Mikrořadiče pro přístrojovou techniku
|
|
- Kristina Tomanová
- před 9 lety
- Počet zobrazení:
Transkript
1 Mikrořadiče pro přístrojovou techniku Doc. Jan Fischer Katedra měření ČVUT v Praze, FEL Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1
2 Oblast zájmu předmětu Mikroprocesory v přístrojové technice - Přístrojová technika, pojem přístroj Přístroj: spotřební elektronika, prvky automatizace, měřicí technika, prodejní automaty Mikroprocesorem řízený přístroj Mikroprocesor vestavěný v přístroji či zařízení? kolik máte doma mikroprocesorů? 2
3 up ve spotřební a domácí elektronice Největší spotřeba mikroprocesorů, resp. mikrokontrolérů spojená s automobilovým průmyslem. Přístroj - ve spotřební elektronice: mobilní telefon, PDA, dig.fotoaparát, kamera, CD + MP3 přehrávač, televizor, DVD přehrávač, činnosti: vstup - výstup signálu, digitalizace, komprese, ukládání, přenos tzv. Bílá elektronika myčka, lednička, mraznička, pračka, mikrovlnná trouba, mixér, vysavač činnosti: ovládací vstupy, snímání ( teplota, hladina, průtok,..) akční členy - ovládání motoru, solenoidových ventilů, komunikace s obsluhou Osvětlení - řízení zářivky - zabudovaný mikrořadič 3
4 up řízený přístroj v měřicí technice Měřicí technika Přístroje: Multimetr, osciloskop, logický analyzátor, měřič impedance, generátor, reflektometr na měření metalických a optických tras Osciloskop (zcela jiná konstrukce oproti původnímu osciloskopu - výkonný počítač + rychlé A/D převodníky), Spektrální analyzátor - digitalizace signálu + Fourier. transformace, metody číslicového zpracování signálu Elektroměr - digitalizace u, i, výpočet odebrané energie, dálkové ovládání - HDO ( noční proud ) komunikace, ovládání relé 4
5 up řízený přístroj - domovní automatizace Domovní automatizace regulace. regulátor teploty, řízení klimatizace Regulátor topení - snímání teploty v místnostech, venkovní teploty, rychlosti větru, ovládání kotle,... Rozpočítávací měřič tepla - na radiátoru ústředního topení Automatizace - regulace, regulátor teploty, řízení klimatizace Ovládání světel, komunikace - standard D.A.L.I. Dálkové ovládání vrat - garáže - ( komunikace, kódy, akční členy, bezpečnost osob - snímání přítomnosti osob a síly zavírání ) Zabezpečovací technika Přístupové systémy - čtečky karet, klávesnice, komunikace Zabezpečovací systémy- snímače pohybu, zvuku - např. tříštění skla, optické závory, komunikace, signalizace, přenos dat SMS,? přenos redukovaného obrazu ( Nový studijní obor na ČVUT -FEL: Inteligentní budovy 5
6 up řízený přístroj - prodej, služby Prodejní automaty - na potraviny, ( snímač mincí, zobrazení, akční členy..) Stojan benzinové pumpy ( snímač - průtokoměr, komunikace, zobrazení, čtečka karet). Automatické váhy ( supermarket) snímač síly - tenzometry, zobrazení, komunikace- přeprogramování ceny, tisk Prodejní automat jízdenek ( MHD, ČD,..) Přenosná čtečka karet - (restaurace) - klávesnice, zobrazení, bezdrátová komunikace, tisk. Přístupové systémy - vstupenky, lanovky, vleky čtečka - optická, RFID,.., komunikace, akční členy - otevírání závory 6
7 up - automobilní elektronika - automotive Automobilní elektronika - palubní přístroje: (řízení motoru- vstřikování,.. řízení brzd ABS, AES, palubní počítač, tempomat,..) Sběr dat: teploty (olej, voda,..), tlak, klepání motoru,spaliny,.. Doplňkové funkce - řízení stěračů, nastavování polohy volantu, sedaček, stahování oken ( snímání proudu - bezpečnost) Regulace - zadání žádané hodnoty, snímání polohy, ovládání motorků, snímání proudu motorku, řízení klimatizace Naklápění reflektorů- up + výkon. budič + krokový motorek Ovládání zábavní elektroniky - rozhlas. přijímač, přehrávač, navigace Komunikace: rozhraní CAN - základní komunikač. rozhraní - (systémová, zábavní) rozhraní LIN - periferie - ovládání motorků v oknech,.. nově - rozhraní Flex ray - např. přímé ovládání brzd 7
8 Blokové schéma přístroje řízeného up analogové logické vstupy řízené obvody vstupy, výstupy, A/D, D/A analogové logické výstupy zobrazení LED tlačítka klávesnice mikropočítač mikrořadič ( microcontroller) LED 7- segment LCD- segment graf. LCD ext. paměti Flash, pam. karty rozhraní RS232, USB, Ethernet 8
9 Náplň předmětu problematika Použití jednočip. mikropočítače 8051, architektura, programování Systémové sběrnice mikropočítačů, připojování obvodů na sběrnice Návrh mikropočítače Připojování vstupních a výstupních obvodů Obvody pro komunikaci s obsluhou, připojení vstupních bloků - tlačítek, klávesnic, výstupních bloků -LED, LCD Připojení A/D, D/A převodníků Další druhy mikropočítačů a mikrořadičů- architektura, vlastnosti 32- bitové mikroprocesory řady ARM Cortex M3 (provedení STM32) Signálové procesory ADSP -BF53x Blackfin 9
10 Mikroprocesory pro vestavné aplikace rysy Široké spektrum procesorů pro vestavné aplikace od 4 bitových po 32 bitové Historický typ jádro 8051, stále využívané desítkami výrobců Atmel AT89C 51, jiná řada Atmel AVR, AT Mega Motorola Freeescale rodina 68HC08, ( 68HCS908, ) rodina 68HCS12 a vyšší typy ST Microelectronics STM8 8- bitový proc. firma Microchip, procesory PIC, Texas Instruments MSP bitový procesor, nízká spotřeba, japonské firmy Fujitsu, Nes, Renesas, 8, 16 bitové proc. Signálové procesory Analog Devices, Texas Instruments, Freescale aplikace jednočipové, nebo i externími sběrnicemi možnost připojení externí SDRAM, možnost oprač. systému ( uclinux., Linux) Texas Instruments kombinace DSP a procesoru ARM v jednom pouzdře 10
