normal forms

Database systems. Normal forms Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice

Více

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I  I E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200

Více

Introduction to MS Dynamics NAV

Introduction to MS Dynamics NAV Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges

Více

Obrábění robotem se zpětnovazební tuhostí

Obrábění robotem se zpětnovazební tuhostí Obrábění robotem se zpětnovazební tuhostí Odbor mechaniky a mechatroniky ČVUT v Praze, Fakulta strojní Student: Yaron Sela Vedoucí: Prof. Ing. Michael Valášek, DrSc Úvod Motivace Obráběcí stroj a důležitost

Více

Dynamic programming. Optimal binary search tree

Dynamic programming. Optimal binary search tree The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity

Více

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic

Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic ROBUST 13. září 2016 regression regresních modelů Categorical Continuous - explanatory, Eva Fišerová Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University

Více

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku

Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Aneta Milsimerová Fakulta strojní, Západočeská univerzita Plzeň, 306 14 Plzeň. Česká republika. E-mail: anetam@kto.zcu.cz Hlavním

Více

A constitutive model for non-reacting binary mixtures

A constitutive model for non-reacting binary mixtures A constitutive model for non-reacting binary mixtures Ondřej Souček ondrej.soucek@mff.cuni.cz Joint work with Vít Průša Mathematical Institute Charles University 31 March 2012 Ondřej Souček Charles University)

Více

Chapter 7: Process Synchronization

Chapter 7: Process Synchronization Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris

Více

Litosil - application

Litosil - application Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical

Více

EXACT DS OFFICE. The best lens for office work

EXACT DS OFFICE. The best lens for office work EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide

Více

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK.   Mathematics. Student: Draw: Convex angle Non-convex angle WORKBOOK http://agb.gymnaslo.cz Subject: Student: Mathematics.. School year:../ Topic: Trigonometry Angle orientation Types of angles 90 right angle - pravý less than 90 acute angles ("acute" meaning "sharp")-

Více

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400

Více

Geometry of image formation

Geometry of image formation eometry of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: July 4, 2008 Talk Outline Pinhole

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

2. Entity, Architecture, Process

2. Entity, Architecture, Process Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš

Více

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek

Více

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers

Více

Program SNA

Program SNA Pondělí 30. ledna 2017 10:00 12:00 registrace v budově Nové auly VŠB-TU u posluchárny NA4 (možnost odložení zavazadel u registrace, ubytování na kolejích VŠB-TU od 13:00) 12:30 13:30 oběd v bufetu Nové

Více

Stojan pro vrtačku plošných spojů

Stojan pro vrtačku plošných spojů Střední škola průmyslová a hotelová Uherské Hradiště Kollárova 617, Uherské Hradiště Stojan pro vrtačku plošných spojů Závěrečný projekt Autor práce: Koutný Radim Lukáš Martin Janoštík Václav Vedoucí projektu:

Více

Entrance test from mathematics for PhD (with answers)

Entrance test from mathematics for PhD (with answers) Entrance test from mathematics for PhD (with answers) 0 0 3 0 Problem 3x dx x + 5x +. 3 ln 3 ln 4. (4x + 9) dx x 5x 3. 3 ln 4 ln 3. (5 x) dx 3x + 5x. 7 ln. 3 (x 4) dx 6x + x. ln 4 ln 3 ln 5. 3 (x 3) dx

Více

Čtvrtý Pentagram The fourth Pentagram

Čtvrtý Pentagram The fourth Pentagram Energy News 4 1 Čtvrtý Pentagram The fourth Pentagram Na jaře příštího roku nabídneme našim zákazníkům již čtvrtý Pentagram a to Pentagram šamponů. K zavedení tohoto Pentagramu jsme se rozhodli na základě

Více

Goal: to construct some general-purpose algorithms for solving systems of linear Equations

Goal: to construct some general-purpose algorithms for solving systems of linear Equations Chapter IV Solving Systems of Linear Equations Goal: to construct some general-purpose algorithms for solving systems of linear Equations S4.4 Norms and the Analysis of Errors S4.4 Norms and the Analysis

