Seznámení s mikropočítačem. Architektura mikropočítače. Instrukce. Paměť. Čítače. Porovnání s AT89C2051
|
|
- Filip Soukup
- před 6 lety
- Počet zobrazení:
Transkript
1
2 051 Seznámení s mikropočítačem Architektura mikropočítače Instrukce Paměť Čítače Porovnání s AT89C2051
3
4 Seznámení s mikropočítačem řady 8051 Mikroprocesor řady 8051 pochází z roku 1980 a je vytvořené firmou Intel. I přes svůj velký věk je v dnešní době velmi oblíbeným mikropočítačem a na jádře 8051 staví své mikropočítače řada firem, jako například Philips, Siemens a další. Jádro 8051 je rozšiřitelné o řadu periferii, jako jsou AD převodníky, různé typy pamětí, seriová sběrnice a další. Nabízený kmitočet je 12 až 33 MHz
5 Seznámení s mikropočítačem INTEL 8051 Jednočipový 8 bitový počtač Smíšená harwardská a Von Neumanova architektura Oddělená datová a programová paměť Formát instrukcí a dat je totožný a přenášen po stejné sběrnici Napájení 5V Paměť ROM, nebo EPROM 4KB pro program a RAM 128bytů pro data Možnost správy externí programové, či datové paměti CPU je tvořeno ALJ obsahuje sčítačku/odečítačku, násobičku/děličku, booleovskou ALJ ACC aritmetický posuvný registr PSW 7 bitové stavové slovo mikroprocesoru B jednobitový registr užívaný pro násobení, nebo dělení
6 Blokové schéma mikropočítače 8051
7
8 Instrukční sada 8051 Instrukce přesunu MOV přesune obsah zdrojového byte do cílového byte, bez ovlivnění zdroje MOVC přesune byte z programové paměti do střadače (A) MOVX přesun dat mezi střadačem a vnější pamětí dat PUSH Instrukce přičte jedničku k ukazateli zásobníku a potom uloží obsah adresovaného místa do vrcholu zásobníku. POP opak k PUSH XCH vymění obsah střadače a registru (paměťového místa) XCHD to samé ale pouze nižší půlbyte (místo v paměti musí být nepřímo adresováno) Aritmetické instrukce INC zvětší honotu registru o 1 DECC zmenší hodnotu registru o 1 ADD součet dvou registrů ADDC součet dvou registrů s přenosem DA dekadická korekce SUBB odčítání MUL násobení DIV dělení
9 Instrukční sada 8051 Logické instrukce ANL logický součin ORL logický součet ORL exclusive OR CLR smaže registr CPL neguje registr Bitové instrukce CLR nuluje bit SETB nastaví bit CPL neguje bit Instrukce posunu RL rotace vlevo RR rotace vpravo RLC rotace vlevo s posunem RRC rotace vpravo s posunem
10 Instrukční sada 8051 Skokové instrukce CALL volání rutiny ACALL absolutní volání rutiny LCALL dlouhé volání rutiny RET návrat z rutiny RETI návrat přerušení JMP skok AJMP absolutní skok SJMP krátký skok JZ je-li střadač nulový, skočí JNZ není-li střadač nulový, skočí JC je-li nastaven přenos, skočí JB je-li nastaven bit, skočí JNB není-li nastaven bit, skočí JNC není-li nastaven přenos, skočí CJNE nejsou-li si registry rovny, pak skočí DJNZ zmenší argument o jednu a není li nulový, skočí Ostatní instrukce NOP prázdný příkaz - hodí se například při zpoždění Podrobný přehled intrukcí včetně taktů potřebných k provedení viz papír č.1
11
12 Paměť mikropočítače - Rozdělení vnitřní paměti RAM procesoru 8051