11 Hlavní bloky procesoru pro vestavné aplikace CPU vlastní jádro procesoru vnitřní paměť programu (ve formě ROM, Flash nebo SRAM) vnitřní paměť dat SRAM Generátor hodinového signálu, vnější s XTAL ( krystalem), vnitřní RC méně přesné jednotky procent, možná kalibrace resetovací obvod ( Reset, Por,..) dohlížecí obvod Watch dog monitorovací obvod kontrola napájení, monitorování teploty čipu, zálohování napáj. vybrané SRAM obvod reálného času RTC (Real Time Clock) jednotky čítačů, časovačů, (jednotky PCA programmable counter array, funkce input capture, output compare, high speed output),generátory PWM, vnitřní sběrnice, číslicové vstupně výstupní piny, analogové vstupy, analogové výstupy 11
12 Procesory s jádrem ARM pro vestavné aplikace Nyní trend používat jádro ARM (firma ARM www. ARM. COM) nejdříve jádro ARM 7, a především, jádro pro vestavné aplikace jednočipová varianta ARM Cortex M3, ARM Cortex M0 další typy jádro ARM Cortex M4 (funkce DSP),ARM 9, ARM 11, ARM Cortex A9 vyšší typy již spolupráce s externími paměťmi prostřednictvím sběrnic externí SDRAM, 32, 64 a více MByte, portování Linux, nebo omezená verze uclinux ( procesory bez MMU memory Management Unit), 12
13 Mikrořadič STM8S105 Mikrořadič, jednočipový mikropočítač pro vestavné aplikace 8- bitový obdobné periferie jako vyšší procesory I2C, SPI, ADC, PWM, Čítače 13
14 Mikrořadič s jádrem ARM Cortex- M3 (STM32F103) Mikrořadič STM32F103 s jádrem 32 bitového procesoru ARM Cortex M3 Procesorové jádro ARM + paměti + periferie Periferie podobné jako 8- bitového mikrořadiče STM8S 14
15 Signálový procesor ADSP BF533 Signálový procesor Analog Devices, Blackfin, pro vestavné zpracování signálu a obrazu (zpracování zvukového a obrazového signálu) Použití set top box, digitální fotoaparát, elektro akustická zařízení 15
16 Signálový procesor - mikrořadič ADSP BF504 Signálový procesor - ADSP BF504 F, použití jako typický mikrořadič pro vestavné aplikace Jádro signálového procesoru Blackfin (jako v BF533), ale doplněno periferiemi pro vestavné aplikace, odstraněno připojení na externí paměti Vhodné pro vestavné zpracování signálu, řídicí aplikace (např. řízení motorků) 16
17 První seznámení s mikroprocesory a mikrořadiči Pro první seznámení s procesory pro vestavné aplikace vhodné začít s jednoduššími 8 bitovými typy mikroprocesorů a mikrořadičů Mikrořadiče s jádrem 8051, (resp. 8052), postupný vývoj, procesorové jádro 51 zůstává, avšak nové typy doplněny řadou periferií typických pro vyšší typy mikrořadičů Mikrořadiče s jádrem 51 stále vyráběny (v současnosti min. 10 výrobců), doplněny dalšími paměťmi a periferiemi: paměť EEPROM komplexní čítačové jednotky komunikační řadiče (CAN, USB, LIN, bezdrátové komunikace) analogové komparátory převodníky A/D analogo číslicové převodníky číslicovo analogové řadiče LCD 17
18 Procesory s jádrem 8051 Nejznámější a nejrozšířenější 8- bitová architektura procesoru mikrořadiče pro přístrojové a vestavné aplikace Architektura - 8 bitového procesoru, původ Intel 8051 obvykle používané označení 8051 nebo jen 51 ve skutečnosti jádro 8x52 architektura používaná několika desítkami výrobců Atmel, Philips - NXP, Silicon laborartories, Cypress, Texas Instruments, Analog Devices, Siemens- Infinieon,... 18
19 Vývojové nástroje Programování v asembleru 51 IDE Microvision 3 firmy KEIL demoverze IDE, volná, do 2kByte kódu překlad, simulace, odladění na HW nainstalovat doma IDE, seznámení s up AT89S KByte RAM RS 232 nepájivé kontaktní pole PC + IDE Keil Microvision 3 19
20 Blokové schéma 8051 ext. int. Blokové schéma I 8051 counter inputs interrupt control 4 KB ROM 128 B RAM Timer 0, CPU osc bus control I/O port serial port UART P0 P2 P1 P3 TxD RxD Address / Data 20
21 Blokové schéma AT89C52 ext. int. Blokové schéma AT89 C52 counter inputs interrupt control 8 KB Flash 256 B RAM Timer 0, 1, CPU osc bus control I/O port serial port UART P0 P2 P1 P3 TxD RxD Address / Data 21
22 Význam a funkce bloků AT89C52 CPU - central processing unit I/O port - vstupně/výstupní brány Flash 8k- vnitřní paměť programu ext. int. interrupt control 8 KB Flash Blokové schéma AT89 C B RAM Timer 0, 1, 2 counter inputs RAM 256B vnitřní paměť dat CPU UART - sériový port (COM) osc bus control I/O port serial port UART P0 P2 P1 P3 TxD RxD Address / Data Funkce jako - jednočipový mikropočítač (jediný obvod)- int. paměř programu a dat nebo jako mikropoč. s externí pamětí (připojení na sběrnici BUS) Deska na cvičeních - ext. paměť programu v EPROM 2764 a ext. paměť dat v 6264 spolupráce s CPU prostřednictvím sběrnice - BUS BUS adres. signály, datové signály, říd. signály /PSEN, /RD, /WR 22
23 Vývody AT89C52 P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6/ P1.7 RST P3.0/RxD P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD XTAL2 XTAL1 VSS PDIL VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA ALE/PR OG PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8 Signály procesoru: Brány P1 ( P0.7 až P0.0) P1 ( P1.7 až P1.0) P2 ( P2.7 až P2.0) P3 ( P3.7 až P3.0) P1.7 - MSB, P1.0 - LSB atd. UART výst. TxD, vst. RxD přeruš.vst. /INT0, /INT1 akt. L T0, T1 vstupy čítačů Signály externí sběrnice: /WR, /RD, říd. sig. zápisu a čtení A15 - A8, adresové signály AD8 -AD0 mux. adresové/datové s. Vss zem ( GND ground) Vcc - napájení, +5 V, RST - Reset celého procesoru XTAL 1,2 - krystal - oscilátor 23
24 Signály AT89C52 SECONDAR Y FUNCTIONS RxD TxD INT0 INT1 T0 T1 WR RD XTAL1 XTAL2 RST EA PSEN ALE POR T 3 V CC V SS POR T 0 POR T 1 POR T 2 ADDRESS AND DATA BUS ADDRESS BUS P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6/ P1.7 RST P3.0/RxD P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD XTAL2 XTAL1 VSS PDIL VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA ALE/PR OG PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8 24