Více

Dynamic Signals. Ananda V. Mysore SJSU

Dynamic Signals. Ananda V. Mysore SJSU Dynamic Signals Ananda V. Mysore SJSU Static vs. Dynamic Signals In principle, all signals are dynamic; they do not have a perfectly constant value over time. Static signals are those for which changes

Více

On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia

On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia On large rigid sets of monounary algebras D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia coauthor G. Czédli, University of Szeged, Hungary The 54st Summer School on General Algebra

Více

STLAČITELNOST. σ σ. během zatížení

STLAČITELNOST. σ σ. během zatížení STLAČITELNOST Princip: Naneseme-li zatížení na zeminu, dojde k porušení rovnováhy a dochází ke stlačování zeminy (přemístňují se částice). Stlačení je ukončeno jakmile nastane rovnováha mezi působícím

Více

Podklady pro habilitační řízení na FM TUL B-kvantitativní hodnocení 2 / 10 Mgr. Jan Stebel, Ph.D.

Podklady pro habilitační řízení na FM TUL B-kvantitativní hodnocení 2 / 10 Mgr. Jan Stebel, Ph.D. Podklady pro habilitační řízení na FM TUL B-kvantitativní hodnocení 2 / 10 udělený grant zahraniční 5 10 udělený grant externí ČR 2 4 spoluřeš. zahraničního grantu 3 6 spoluřeš. grantu ČR 1 2 1 2 realizované

Více

Program SNA 2013 http://www.ugn.cas.cz/link/sna13

Program SNA 2013 http://www.ugn.cas.cz/link/sna13 Pondělí 21. ledna 2013 10:00 14:00 registrace (hotel Relax) oběd od 12:00 13:50 14:00 Zahájení konference 14:00 15:30 (ZŠ) M. Vohralík (INRIA, Paris-Rocquencourt): Adaptivita pro lineární a nelineární

Více

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o. Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk

Více

Ja n T. Št e f a n. Klíčová slova: Řada knih, srovnání cen v čase, cena vazby a ocelorytové viněty, lineární regresní analýza.

Ja n T. Št e f a n. Klíčová slova: Řada knih, srovnání cen v čase, cena vazby a ocelorytové viněty, lineární regresní analýza. K CENĚ KNIH Z PRVNÍ POLOVINY 19. století NA PŘÍKLADU SOMMEROVA DÍLA DAS KÖNIGREICH BÖHMEN Ja n T. Št e f a n Abstrakt: V příspěvku je analyzována možnost nalezení dvou složek ceny knihy, a) jejího rozsahu

Více

Algebraic methods in Computer Vision Zuzana Kukelova, Tomas Pajdla, Martin Bujnak

Algebraic methods in Computer Vision Zuzana Kukelova, Tomas Pajdla, Martin Bujnak Algebraic methods in Computer Vision Zuzana Kukelova, Tomas Pajdla, Martin Bujnak Center for Machine Perception Department of Cybernetics, Faculty of Electrical Engineering Czech Technical University in

Více

INŽENÝRSKÁ MECHANIKA 2002

INŽENÝRSKÁ MECHANIKA 2002 Národní konference s mezinárodní účastí INŽENÝRSKÁ MECHANIKA 2002 13. 16. 5. 2002, Svratka, Česká republika TORSION TESTS FOR STEEL SPECIMENS AND THEIR NUMERICAL AND EXPERIMENTAL SOLUTIONS Karel FRYDRÝŠEK

Více

Ladislav Lukšan Ústav informatiky Praha 8 Telefon: (+4202) , Fax: (+4202)

Ladislav Lukšan Ústav informatiky Praha 8 Telefon: (+4202) , Fax: (+4202) Přehled Publikační činnosti Ladislav Lukšan Ústav informatiky Akademie věd České republiky Pod vodárenskou věží 2 182 07 Praha 8 Telefon: (+4202) 66053260, Fax: (+4202) 8585789 email: luksan@cs.cas.cz