13 Paměť mikropočítače - Rozdělení vnitřní paměti RAM procesoru 8051 A - Střadač je základní registr aritmetickologické jednotky, který vždy obsahuje jeden operand aritmetické nebo logické operace a do něhož se ukládá výsledek této operace. B - Registr Jeden operand, užívaný pro instrukce násobení a dělení PSW - Stavové slovo mikroprocesoru se skládá ze 7 bitů PSW - Stavové slovo mikroprocesoru se skládá ze 7 bitů AC Vnitřní přenos Nastaven, dojde li k přenosu mezi čtvrtým a pátým bitem střadače F0 Uživatelský příznak RS1, RS0 - Určují banku, jejíž registry R0 až R7 budou používány OV - Příznak přetečení indikuje, že došlo k přetečení při aritmetické operaci PSW P - Příznak parity indikuje lichou paritu střadače. SP - Ukazatel zásobníku má 8 bitů DPL, DPH - Registry DPL a DPH tvoří nižší a vyšší 8 bitovou slabiku 16-bitového ukazatele DPTR, který slouží k nepřímému adresování vnější datové paměti PC - Čítač instrukcí 16 bitový čítač instrukcí, není přímo programově přístupný
14
15 Čítače mikropočítače 8051 obsahjuje dva 16 bitové čítače Obsa čítačů je dostupný v registrech TH0, TL0 a TH1 a TL1 Hodinový signál může být odvozen z interního krystalu (časovač), nebo z externího hodinového impulzu připojeného na pomocí vstupu T0 a T1 (čítač) Registr TMOD určuje jednu ze čtyř konfigurací čítače GATE Řídí hradlování. C/T Rozhoduje o zdroji hodinových impulzů pro čítač/časovač. M0, M1 Těmito bity je volen jeden ze čtyř následujících režimů
16 Čítače mikropočítače MOD0 Pracuje jako osmibitový čítač (THn), jehož vstup je předělen (nastaveni spodními bity TLn), pětibitovým čítačem. Při přetečení nastavují příznakový bit v registru TCON
17 Čítače mikropočítače MOD1 Pracuje jako mód 0, ovšem s tím rozdílem, že oba čítače jsou 16bitové
18 Čítače mikropočítače MOD2 Umožňuje využívat tzv. hardwarové přednastavení čítače. To znamená, že když si například uložíme do registru THn hodnotu 7F, pak pak po přetečení hodnoty v registru TLn, se tento registr nastaví také na 7F (tedy hodnotu THn)
19 Čítače mikropočítače MOD3 v módu 3 je čítač/časovač0 rozdělen na dva samostatné 8-bitové čítače TH0 a TL0. Čítač TL0 využívá standardní signály C/T, GATE, TR0, INT0 a TF0. Čítač TH0 pracuje ve funkci časovače a je ovládán pouze řídícím bitem TR1. Při přetečení nastavuje příznak TF1. Pracuje-li čítač/časovač0 v módu 3, potom čítač/časovač1 může pouze generovat přenosovou rychlost pro sériový kanál nebo může být použit v případě, kdy nebudeme využívat přerušení.
20
21 Srovnání Intel 8051 s Atmel AT89C2051 Intel 8051 Atmel AT89C2051 Klady Rozšířenost Ověřené jádro Mnoho variací Poměrně jednoduchá architektura Zápory Větší cena Pouzdro o velikosti 40 pinů Klady Nižší cena Menší pouzdro velikost 20 pinů Analogový komparátor Zápory Menší paměť 2KB Nelze připojit vnější paměť Paměť typu LFASH
22 Srovnání Intel 8051 s Atmel AT89C2051 Oba mikropočítače patří do rodiny MCS51. Rovněž by bylo možné prov0st srovnání s některým z mikropočítačů firmy PIC. Ovšem dle mých zkušeností je to jak srovnávat notebooky stejné řady. Každý má své proti i pro. Někomu vyhovuje více nožiček, někomu menší pouzdro apod. Osobně však mám větší vztah k Intelu 8051, neboť jsem s ním strávil řadu let.