25 Pouzdro AT89C52 P1.0/T2 P1.1/T2EX P1.2 P1.3 P1.4 P1.5 P1.6/ P1.7 RST P3.0/RxD P3.1/TxD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD XTAL2 XTAL1 VSS PDIL VCC P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7 EA ALE/PR OG PSEN P2.7/A15 P2.6/A14 P2.5/A13 P2.4/A12 P2.3/A11 P2.2/A10 P2.1/A9 P2.0/A8 Pouzdro DIL 40, nepostačuje pro všechny signály, proto - sdílení pinů: UART výst.txd a brána P3.1 vstup RxD a P3.0 hradlování čítače T0, brána P.3.0, a přerušovací vstup /INT0 P2.7 a sig. sběrnice AD15 Někdy možnost použít vstupní pin ve více funkcích současně hradlovat čítač, číst stav pinu, přerušit spádovou hranou ( využití v úloze) 25
26 Vnitřní blokové schéma CPU řady 51 P0.0 - P0.7 P2.0 - P2.7 PORT 0 DRIVERS PORT 2 DRIVERS V CC V SS RAM ADDR REGISTER RAM PORT 0 LATCH PORT 2 LATCH ROM/EPROM 8 B REGISTER ACC STACK POINTER TMP2 TMP1 PROGRAM ADDRESS REGISTER ALU BUFFER PSW SFRs TIMERS PC INCRE- MENTER 8 16 PROGRAM COUNTER PSEN ALE/PROG EA/ V PP RST TIMING AND CONTROL DPTR'S MULTIPLE PD PORT 1 LATCH PORT 3 LATCH OSCILLATOR PORT 1 DRIVERS PORT 3 DRIVERS XTAL1 XTAL2 P1.0 - P1.7 P3.0 - P3.7 26
27 Paměťový model mikropočítače 8051 Prostory CODE ( pouze čtení), DATA, XDATA Paměťový model up řady 8051 FFFF CODE DATA FFFF XDATA paměť prog. interní paměť dat externí paměť dat 0000 FF 80 7F 00 REG. SP. FUNKCÍ RAM
28 Paměťový model mikropočítače AT89C52 AT89C52 navíc - 128B RAM - DATA, 8KB vnitřní paměti FLASH -CODE, povolení vnitřní FLASH vstup /EA= L FFFF CODE Pamět. prostory u AT89C52 FFFF XDATA ext. pam. prog. ext.pam. dat AT89C52 1FFF FFF 0000 EA=1 EA=0 FF 80 7F 00 DATA REG. SP. FUNKCÍ RAM (128B) RAM (128B)
29 Paměťový model - prostor DATA FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) adresový prostor DATA paměť RAM + speciální funkční registry SFR 128B 30 2F 20 1F F F F R7 R0 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 29
30 Prostor DATA, paměť RAM u 8051 FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128 Byte paměti RAM 128B 30 2F 7F F F F 07 R7 R bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 reg. banka 0 paměť RAM 128 Byte v prostoru DATA 30
31 Registry R0 - R7 FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr B 30 2F 20 1F F F F R7 R0 reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 registry R0 až R7 31
32 Bitově adresovatelná paměť RAM FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F F F F R7 R0 reg. banka 0 80 bitově adresovatelná paměť 16 Byte = 16 x 8 bitů = 128 bitů reg. banka 3 reg. banka 2 reg. banka 1 32
33 Doplňková - pouze nepřímo adr. paměť RAM (8x52) FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F F F F 07 R7 R reg. banka 0 80 bitově adresovatelná paměť 128 Byte nepřímo adres. pam (např. MOV reg. banka 3 reg. banka 2 reg. banka 1 (pouze) nepřímo adres. paměť RAM -128 Byte 33
34 Prostor DATA přímo i nepřímo adr. RAM FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F F F F 07 R7 R reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka Byte přímo i nepřímo adres. pam (pouze) nepřímo adres. paměť RAM -128 Byte Přímo i nepřímo adr. pam. RAM Byte 34
35 Celá oblast nepřímo adr. paměti RAM FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F F F F 07 R7 R reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 celkem 256 Byte nepřímo adres. pam RAM (pouze) nepřímo adres. paměť RAM -128 Byte Přímo i nepřímo adr. pam. RAM Byte Nepřímo adr. pam 256 Byte 35
36 Prostor DATA, Speciální funkční registry - SFR FF 80 7F SP P0 zápisník, data speciální funkční registry FF nepřímo adres. dat. pam. ( pouze u xx52 verzí) 128B 128 Byte paměti RAM Registry R0 - R7, banka 0, R0 na adr. 00 bitově adresovatelná.paměť bit 00,01,02...celk. 128 bitů 30 2F 20 1F F F F 07 R7 R reg. banka 0 80 bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 spec. funkč. registrybrány, čítače, UART, řízení, řadič přerušení, přímo adr. MOV 80h, #0Fh (pouze) nepřímo adres. paměť RAM -128 Byte Přímo i nepřímo adr. pam. RAM Byte Nepřímo adr. pam 256 Byte Spec. funkční registry - pouze přímo adresovatelné v prostoru DATA 36
37 Prostor DATA, jednočip. mikropočítač AT89C2051 FF 80 7F SP P0 zápisník, data speciální funkční registry Jednočip. mikropočítač AT89C použití v první samostatné úloze pouze 128B RAM malé pouzdro DIL F 20 1F F F F 07 R7 R bitově adresovatelná paměť reg. banka 3 reg. banka 2 reg. banka 1 reg. banka 0 vývody -port P1 a necelý P3 na P1.0 a P1.1 nejsou PULL - UP rezistory - není schopen generovat na výstupu úroveň H 37
38 Prostor SFR - (DATA) u AT89S8252 F8h F0h E8h E0h D8h D0h C8h C0h B8h B0h A8h A0h 98h 90h 88h 80h bitově. adresov. B (00h) ACC (00h) PSW (00h) T2CON (00h) IP P3 (FFh) P2 (FFh) P1 (FFh) P0 (FFh) T2MOD SCON (00h) SBUF (xx) TCON (00h) TMOD (00h) RCAP2L RCA2H RCA2H TL2 TH2 SPSR TL0 (00h) TL1 (00h) TH0 (00h) TH1 (00h) SP (07h) DPL (00h) DPH (00h) DP1L (00h) DP1H (00h) WMCON PCON 0 (8) 1 (9) 2 (A) 3 (B) 4 (C) 5 (D) 6 (E) 7 (F) FFh F7h EFh E7h DFh D7h CFh C7h BFh B7h AFh A7h 9Fh 97h 8Fh 87h 38
39 Adresování SFR MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB B P2 SCON P1 TCON P0 F0h AFh A8h A7h A0h 90h 90h 8Fh 88h 87h 80h MSB LSB bitová adresa Adresování SFR (např. brána P1 na adrese 90h) MOV 90h, #00h ; zapiš do SFR na adr. 90h přímá data 00h SETB 90h nastav bit v s bit. adr. 90h (nejnižší bit-lsb- brány P1) 90h bitová adresa od začátku (obtížně se pamatuje) SETB 90h.0 nastav bit na bitové adrese, která odpovídá nejnižšímu bitu na bajtové adrese 90h (určení y souřadnice -bajt, a x souřadnice -bit), bitovou adresu určí překladač SETB P1.0 totéž, ale i bajtovou adresu (P1 equ 90h) překladač nejdříve vezme z tabulky symbolů- P1 odpovídá hodnota 90h 39