Více

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16 zákaznická linka: 840 50 60 70 DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Apr 16 1999 Apr 23 str 1 Dodavatel: GM electronic, spol. s r.o., Křižíkova 77, 186 00 Praha

Více

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs. Third School Year FRICTION DRIVES 1. Introduction In friction drives the peripheral force between pressed wheels is transferred by friction. To reach peripheral forces we need both a pressed force and

Více

PŘEDPODMÍNĚNÍ ALGORITMU SLEDOVÁNÍ CESTY PRO STOKESOVO PROUDĚNÍ SE SKLUZOVOU PODMÍNKOU

PŘEDPODMÍNĚNÍ ALGORITMU SLEDOVÁNÍ CESTY PRO STOKESOVO PROUDĚNÍ SE SKLUZOVOU PODMÍNKOU PŘEDPODMÍNĚNÍ ALGORITMU SLEDOVÁNÍ CESTY PRO STOKESOVO PROUDĚNÍ SE SKLUZOVOU PODMÍNKOU Marta JAROŠOVÁ 1, Radek KUČERA 2, Václav ŠÁTEK 1 1 VŠB Technická univerzita Ostrava, IT4Innovations, 2 VŠB Technická

Více

Mikrokvadrotor: Návrh,

Mikrokvadrotor: Návrh, KONTAKT 2011 Mikrokvadrotor: Návrh, Modelování,, Identifikace a Řízení Autor: Jaromír r Dvořák k (md( md@unicode.cz) Vedoucí: : Zdeněk Hurák (hurak@fel.cvut.cz) Katedra řídicí techniky FEL ČVUT Praha 26.5.2011

Více

Radiova meteoricka detekc nı stanice RMDS01A

Radiova meteoricka detekc nı stanice RMDS01A Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah

Více

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.

Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a. 1 Bad line breaks The follwing text has prepostions O and k at end of line which is incorrect according to Czech language typography standards: Mezi oblíbené dětské pohádky patří pohádky O Palečkovi, Alenka

Více

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT PREDIKCE FYZIKÁLNĚ-MECHANICKÝCH POMĚRŮ PROUDÍCÍ KAPALINY V TECHNICKÉM ELEMENTU Kumbár V., Bartoň S., Křivánek

Více

CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS PŘÍSPĚVEK K PROBLEMATICE ŘÍZENÍ METALURGICKÝCH TECHNOLOGIÍ

CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS PŘÍSPĚVEK K PROBLEMATICE ŘÍZENÍ METALURGICKÝCH TECHNOLOGIÍ CONTRIBUTION TO METALLURGICAL TECHNOLOGY CONTROL PROBLEMS Bajger Z. 1, Michalec J. 1, Kret J. 2, Bajgerová D. 2 1 VÍTKOVICE a.s., R&D division 2 VŠB - Technical University Ostrava PŘÍSPĚVEK K PROBLEMATICE

Více

WYSIWYG EDITOR PRO XML FORM

WYSIWYG EDITOR PRO XML FORM WYSIWYG EDITOR PRO XML FORM Ing. Tran Thanh Huan, Ing. Nguyen Ba Nghien, Doc. Ing. Josef Kokeš, CSc Abstract: In this paper, we introduce the WYSIWYG editor pro XML Form. We also show how to create a form

Více

Two-Point Boundary Value Problem

Two-Point Boundary Value Problem Two-Point Boundary Value Problem Weak Formulation and FEM Solution Małgorzata Stojek CUT - L52 March 24 Małgorzata Stojek (CUT - L52 Two-Point Boundary Value Problem March 24 / 3 Strong Formulation Find

Více

Inovace bakalářského studijního oboru Aplikovaná chemie. Reg. č.: CZ.1.07/2.2.00/

Inovace bakalářského studijního oboru Aplikovaná chemie. Reg. č.: CZ.1.07/2.2.00/ Inovace bakalářského studijního oboru Aplikovaná chemie Reg. č.: CZ.1.07/2.2.00/15.0247 Lecture vocabulary: Liquid Viscosity Surface tension Liquid state Definite shape Container Arrangement Random Translational