23 Zdroje: Skripta Ing. Ladislava Škapy Velký bratr google Tištěné materiály pocházejí ze skript P. ladislava Škapy
Mikroprocesor Intel 8051
Mikroprocesor Intel 8051 Představení mikroprocesoru 8051 Mikroprocesor as jádrem 8051 patří do rodiny MSC51 a byl prvně vyvinut firmou Intel v roce 1980, což znamená, že zanedlouho oslaví své třicáté narozeniny.
Činnost CPU. IMTEE Přednáška č. 2. Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus
Činnost CPU Několik úrovní abstrakce od obvodů CPU: Hodinový cyklus fáze strojový cyklus instrukční cyklus Hodinový cyklus CPU je synchronní obvod nutné hodiny (f CLK ) Instrukční cyklus IF = doba potřebná
Programátorský model procesoru x51
Programátorský model procesoru x51 Základní schéma procesoru V rámci cvičení tohoto předmětu budeme programovat jeden konkrétní procesor řady x51. Abychom ho mohli začít programovat, musíme si nejprve
Procesory z řady 8051
Procesory z řady 8051 A/D a D/A převodníky, komparátory Nízký příkon napájení 3,3V Malá pouzdra pro plošnou montáž Programová Flash OTP-EPROM Redukované nebo rozšířené I/O vývody Jádro 80C51 Kapacita programu
MIKROPOČÍTAČOVÉ SYSTÉMY
MIKROPOČÍTAČOVÉ SYSTÉMY Jednočipové mikropočítače řady 805 Vytištěno z dokumentů volně dostupných na Webu Mikroprocesory z řady 805 Mikroprocesor 805 pochází z roku 980 a je vývojově procesorem relativně
Strojový kód. Instrukce počítače
Strojový kód Strojový kód (Machine code) je program vyjádřený v počítači jako posloupnost instrukcí procesoru (posloupnost bajtů, resp. bitů). Z hlediska uživatele je strojový kód nesrozumitelný, z hlediska
Mikrokontroléry. Doplňující text pro POS K. D. 2001
Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou
Profilová část maturitní zkoušky 2014/2015
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2014/2015 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: technika
Mikrořadiče řady 8051.
Mikrořadiče řady 8051 Řada obvodů 8051 obsahuje typy 8051AH, 8031AH, 8751H, 80C51, 80C31, 8052 a 8032 Jednotlivé obvody se od sebe liší technologií výroby a svojí konstrukcí Způsob programování je však
Základní uspořádání pamětí MCU
Základní uspořádání pamětí MCU Harwardská architektura. Oddělený adresní prostor kódové a datové. Používané u malých MCU a signálových procesorů. Von Neumannova architektura (Princetonská). Kódová i jsou
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informační systémy 2 Obsah: Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC ROM RAM Paměti typu CACHE IS2-4 1 Dnešní info: Informační systémy 2 03 Informační systémy
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Jednočipové mikropočítače (mikrokontroléry)
Počítačové systémy Jednočipové mikropočítače (mikrokontroléry) Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Co je mikrokontrolér integrovaný obvod, který je často součástí
Klimatizace. Třída: 4.C. Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT. Skupina: 3. Zpráva číslo: 3
Střední Průmyslová Škola Elektrotechnická Havířov Protokol do MIT Třída: 4.C Skupina: 3 Klimatizace Zpráva číslo: 3 Dne: 08.01.2007 Soupis použitých přístrojů: přípravek s μc 8051 přípravek s LCD přípravek
Semestrální práce z předmětu Speciální číslicové systémy X31SCS
Semestrální práce z předmětu Speciální číslicové systémy X31SCS Katedra obvodů DSP16411 ZPRACOVAL: Roman Holubec Školní rok: 2006/2007 Úvod DSP16411 patří do rodiny DSP16411 rozšiřuje DSP16410 o vyšší
Struktura a architektura počítačů (BI-SAP) 7