40 Registry speciálních funkcí - SFR střadač ACC... registr B... registry R0..R7... ukazatel zásobníku - SP datový ukazatel - DPTR porty P0..P3... stavový registr PSW sériový buffer SBUF hodnoty časovačů řídicí registry... 8 bitový registr; funkce střadače 8 bitový reg., pomoc. reg. pro násobení/ dělení 8 bitové registry; 4 banky, přepínané v PSW 8 bitový reg bitový registr (DPH, DPL); adresace XDATA 8-bitové registry; čtení, zápis na porty procesoru 8 bitový reg.; výsledky arit., log. operací CY, AC, F0, RS1, RS0, OV,-, P 8 bitový reg.; vyrovnávací registr pro vysíl. /příjem 16- bitové registry (THx, TLx) 8- bitové registry; IP,IE,TMOD, TCON, SCON,PCON 40
41 Přehled rezervovaných symbolů A R0 - R7 - střadač - osm obecných registrů v právě aktivní bance DPTR PC C AB - datový ukazatel (data pointer), 16- bitový registr, který se používá pro adresování v programové a externí datové paměti - programový čítač; 16 - bitový registr, který obsahuje adresu následující instrukce - Carry flag - přenosový bit; indikuje přenos z MSB při operacích ALU - registrový pár; používá se při násobení a dělení 41
42 Přehled instrukčního souboru 8051 aritmetické operace (sčítání, odečítání, násobení, dělení,...) logické operace (AND,OR, XOR, bitové rotace, nastavování/nulování bitu přesuny dat (mezi registry, styk s programovou a externí datovou pamětí) předání řízení (skoky) (skoky, volání podprogramu,návrat z podprogramu a z přerušení,...) 42
43 Instrukční soubor Operandy instrukcí rezervované symboly: <název> A,C,DPTR, registry speciálních funkcí -SFR bajtové adresy: <adresa> adresy vnitřní datové paměti (0-127) a SFR registry ( ) bitové adresy: <adresa bitu> bitově adresovatelná paměť RAM a vybrané SFR přímá data : # <hodnota> operand je přímo zadán, je součástí instrukce data (skok) se adresují přes ukazatel relativní adresa: 8 bitů se znaménkem (+127 až -128) 43
44 Instrukční soubor Aritmetické instrukce sčítání: ADD prosté sečtení ADDC sčítání s přenosem z nižšího řádu INC přičtení jedničky (inkrementace) odčítání: SUBB odečítání s výpůjčkou DEC odečtení jedničky (dekrementace) násobení: MUL násobení obsahu střadače obsahem registru B dělení: DIV dělení obsahu střadače registrem B dekadická korekce: DA dekadická korekce po sčítání dvou BCD čísel 44
45 Logické instrukce a instrukce pracující s bity logické operace: AND logický součin ORL logický součet XOR nonekvivalence bitové operace: SETB nastavení bitu do log. 1 CLR vynulování bitu CPL bitový doplněk RL rotace bitů vlevo RLC rotace bitů vlevo přes C RR rotace bitů vpravo RRC rotace bitů vpravo přes C 45
46 Instrukční soubor Předání řízení nepodmíněné skoky: AJMP skok uvnitř 2kB stránky LJMP dlouhý skok ( v rámci 64 kb) JMP obecná inst. skoku (překladač - AJMP nebo LJMP) podmíněné skoky: JB, JNB skok, je/není-li zadaný bit nastaven JBC skok a vynulování bitu, je-li zadaný bit nastaven JC, JNC skok je/není-li nastaven bit přenosu C JZ, JNZ skok je/není-li obsah střadače nulový DJNZ sniž obsah registru o 1;dále JNZ volání podprogramu: ACALL volání podprogramu uvnitř 2 kb stránky LCALL dlouhé volání podprogramu CALL obecná inst. volání podprogramu (překladač...) RET návrat z podprogramu návrat z přerušení: RETI návrat z přerušení 46
47 Demonstrační program, blik, hlavní smyčka ; Program pro blikani LED diody na vyvojove desce MIP s ; Program slouzi pro blikani LED pripojene na nastaveny pin portu P1. ; Strida blikani je 1:1. LED je zapojena proti napajeno. ; perioda blikani nastavena cekaci funkci Cekej, kde pocet ; cekacich cyklu udava konstanta POCET LED equ P1.5 ; LED - buzena proti napajeni POCET equ ; pocet cyklu cekaci smycky PROG_PAM equ 0A000h ; adresa ulozeni programu dseg at 30h WaitLo: ds 1 ; Pomocne promenne pro cekaci smycku WaitHi: ds 1 ; cseg at PROG_PAM jmp Init ; reset vektor - skok na vlastni zacatek programu cseg at PROG_PAM+100h ; rezervujeme prostor prvnich 256 bajtu na prerus. Init: mov SP,#70h pro stack vyuzij hornich 15 byte pameti Start: clr LED ; rozsvit LED call Cekej setb LED ; zhasni LED call Cekej jmp Start ; opakuj v nekonecne smycce 47
48 Demonstrační program, blik, podprog. čekání ;**************************************************************************************************** ;* Procedura cekani - konstantni doba dana konstantou POCET ;* zadne vstupni a vystupni parametry ;**************************************************************************************************** Cekej: mov mov Znovu: nop djnz djnz ret WaitHi,#HIGH(POCET)+1; inicializace prodlevy WaitLo,#LOW(POCET)+1 WaitLo,Znovu WaitHi,Znovu end 48
49 Jak postupovat při vývoji programu Nainstalovat IDE Ověřit funkčnost na testovacím programu Seznámit se s architekturou 8051 lit. program blikání LED, čtení tlačítka, modifikace blikání podle tlačítka možno plně ověřit pomocí simulátoru simulace výstupu indikace stavu P1.x (P1.7 až P1.4) simulace vstupu zaškrtnutím stavu vstupu na P1.x (P1.3 až P1.0) AT89C2051 příprav a programu, překlad, napálení do vnitřní paměti Flash. program blikání LED podle vstupu tlačítko. 49
50 Dva způsoby tvorby programu A) Základní program bez využití symbolů a symbolických adres B) Program s využitím symbolů a symbolických adres MOV DPTR, 01C4h ; Vypis uvodniho titulku Titlulek: MOV DPTR,# Txt_U ; Vypis uvodniho titulku ACALL 0294h ; volani programu pro vypis textu MOV 3Fh,# 00h ; vynulovani pocitadla bliknuti SETB 90h.5 ; zhasni LED - zapojene proti Ucc ACALL 018Eh CLR 90h.5 ; cekej ; rozsvit LED CALL Sendrss ; volani programu pro vypis textu Start: MOV Pruch, #00 ;vynulovani pocitadla bliknuti Aznovu: SETB LED ; zhasni LED - zapojene proti Ucc CALL Cekej ; cekej CLR LED ; rozsvit LED 50