Více

SPECIFICATION FOR ALDER LED

SPECIFICATION FOR ALDER LED SPECIFICATION FOR ALDER LED MODEL:AS-D75xxyy-C2LZ-H1-E 1 / 13 Absolute Maximum Ratings (Ta = 25 C) Parameter Symbol Absolute maximum Rating Unit Peak Forward Current I FP 500 ma Forward Current(DC) IF

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2006, ročník LII, řada strojní článek č. 1498 Jiří FRIES *, Karel ROZUM ** LIFETIME PROLONGATION OF BELT CONVEYOR

Více

Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika: 5-2013

Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika: 5-2013 Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY Servisní Informace Datum vydání: 20.2.2013 Určeno pro : AMS, registrované subj.pro montáž st.měř. Na základě SI VDO č./datum: Není Mechanika

Více

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. 1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím

Více

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška Kapky Kapilární délka Simulace pomocí Isingova modelu 7.přednáška Kapaliny vykazují poněkud zvláštní vlastnosti. Mají schopnost porazit gravitaci a vytvořit kapilární mosty, přesouvat se po šikmých rovinách,

Více

6.867 Machine Learning

6.867 Machine Learning . Machine Learning Problem Set Solutions Due date: Monday November Problem : Model Selection. P (y,..., y n x,..., x n, PST) = = K [ [,] K [ K p n+ i i ( p i ) n i dpi ] = p n+ i i K ( p i ) n i n + i!

Více

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Dynamic Development of Vocabulary Richness of Text Miroslav Kubát & Radek Čech University of Ostrava Czech Republic Aim To analyze a dynamic development of vocabulary richness from a methodological point

Více

Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r.

Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r. MATURITNÍ TÉMATA Školní rok: 2016/2017 Ředitel školy: PhDr. Karel Goš Předmětová komise: Matematika a deskriptivní geometrie Předseda předmětové komise: Mgr. Šárka Richterková Předmět: Matematika Třída:

Více

Search and state transfer by means of quantum walk. Vyhledávání a přenos stavu pomocí kvantové procházky

Search and state transfer by means of quantum walk. Vyhledávání a přenos stavu pomocí kvantové procházky Czech Technical University in Prague Faculty of uclear Sciences and Physical Engineering Search and state transfer by means of quantum walk Vyhledávání a přenos stavu pomocí kvantové procházky Master s

Více

Dvojitě vyvážený směšovač pro KV pásma. Doubly balanced mixer for short-wave bands

Dvojitě vyvážený směšovač pro KV pásma. Doubly balanced mixer for short-wave bands Dvojitě vyvážený směšovač pro KV pásma Doubly balanced mixer for short-wave bands Úvodem / Intro Cílem tohoto miniprojektu bylo zkonstruovat diodový směšovač vhodný pro účely krátkovlnného TRXu. Tento

Více

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9 www.regulus.cz UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9 CZ EN UPM3 Hybrid 1. Úvod V továrním nastavení čerpadla UPM3 Hybrid je profil PWM

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Výklad a cvičení z větné stavby, vy_32_inovace_ma_33_01

Více

ANALYSIS OF RAIL FASTENING SYSTEM DELTA LAGER I FAILURE ANALÝZA PŘÍČINY PORUŠENÍ UPEVŇOVACÍHO SYSTÉMU KOLEJNIC TYPU DELTA LAGER I

ANALYSIS OF RAIL FASTENING SYSTEM DELTA LAGER I FAILURE ANALÝZA PŘÍČINY PORUŠENÍ UPEVŇOVACÍHO SYSTÉMU KOLEJNIC TYPU DELTA LAGER I ANALYSIS OF RAIL FASTENING SYSTEM DELTA LAGER I FAILURE ANALÝZA PŘÍČINY PORUŠENÍ UPEVŇOVACÍHO SYSTÉMU KOLEJNIC TYPU DELTA LAGER I Autoři: Ing. Michal Mrózek, Ústav stavební mechaniky, Fakulta stavební,