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 7 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Princip funkce počítače
Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování
Podprogram DELAY.INC. - konstanty časových prodlev. RB3 equ 11b DEL1MS: DEL800: DEL400: DEL200 DEL100 DELAY: ret DEL1MS
6.2.2001 ÚLOHA č.1 Tomáš Mořkovský, M4 1. diody:, 0,2 s čekat 2. diody:, 0,2 s čekat 3. prohodit čtveřice svítících diod, 0,2 s čekat a 3x opakovat 4. diody:, 0,2 s čekat 5. rotace diody vlevo až po, vždy
Základy programování 8051
Základy programování 8051 1 Úvod do programování jednočipových mikropočítačů Jednočipový mikropočítač řady 8051 je v současné době nepsaným standardem v mikroprocesorové technice Jeho architektura a instrukční
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv
+---------------------------------------------------------------+ +-----------------------------------------------------------+
+---------------------------------------------------------------+ +-----------------------------------------------------------+ AA SSSS MM MM AAAA SS SS MMM MMM AA AA SS MM M M MM AA AA SSSSS MM M M MM
Program "Světla" pro mikropočítač PMI-80
Program "Světla" pro mikropočítač PMI-80 Dokument věnovaný mikropočítači PMI-80, jeho programování a praktickým ukázkám. Verze dokumentu:. Autor: Blackhead Datum: rok 1997, 4.3.004 1 Úvod Tento program
Kubatova 19.4.2007 Y36SAP 8. Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR. 2007-Kubátová Y36SAP-strojový kód 1
Y36SAP 8 Strojový kód Jazyk symbolických instrukcí asembler JSA pro ADOP a AVR 2007-Kubátová Y36SAP-strojový kód 1 Architektura souboru instrukcí, ISA - Instruction Set Architecture Vysoká Architektura
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE. Simulátor mikroprocesorů architektury 8051.
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE Simulátor mikroprocesorů architektury 8051 2014 Petr Hrbek Anotace Simulátor mikroprocesorů architektury 8051 umožňuje uživateli
Architektury počítačů a procesorů
Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní
velikosti vnitřních pamětí? Jaké periferní obvody má na čipu a k čemu slouží? Jaká je minimální sestava mikropočítače z řady 51 pro vestavnou aplikaci
Některé otázky pro kontrolu připravenosti na test k předmětu MIP a problémové okruhy v l.sem. 2007 Náplní je látka z přednášek a cvičení do termínu testu v rozsahu přednášek, případně příslušného textu
7. Monolitické počítače, vlastnosti a použití.
7. Monolitické počítače, vlastnosti a použití. Obsah 7. Monolitické počítače, vlastnosti a použití.... 1 7.1 Jednočipové mikropočítače řady 8048... 2 7.2 Jednočipový mikropočítač 8051... 2 7.3 Architektura
MSP 430F1611. Jiří Kašpar. Charakteristika
MSP 430F1611 Charakteristika Mikroprocesor MSP430F1611 je 16 bitový, RISC struktura s von-neumannovou architekturou. Na mikroprocesor má neuvěřitelně velkou RAM paměť 10KB, 48KB + 256B FLASH paměť. Takže
Integrovaná střední škola, Sokolnice 496
Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Kód výstupu:
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
Pohled do nitra mikroprocesoru
Pohled do nitra mikroprocesoru Obsah 1. Pohled do nitra mikroprocesoru 2. Architektury mikroprocesorů 3. Organizace cvičného mikroprocesoru 4. Registry v mikroprocesoru 5. Aritmeticko-logická jednotka
Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů )
Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Architekura mikroprocesoru AVR ATMega ( Pokročilé architektury počítačů ) Führer Ondřej, FUH002 1. AVR procesory obecně