51 Srovnání variant tvorby programu A) Základní program bez využití symbolů a symbolických adres Programátor musí přehled o umístění jednotlivých proměnných, adresách, kam se skáče,... změna jednoho parametru - nutnost přepisování ve více místech programu Komplikovaná modifikace programu MOV R0, # 55H DJNZ R0, ZAC B) Program s využitím symbolů a symbolických adres Snaha minimalizovat přímé číselné konstatnty v těle programu, ale nahradit je symbolickými konstatntami. Symbolická jména proměnných i pevných konstatnt umístěných v paměti. Snadná modifikovatelnost OPAK EQU 55H... MOV RO, # OPAK DJNZ R0, ZAC 51
52 Symbol, symbolické adresy Místo číselných adres a číselných konstant symbolické adresy a symbolické konstanty. Překladač dosadí příslušnou hodnotu symbolu podle zadání nebo počitadla adres při překladu. Symbol je jméno, které se definuje, aby reprezentovalo hodnotu, textový blok, adresu nebo jméno registru. Symboly mohou reprezentovat číselnou konstantu a výraz Symboly začínají písmenem nebo spec znaky _,? (nesmí začínat číslicí) vyhodnocení symbolu 16 bitově možno rozsah 0 až (bez znaménka) nebo až dvojkový doplněk 52
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice Přednášky A3B38MMP 1 Mikroprocesory v přístrojové technice A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky - doc. Ing. Jan Fischer, CSc., konzultace - úterý
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice ČVUT V Praze Fakulta elektrotechnická, katedra měření Podklad k přednášce 1- X38MIP + Y38PMM, Je určen pouze pro studenty ČVUT FEL jako pomůcka při studiu předmětů
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky: doc. Ing. Jan Fischer, CSc., konzultace: úterý 17.45 hod v 205, (příp. další po dohodě) čtvrtek 18.30 hod
Mikroprocesory v přístrojové technice. Přednášky A3B38MMP
Mikroprocesory v přístrojové technice Přednášky A3B38MMP CTRL shift + otočení pro správné zobrazení 1 Informace Tento materiál slouží pouze jako grafický podklad k přednášce v předmětu Mikroprocesory v
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice Přednášky A3B38MMP 1 Mikroprocesory v přístrojové technice A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky - doc. Ing. Jan Fischer, CSc., konzultace - úterý
Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051
051 Seznámení s mikropočítačem Architektura mikropočítače Instrukce Paměť Čítače Porovnání s AT89C2051 Seznámení s mikropočítačem řady 8051 Mikroprocesor řady 8051 pochází z roku 1980 a je vytvořené firmou
Rozhraní mikrořadiče, SPI, IIC bus,..
Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška A3B38MMP 2013 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2013, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Rozhraní SPI Rozhraní SPI ( Serial Peripheral
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer
Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru
MIKROPOČÍTAČOVÉ SYSTÉMY
MIKROPOČÍTAČOVÉ SYSTÉMY Jednočipové mikropočítače řady 805 Vytištěno z dokumentů volně dostupných na Webu Mikroprocesory z řady 805 Mikroprocesor 805 pochází z roku 980 a je vývojově procesorem relativně
Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus
Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná
Mikrořadiče řady 8051.
Mikrořadiče řady 8051 Řada obvodů 8051 obsahuje typy 8051AH, 8031AH, 8751H, 80C51, 80C31, 8052 a 8032 Jednotlivé obvody se od sebe liší technologií výroby a svojí konstrukcí Způsob programování je však
Procesory pro vestavné aplikace přehled
Procesory pro vestavné aplikace přehled v. 2013 A4M38AVS ČVUT- FEL, katedra měření, A4M38AVS, 2013, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Mikroprocesory pro vestavné aplikace rysy Široké spektrum
+---------------------------------------------------------------+ +-----------------------------------------------------------+
+---------------------------------------------------------------+ +-----------------------------------------------------------+ AA SSSS MM MM AAAA SS SS MMM MMM AA AA SS MM M M MM AA AA SSSSS MM M M MM
Jednočipové mikropočítače (mikrokontroléry)
Počítačové systémy Jednočipové mikropočítače (mikrokontroléry) Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Co je mikrokontrolér integrovaný obvod, který je často součástí
Mikrokontroléry. Doplňující text pro POS K. D. 2001
Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou
Překladač - Assembler, úloha SW_ UART
Překladač - Assembler, úloha SW_ UART Přednáška 2 - část A3B38MMP, 2014 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL Praha, kat. měření 1 Náplň Úloha UART, specifikace
Procesory z řady 8051
Procesory z řady 8051 A/D a D/A převodníky, komparátory Nízký příkon napájení 3,3V Malá pouzdra pro plošnou montáž Programová Flash OTP-EPROM Redukované nebo rozšířené I/O vývody Jádro 80C51 Kapacita programu
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha. J.
Rozhraní mikrořadiče, SPI, IIC bus,.. A438NVS, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Náplň přednášky Druhá část. přednášky 12 Sériové rozhraní SPI, Sériové rozhraní IIC A4B38NVS, 2011, kat. měření,
Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12)
Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) A438NVS, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2012, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň přednášky Sériová rozhraní rozhraní
Programátorský model procesoru x51
Programátorský model procesoru x51 Základní schéma procesoru V rámci cvičení tohoto předmětu budeme programovat jeden konkrétní procesor řady x51. Abychom ho mohli začít programovat, musíme si nejprve
Rozhraní mikrořadiče, SPI, IIC bus,..
Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 14 - X38MIP -2009, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Rozhraní SPI Rozhraní SPI ( Serial Peripheral Interface) - původ firma Motorola SPI není typ
Překladač - Assembler. kat. měření, ČVUT - FEL, Praha A3B38MMP, X38MIP Přednáška 3 - část. J. Fischer
Překladač - Assembler Přednáška 3 - část A3B38MMP, X38MIP -2011 kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2012,J.Fischer, kat. měření, ČVUT - FEL 1 Náplň Úloha UART, specifikace zadání, vysvětlení
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE. Simulátor mikroprocesorů architektury 8051.
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE Simulátor mikroprocesorů architektury 8051 2014 Petr Hrbek Anotace Simulátor mikroprocesorů architektury 8051 umožňuje uživateli
RISC a CISC architektura
RISC a CISC architektura = dva rozdílné přístupy ke konstrukci CPU CISC (Complex Instruction Set Computer) vývojově starší přístup: pomoci konstrukci překladače z VPP co nejpodobnějšími instrukcemi s příkazy
PROCESOR. Typy procesorů
PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně
od jaké adresy bude program umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET
1) Archiktura procesorů řady 51 Jednočipové mikropočítače řady X51. Jednočipové mikropočítače rodiny X51 - AT89C52, AT89S8252 obvodová struktura, druhy a velikosti paměťových prostorů, velikosti vnitřních
Maturitní témata - PRT 4M
Maturitní témata - PRT 4M ústní zkouška profilové části Maturita - školní rok 2015/2016 1. Architektura mikrořadičů a PC 2. Popis mikrořadičů řady 51 3. Zobrazovací jednotky 4. Řadiče Atmel 5. Hradlová
Vestavné systémy BI-VES Přednáška 5
Vestavné systémy BI-VES Přednáška 5 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011 ZS2010/11 Evropský
Mikroprocesor Intel 8051
Mikroprocesor Intel 8051 Představení mikroprocesoru 8051 Mikroprocesor as jádrem 8051 patří do rodiny MSC51 a byl prvně vyvinut firmou Intel v roce 1980, což znamená, že zanedlouho oslaví své třicáté narozeniny.
Struktura a architektura počítačů (BI-SAP) 7
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1
Přednáška - A3B38MMP Procesory s jádrem ARM. A3B38MMP 2015, J. Fischer, kat. měření, ČVUT-FEL Praha 1 ARM - historie ARM - RISC procesory (původ britská firma Acorn, procesory - stolní počítače později
Vestavné systémy BI-VES Přednáška 10
Vestavné systémy BI-VES Přednáška 10 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011 ZS2010/11 Evropský
velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci
Některé otázky pro kontrolu připravenosti na test k předmětu MIP a problémové okruhy v l.sem. 2007 Náplní je látka z přednášek a cvičení do termínu testu v rozsahu přednášek, případně příslušného textu
FREESCALE KOMUNIKAČNÍ PROCESORY
FREESCALE KOMUNIKAČNÍ PROCESORY 1 Trocha historie: Freescale Semiconductor, Inc. byla založena v roce 2004 v Austinu v Texasu jako samostatná společnost, jelikož po více jak 50 byla součástí Motoroly.
Klimatizace. Třída: 4.C. Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT. Skupina: 3. Zpráva číslo: 3
Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT Třída: 4.C Skupina: 3 Klimatizace Zpráva číslo: 3 Dne: 08.01.2007 Soupis použitých přístrojů: přípravek s μc 8051 přípravek s LCD přípravek
Univerzální jednočipový modul pro řízení krokových motorů
Středoškolská odborná činnost 2005/2006 Obor 10 elektrotechnika, elektronika, telekomunikace a technická informatika Univerzální jednočipový modul pro řízení krokových motorů Autor: Jan Fíla SPŠ Trutnov,
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
Microchip. PICmicro Microcontrollers
Microchip PICmicro Microcontrollers 8-bit 16-bit dspic Digital Signal Controllers Analog & Interface Products Serial EEPROMS Battery Management Radio Frequency Device KEELOQ Authentication Products Návrh
Úloha Ohmetr zadání úlohy
Úloha Ohmetr zadání úlohy Přednáška 3 - část A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Měření odporu pomocí MKO 74121 Sestavte mikroprocesorem
Architektura počítače
Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích
Podprogram DELAY.INC. - konstanty časových prodlev. RB3 equ 11b DEL1MS: DEL800: DEL400: DEL200 DEL100 DELAY: ret DEL1MS
6.2.2001 ÚLOHA č.1 Tomáš Mořkovský, M4 1. diody:, 0,2 s čekat 2. diody:, 0,2 s čekat 3. prohodit čtveřice svítících diod, 0,2 s čekat a 3x opakovat 4. diody:, 0,2 s čekat 5. rotace diody vlevo až po, vždy
STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7. (studijní text)
STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 (studijní text) µ-procesorová TECHNIKA Studijní text smí být používán pouze k výuce µ-procesorové techniky v SPŠ, Ostrava Moravská Ostrava,
Úvod do mobilní robotiky AIL028
md at robotika.cz http://robotika.cz/guide/umor07/cs 11. října 2007 1 Definice Historie Charakteristiky 2 MCU (microcontroller unit) ATmega8 Programování Blikání LEDkou 3 Kdo s kým Seriový port (UART)
Procesory pro vestavné aplikace přehled, bloky
Procesory pro vestavné aplikace přehled, bloky v. 2014 A4M38AVS ČVUT- FEL, katedra měření, A4M38AVS, 2014, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Procesor pro vestavné aplikace- mikrořadič, struktura
) informace o stavu řízené veličiny (předávaná řídícímu systému) - nahrazování člověka při řízení Příklad řízení CNC obráběcího stroje
zapis_rizeni_uvod - Strana 1 z 9 20. Úvod do řízení Řízení Zpětná vazba (angl. #1 je proces, kdy #2 část působí na základě vstupních informací a zpětné vazby na #3 část zařízení tak, aby se dosáhlo požadovaného
Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer. A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1
Přednáška 10 2012, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2012, J.Fischer, kat. měření,, ČVUT - FEL 1 Náplň přednášky Čítače v MCU forma, principy činnosti A4B38NVS, 2012, J.Fischer, kat.