Více

Brisk guide to Mathematics

Brisk guide to Mathematics Brisk guide to Mathematics Jan Slovák and Martin Panák, Michal Bulant, Vladimir Ejov, Ray Booth Brno, Adelaide, 208 Authors: Ray Booth Michal Bulant Vladimir Ezhov Martin Panák Jan Slovák With further

Více

Problematika disertační práce a současný stav řešení

Problematika disertační práce a současný stav řešení Problematika disertační práce a současný stav řešení I never worry about the future. It comes soon enough Albert Einstein 2 /12 CONTENTS Topic of thesis and objectives Introduction Background of problem

Více

SUBSTRUCTURES underground structures

SUBSTRUCTURES underground structures SUBSTRUCTURES underground structures FUNCTION AND REQUIREMENTS Static function substructure transfers the load to the foundation soil: vertical loading from upper stucture horizontal reaction of upper

Více

Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting

Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting Petr Macháček PETALIT s.r.o. 1 What is Redwood. Sensor Network Motion Detection Space Utilization Real Estate Management 2 Building

Více

Czech Technical University in Prague DOCTORAL THESIS

Czech Technical University in Prague DOCTORAL THESIS Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS

Více

Fytomineral. Inovace Innovations. Energy News 04/2008

Fytomineral. Inovace Innovations. Energy News 04/2008 Energy News 4 Inovace Innovations 1 Fytomineral Tímto Vám sdělujeme, že již byly vybrány a objednány nové lahve a uzávěry na produkt Fytomineral, které by měly předejít únikům tekutiny při přepravě. První

Více

Zubní pasty v pozměněném složení a novém designu

Zubní pasty v pozměněném složení a novém designu Energy news4 Energy News 04/2010 Inovace 1 Zubní pasty v pozměněném složení a novém designu Od října tohoto roku se začnete setkávat s našimi zubními pastami v pozměněném složení a ve zcela novém designu.

Více

PITSTOP VY_22_INOVACE_26

PITSTOP VY_22_INOVACE_26 PITSTOP VY_22_INOVACE_26 Vzdělávací oblast: Jazyk a jazyková komunikace Vzdělávací obor: Anglický jazyk Ročník: 9. PITSTOP 1/ Try to complete the missing words. Then listen and check your ideas. Eight

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: II/2 Inovace a zkvalitnění výuky cizích jazyků na středních

Více

Klepnutím lze upravit styl předlohy. Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. Aleš Křupka.

Klepnutím lze upravit styl předlohy. Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. Aleš Křupka. 1 / 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Aleš Křupka akrupka@phd.feec.vutbr.cz Department of Telecommunications Faculty of Electrotechnical Engineering

Více

IT4Innovations Centre of Excellence

IT4Innovations Centre of Excellence IT4Innovations Centre of Excellence Supercomputing for Applied Sciences Ivo Vondrak ivo.vondrak@vsb.cz: VSB Technical University of Ostrava http://www.it4innovations.eu Motto The best way to predict your

Více

Právní formy podnikání v ČR

Právní formy podnikání v ČR Bankovní institut vysoká škola Praha Právní formy podnikání v ČR Bakalářská práce Prokeš Václav Leden, 2009 Bankovní institut vysoká škola Praha Katedra Bankovnictví Právní formy podnikání v ČR Bakalářská

Více

GENERAL INFORMATION RUČNÍ POHON MANUAL DRIVE MECHANISM

GENERAL INFORMATION RUČNÍ POHON MANUAL DRIVE MECHANISM KATALOG CATALOGUE RUČNÍ POHONY PRO VENKOVNÍ PŘÍSTROJE, MONTÁŽ NA BETONOVÉ SLOUPY MANUAL DRIVE MECHANISM FOR THE ACTUATION OF OUTDOOR TYPE SWITCHING DEVICES MOUNTED ON THE CONCRETE POLES TYP RPV ISO 9001:2009

Více

PANM 17. Karel Mikeš Comparison of crack propagation criteria in linear elastic fracture mechanics