Základy informatiky. 2. Přednáška HW. Lenka Carr Motyčková. February 22, 2011 Základy informatiky 2
Základy informatiky 2. Přednáška HW Lenka Carr Motyčková February 22, 2011 Základy informatiky 1 February 22, 2011 Základy informatiky 2 February 22, 2011 Základy informatiky 3 February 22, 2011 Základy
Procesor z pohledu programátora
Procesor z pohledu programátora Terminologie Procesor (CPU) = řadič + ALU. Mikroprocesor = procesor vyrobený monolitickou technologií na čipu. Mikropočítač = počítač postavený na bázi mikroprocesoru. Mikrokontrolér
STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7. (studijní text)
STEDNÍ PRMYSLOVÁ ŠKOLA, OSTRAVA - MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 (studijní text) µ-procesorová TECHNIKA Studijní text smí být používán pouze k výuce µ-procesorové techniky v SPŠ, Ostrava Moravská Ostrava,
od jaké adresy bude program umístěn? Intel Hex soubor, co to je, z čeho a jak se získá, k čemu slouží? Pseudoinstrukce (direktivy) překladače ORG, SET
1) Archiktura procesorů řady 51 Jednočipové mikropočítače řady X51. Jednočipové mikropočítače rodiny X51 - AT89C52, AT89S8252 obvodová struktura, druhy a velikosti paměťových prostorů, velikosti vnitřních
Čísla, reprezentace, zjednodušené výpočty
Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice Přednášky A3B38MMP 1 Mikroprocesory v přístrojové technice A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky - doc. Ing. Jan Fischer, CSc., konzultace - úterý
Jak do počítače. aneb. Co je vlastně uvnitř
Jak do počítače aneb Co je vlastně uvnitř Po odkrytí svrchních desek uvidíme... Von Neumannovo schéma Řadič ALU Vstupně/výstupní zař. Operační paměť Počítač je zařízení, které vstupní údaje transformuje
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Řízení IO přenosů DMA řadičem
Řízení IO přenosů DMA řadičem Doplňující text pro POT K. D. 2001 DMA řadič Při přímém řízení IO operací procesorem i při použití přerušovacího systému je rychlost přenosu dat mezi IO řadičem a pamětí limitována
Assembler - 2.část. poslední změna této stránky: Zpět
1 z 9 19.2.2007 7:51 Assembler - 2.část poslední změna této stránky: 9.2.2007 1. Příznaky (flagy) Zpět Flagy (česky podivně "příznaky", proto používám výhradně anglický název) jsou výlučnou záležitostí
PROCESOR. Typy procesorů
PROCESOR Procesor je ústřední výkonnou jednotkou počítače, která čte z paměti instrukce a na jejich základě vykonává program. Primárním úkolem procesoru je řídit činnost ostatních částí počítače včetně
Popis instrukční sady procesoru ADOP
instrukční sady procesoru ADOP ČVUT FEL, 2008 K. Koubek, P. Bulena Obsah instrukční sady...5 Univerzální registry...5 Registr příznaků FR...5 Standardní význam příznaků...6 Přehled instrukcí...7 ADD Add...8
Úvodem. Jádro procesoru 8051
studijní text - 1 - Úvodem Mikroprocesor 8051 pochází z roku 1980 a je vývojově procesorem relativně starým. U návrhářů však dosáhl takové obliby, že i v současné době se řada výrobců orientuje na výrobu
Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic
Obsluha periferních operací, přerušení a jeho obsluha, vybavení systémových sběrnic 1 Cíl přednášky Zabývat se principy využití principů přerušení. Popsat, jak se tyto principy odrazily v konstrukci systémových
Architektura počítače
Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích
Principy komunikace s adaptéry periferních zařízení (PZ)
Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.