PROTOKOL O LABORATORNÍM CVIČENÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ Provedl: Jan Kotalík Datum: 3.1. 2010 Číslo: Kontroloval/a Datum: 1. ÚLOHA: Návrh paměti Pořadové číslo žáka:
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice ČVUT V Praze Fakulta elektrotechnická, katedra měření Podklad k přednášce Y38PMM, Je určen pouze pro studenty ČVUT FEL jako pomůcka při studiu předmětu Y38PMM Dokument
Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Führer Ondřej, FUH002 1. AVR procesory obecně
Mikroprocesory pro vest. aplikace, Sběrnice, vstupy, výstupy Přednáška , kat. měření, ČVUT - FEL, Praha J. Fischer
Mikroprocesory pro vest. aplikace, Sběrnice, vstupy, výstupy Přednáška 12 2012, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2012, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň přednášky Rekapitulace
Vývoj výpočetní techniky. Rozdělení počítačů. Blokové schéma počítače
Vývoj výpočetní techniky Jednotlivé etapy ve vývoji počítačů se nazývaly generace jsou charakterizovány dobou vzniku, součástkami. 0. generace MARK 1 na bázi relé (1944). 1. generace postavené z elektronek
Jiøí Hrbáèek MIKROØADIÈE PIC16CXX a vývojový kit PICSTART Kniha poskytuje ètenáøi základní informace o mikroøadièích øady PIC 16CXX, jejich vlastnostech a použití tak, aby je mohl využít pøi vlastních
Základní uspořádání pamětí MCU
Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou
MCP BIOS řídicí jednotky Kit386EXR
MCP BIOS řídicí jednotky Kit386EXR ZÁKLADNÍ PROGRAMOVÉ VYBAVENÍ Příručka uživatele a programátora SofCon spol. s r.o. Střešovická 49 162 00 Praha 6 tel/fax: +420 220 180 454 E-mail: sofcon@sofcon.cz www:
Úvod do mobilní robotiky NAIL028
md at robotika.cz http://robotika.cz/guide/umor08/cs 6. října 2008 1 2 Kdo s kým Seriový port (UART) I2C CAN BUS Podpora jednočipu Jednočip... prostě jenom dráty, čti byte/bit, piš byte/bit moduly : podpora
Paměti. Prezentace je určena jako pro studenty zapsané v předmětu A3B38MMP. ČVUT- FEL, katedra měření, Jan Fischer, 2013
Paměti Prezentace je určena jako pro studenty zapsané v předmětu A3B38MMP. ČVUT- FEL, katedra měření, Jan Fischer, 2013 A3B38MMP, 2013, J. Fischer, ČVUT - FEL, Praha, kat. měření 1 Paměti - základní pojmy
Procesor z pohledu programátora
Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér
Procesory pro vestavné aplikace přehled, bloky
Procesory pro vestavné aplikace přehled, bloky v. 2015 A4M38AVS ČVUT- FEL, katedra měření, A4M38AVS, 2015, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Procesor pro vestavné aplikace- mikrořadič, struktura
STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7. (studijní text)
STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 (studijní text) µ-procesorová TECHNIKA Studijní text smí být používán pouze k výuce µ-procesorové techniky v SPŠ, Ostrava Moravská Ostrava,
Úloha- Systém sběru dat, A4B38NVS, ČVUT - FEL, 2015 1
Úloha Sběr dat (v. 2015) Výklad pojmu systém sběru dat - Systém sběru dat (Data Acquisition System - DAQ) je možno pro účely této úlohy velmi zjednodušeně popsat jako zařízení, které sbírá a vyhodnocuje
Program "Světla" pro mikropočítač PMI-80
Program "Světla" pro mikropočítač PMI-80 Dokument věnovaný mikropočítači PMI-80, jeho programování a praktickým ukázkám. Verze dokumentu:. Autor: Blackhead Datum: rok 1997, 4.3.004 1 Úvod Tento program
Kubatova 19.4.2007 Y36SAP - 13. procesor - control unit obvodový a mikroprogramový řadič RISC. 19.4.2007 Y36SAP-control unit 1
Y36SAP - 13 procesor - control unit obvodový a mikroprogramový řadič RISC 19.4.2007 Y36SAP-control unit 1 Von Neumannova architektura (UPS1) Instrukce a data jsou uloženy v téže paměti. Paměť je organizována
zení Koncepce připojení V/V zařízení POT POT ... V/V zařízení jsou připojena na sběrnici pomocí řadičů. Řadiče Připojení periferních zařízení
Připojení periferních zařízen zení 1 Koncepce připojení V/V zařízení V/V zařízení jsou připojena na sběrnici pomocí řadičů. Řadiče specializované (řadič disku) lze k nim připojit jen zařízení určitého
Malý distribuovaný I/O modul
MLIO Shrnutí Použití Funkce Malý distribuovaný I/O modul Malý I/O modul MLIO je mikroprocesorem řízený komunikativní modul pro instalaci mimo rozvaděč. Umožňuje tvorbu topologií s distribuovanými vstupy
Další aspekty architektur CISC a RISC Aktuálnost obsahu registru
Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat
ROÈNÍK VI/2001. ÈÍSLO 3 Dìjiny pøenosu zpráv na dálku Historie elektøiny a magnetizmu ROÈNÍK L/2001. ÈÍSLO 3 V TOMTO SEŠITÌ Dìjiny pøenosu zpráv na dálku... 1 STAVEBNICE S MIKROPOÈÍ- TAÈI ØADY 51 Pøehled
Měřič krevního tlaku. 1 Měření krevního tlaku. 1.1 Princip oscilometrické metody 2007/19 30.5.2007
Měřič krevního tlaku Ing. Martin Švrček martin.svrcek@phd.feec.vutbr.cz Ústav biomedicínckého inženýrství Fakulta elektrotechniky a komunikačních technologií VUT v Brně Kolejní 4, 61200 Brno Tento článek
A4B38NVS, 2011, kat. měření, J.Fischer, ČVUT - FEL. Přednáška 1. 2011, kat. měření, ČVUT - FEL, Praha J. Fischer
Přednáška 1 2011, kat. měření, ČVUT - FEL, Praha J. Fischer 1 Náplň HW návrh vestavěných systémů, komponenty a jejich využití, procesor jako součástka Logické obvody a jejich vlastnosti z hlediska spolupráce
PK Design. MB-ATmega16/32 v2.0. Uživatelský manuál. Základová deska modulárního vývojového systému MVS. Verze dokumentu 1.0 (21.12.