PANM 17. Karel Mikeš Comparison of crack propagation criteria in linear elastic fracture mechanics PANM 17 Karel Mikeš Comparison of crack propagation criteria in linear elastic fracture mechanics In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.): Programs

Více

PAINTING SCHEMES CATALOGUE 2012

PAINTING SCHEMES CATALOGUE 2012 Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting

Více

AxeHD SOFTWARE. Software name. Authors doc. Ing. Pavel Novotný, Ph.D. Ing. Martin Jonák Ing. Juraj Hliník. Date

AxeHD SOFTWARE. Software name. Authors doc. Ing. Pavel Novotný, Ph.D. Ing. Martin Jonák Ing. Juraj Hliník. Date Software name AxeHD 1.0 Figure 1 Pre-processor of AxeHD 1.0 software based on MS Excel capabilities Authors doc. Ing. Pavel Novotný, Ph.D. Ing. Martin Jonák Ing. Juraj Hliník Date 31. 12. 2017 Internal

Více

1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.

1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS USING OPTIMIZATION S ALGORITHMS BY DESIGNING

Více

Progressive loyalty V1.0. Copyright 2017 TALENTHUT

Progressive loyalty V1.0. Copyright 2017 TALENTHUT Progressive loyalty Copyright 2017 TALENTHUT www.talenthut.io 1. Welcome The Progressive Loyalty Siberian CMS module will allow you to launch a loyalty program and reward your customers as they buy from

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ. GRASS nástroj pro definování nákladů za odbočení při síťových analýzách

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ. GRASS nástroj pro definování nákladů za odbočení při síťových analýzách ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ GRASS nástroj pro definování nákladů za odbočení při síťových analýzách PIN2 Projekt Informatika 2 2013 Dokumentace Lukáš Bocan Štěpán Turek Viera

Více

Fluid-structure interaction

Fluid-structure interaction Seminář software pro geofyziky Jednoocí slepým 10.4.2012 Fluid-structure interaction Praktické ukázky Program Obtékání elastické překážky Newtonovskou kapalinou (2D) Elmer Rozebereme příklad z http://www.nic.funet.fi/pub/sci/physics/elmer/doc/elmertutorials.pdf

Více

Základy teorie front III

Základy teorie front III Základy teorie front III Aplikace Poissonova procesu v teorii front II Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta

Více

Akademie věd České republiky. Disertace k získání vědeckého titulu "doktor věd" ve skupině věd fyzikálně-matematických

Akademie věd České republiky. Disertace k získání vědeckého titulu doktor věd ve skupině věd fyzikálně-matematických Akademie věd České republiky Disertace k získání vědeckého titulu "doktor věd" ve skupině věd fyzikálně-matematických Mathematical analysis of the motion of viscous fluids: motion of incompressible fluid

Více

STRUCTURE AND PROPERTIES OF LIQUIDS

STRUCTURE AND PROPERTIES OF LIQUIDS STUCTUE AND POPETIES O LIQUIDS. Surface tension a) phenomenon The surface of a iquid behaves ike a stretched eastic membrane (proof pond skater, sma drops spheres Expanation: r range of attraction r nm,

Více

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES

PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES PRAVIDLA ZPRACOVÁNÍ STANDARDNÍCH ELEKTRONICKÝCH ZAHRANIČNÍCH PLATEBNÍCH PŘÍKAZŮ STANDARD ELECTRONIC FOREIGN PAYMENT ORDERS PROCESSING RULES Použité pojmy Platební systém Elektronický platební příkaz Účetní

Více

Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika

Informace o písemných přijímacích zkouškách. Doktorské studijní programy Matematika Informace o písemných přijímacích zkouškách (úplné zadání zkušebních otázek či příkladů, které jsou součástí přijímací zkoušky nebo její části, a u otázek s výběrem odpovědi správné řešení) Doktorské studijní

Více

SPECIAL THEORY OF RELATIVITY

SPECIAL THEORY OF RELATIVITY SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory

Více