MB-ATmega16/32 v2.0 Základová deska modulárního vývojového systému MVS Uživatelský manuál Verze dokumentu 1.0 (21.12.2004) Obsah 1 Upozornění... 3 2 Úvod... 4 2.1 Vlastnosti základové desky...4 2.2 Vlastnosti
POKLADNÍ DISPLEJ LCD. www.virtuos.cz virtuos@virtuos.cz. hotline: 493 544 400. strana 1
POKLADNÍ DISPLEJ LCD VLASTNOSTI Podsvícený displej LCD s vysokým kontrastem umožňuje čtení z velkého bočního úhlu K ovládání displeje je použit standardní seriový port RS-232 (9600bps) Snadné programování
enos dat rnici inicializaci adresování adresu enosu zprávy start bit átek zprávy paritními bity Ukon ení zprávy stop bitu ijíma potvrzuje p
Přenos dat Ing. Jiří Vlček Následující text je určen pro výuku předmětu Číslicová technika a doplňuje publikaci Moderní elektronika. Je vhodný i pro výuku předmětu Elektronická měření. Přenos digitálních
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Systém přerušení. České vysoké učení technické Fakulta elektrotechnická
MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Systém přerušení České vysoké učení technické Fakulta elektrotechnická A1B14MIS Mikroprocesory pro výkonové systémy 6 Ver.1.2 J. Zděnek, 213 1 pic18f Family Interrupt
A51 MACRO ASSEMBLER POKUSNY PROGRAM DATE 10/3/007 PAGE 1
Demonstrač nítext k předná š ce Mikroprocesory v přístrojové technice, kat. měření. A51 MACRO ASSEMBLER POKUSNY PROGRAM DATE 10/3/007 PAGE 1 MS-DOS MACRO ASSEMBLER A51 V4.4 OBJECT MODULE PLACED IN DEMC.OBJ
MSP 430F1611. Jiří Kašpar. Charakteristika
MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže
Náplň předmětu A3B38MMP a kontrolní otázky k terminu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma
Náplň předmětu A3B38MMP a kontrolní otázky k terminu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma mikroprocesorem řízeného přístroje Architektura, paměťový model,
Struktura a architektura počítačů (BI-SAP) 9
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 9 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Kubatova 19.4.2007 Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR. 2007-Kubátová Y36SAP-strojový kód 1
Y36SAP 8 Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR 2007-Kubátová Y36SAP-strojový kód 1 Architektura souboru instrukcí, ISA - Instruction Set Architecture Vysoká Architektura
Přednáška - Čítače. 2013, kat. měření, ČVUT - FEL, Praha J. Fischer. A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1
Přednáška - Čítače 2013, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2013, J.Fischer, ČVUT - FEL, kat. měření 1 Náplň přednášky Čítače v MCU forma, principy činnosti A3B38MMP, 2013, J.Fischer,
8. Laboratoř: Aritmetika a řídicí struktury programu
8. Laboratoř: Aritmetika a řídicí struktury programu Programy v JSA aritmetika, posuvy, využití příznaků Navrhněte a simulujte v AVR studiu prográmky pro 24 bitovou (32 bitovou) aritmetiku: sčítání, odčítání,
2. Prehľad vlastností jednočipových mikropočítačov (I-8048, I-8051, I-80196)
2. Prehľad vlastností jednočipových mikropočítačov (I-8048, I-8051, I-80196) Hlavní vlastnosti obvodů řady 8051 a 8052 jsou: - osmibitová centrální procesorová jednotka (CPU) - oscilátor a obvody hodin
MIKROPROCESOROVÁ TECHNIKA
MODERNIZACE VÝUKOVÝCH MATERIÁLŮ A DIDAKTICKÝCH METOD - CZ.1.07/2.2.00/15.0463 MIKROPROCESOROVÁ TECHNIKA LEKCE 1 Ing. Daniel Zuth, Ph.D. 2012 ÚVODNÍ HODINA DO PŘEDMĚTU MIKROPROCESOROVÁ TECHNIKA OBSAH Úvod
Mikrořadiče společnosti Atmel
Mikrořadiče společnosti Atmel Společnost Atmel je významným výrobcem mikrořadičů (MCU) na trhu. Svou produkci v této oblasti člení do čtyř větších skupin: mikrořadiče pro bezdrátové technologie, architekturu
Strojový kód. Instrukce počítače
Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska
ETC Embedded Technology Club setkání zahájení druhého ročníku
ETC Embedded Technology Club setkání 10.10. 2017 zahájení druhého ročníku Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 1_2r 10.10.2017, ČVUT- FEL, Praha
ETC Embedded Technology Club setkání
ETC Embedded Technology Club setkání 13.12. 2016 Katedra telekomunikací, Katedra měření, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club, 13.12.2016, ČVUT- FEL, Praha 1 Náplň Plán činnosti Výklad
Historie osmibitových mikroprocesoru a mikroradicu ZILOG.
Historie osmibitových mikroprocesoru a mikroradicu ZILOG. Americká firma ZILOG vstoupila na trh mikroprocesoru v roce 1973. V dobe, kdy svet dobývaly obvody Intel 8080, se objevil obvod s typovým oznacením
Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_17_Číslicový obvod Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická oblast
Displej DT20-6. Update firmware řadiče. Simulační systémy Řídicí systémy Zpracování a přenos dat TM 2012_10_10 10. 10. 2012
Simulační systémy Řídicí systémy Zpracování a přenos dat Displej DT20-6 Autor: Ing. Jan Tupý TM 2012_10_10 10. 10. 2012 OSC, a. s. tel: +420 (5) 416 43 111 Staňkova 557/18a fax: +420 (5) 416 43 109 602
Operační paměti počítačů PC
Operační paměti počítačů PC Dynamické paměti RAM operační č paměť je realizována čipy dynamických pamětí RAM DRAM informace uchovávána jako náboj na kondenzátoru nutnost náboj pravidelně obnovovat (refresh)
Metody připojování periferií BI-MPP Přednáška 2
Metody připojování periferií BI-MPP Přednáška 2 Ing. Miroslav Skrbek, Ph.D. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze Miroslav Skrbek 2010,2011
Náplň předmětu A3B38MMP a kontrolní otázky k termínu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma
Náplň předmětu A3B38MMP a kontrolní otázky k termínu testu v semestru Mikroprocesory řady 8051 /52 a jejich použití Obecné blokové schéma mikroprocesorem řízeného přístroje Architektura, paměťový model,
Technické prostředky počítačové techniky
Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení
Architektury CISC a RISC, uplatnění v personálních počítačích
Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur
Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard
Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený
Kompaktní procesní stanice
MXPLC Kompaktní procesní stanice Shrnutí MXPLC je kompaktní procesní stanice s integrovaným I/O modulem se skladbou I/O optimalizovanou pro aplikace VVK a domovní techniky. Stanice může být po sběrnici
Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) A4B38NVS, kat. měření, ČVUT - FEL, Praha. J. Fischer
Rozhraní mikrořadiče, SPI, IIC bus,.. Přednáška 11 (12) A4B38NVS, kat. měření, ČVUT - FEL, Praha J. Fischer A4B38NVS, 2014, J.Fischer, kat. měření, ČVUT - FEL, Praha 1 Náplň přednášky Sériová rozhraní