2. Prehľad vlastností jednočipových mikropočítačov (I-8048, I-8051, I-80196)
2. Prehľad vlastností jednočipových mikropočítačov (I-8048, I-8051, I-80196) Hlavní vlastnosti obvodů řady 8051 a 8052 jsou: - osmibitová centrální procesorová jednotka (CPU) - oscilátor a obvody hodin
Počítač jako prostředek řízení. Struktura a organizace počítače
Řídicí počítače - pro řízení technologických procesů. Specielní přídavná zařízení - I/O, přerušovací systém, reálný čas, Č/A a A/Č převodníky a j. s obsluhou - operátorské periferie bez obsluhy - operátorský
Mikroprocesorová technika
Univerzita Palackého v Olomouci Přírodovědecká fakulta Mikroprocesorová technika Milan Henkl Zuzana Veselá Olomouc 2014 Oponenti: Ing. František Roháč Ing. Antonín Duda Publikace byla vytvořena v rámci
Mikrořadiče pro přístrojovou techniku
Mikrořadiče pro přístrojovou techniku Doc. Jan Fischer Katedra měření ČVUT v Praze, FEL Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Oblast zájmu předmětu Mikroprocesory v přístrojové
a operačních systémů
NSWI2 2/2 ZS Principy počítačů a operačních systémů INSTRUKCE Kdybych nařídil generálovi, aby létal od květině ke květině a on by rozkaz neprovedl, nebyla by to chyba generálova, ale moje. král asteroidu
8. Laboratoř: Aritmetika a řídicí struktury programu
8. Laboratoř: Aritmetika a řídicí struktury programu Programy v JSA aritmetika, posuvy, využití příznaků Navrhněte a simulujte v AVR studiu prográmky pro 24 bitovou (32 bitovou) aritmetiku: sčítání, odčítání,
Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).
Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis
Architektura procesoru ARM
Architektura procesoru ARM Bc. Jan Grygerek GRY095 Obsah ARM...3 Historie...3 Charakteristika procesoru ARM...4 Architektura procesoru ARM...5 Specifikace procesoru...6 Instrukční soubor procesoru...6
MIKROPROCESOROVÁ TECHNIKA
MODERNIZACE VÝUKOVÝCH MATERIÁLŮ A DIDAKTICKÝCH METOD - CZ.1.07/2.2.00/15.0463 MIKROPROCESOROVÁ TECHNIKA LEKCE 1 Ing. Daniel Zuth, Ph.D. 2012 ÚVODNÍ HODINA DO PŘEDMĚTU MIKROPROCESOROVÁ TECHNIKA OBSAH Úvod
RISC a CISC architektura
RISC a CISC architektura = dva rozdílné přístupy ke konstrukci CPU CISC (Complex Instruction Set Computer) vývojově starší přístup: pomoci konstrukci překladače z VPP co nejpodobnějšími instrukcemi s příkazy
Přednáška A3B38MMP. Bloky mikropočítače vestavné aplikace, dohlížecí obvody. 2015, kat. měření, ČVUT - FEL, Praha J. Fischer
Přednáška A3B38MMP Bloky mikropočítače vestavné aplikace, dohlížecí obvody 2015, kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL Praha 1 Hlavní bloky procesoru
ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ. MEIII Paměti konstant
Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEIII - 1.5 Paměti konstant Obor: Mechanik elektronik Ročník: 3. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je spolufinancován
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Zjednodušené schéma systému z základ hardware pro mainframe tvoří: operační pamět - MAIN / REAL STORAGE jeden
Jako pomůcka jsou v pravém dolním rohu vypsány binární kódy čísel od 0 do 15 a binární kódy příkazů, které máme dispozici (obr.21). Obr.
Model procesoru Jedná se o blokové schéma složené z registrů, paměti RAM, programového čítače, instrukčního registru, sčítačky a řídicí jednotky, které jsou propojeny sběrnicemi. Tento model má dva stavy:
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice Přednášky A3B38MMP 1 Mikroprocesory v přístrojové technice A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky - doc. Ing. Jan Fischer, CSc., konzultace - úterý
Technická Univerzita v Liberci, Fakulta Mechatroniky. Učební text k předmětu. Číslicové počítače
Technická Univerzita v Liberci, Fakulta Mechatroniky Učební text k předmětu Číslicové počítače Poslední oprava 4..2 Učební text k předmětu Číslicové počítače Obsah OBSAH...2 ČÍSELNÉ SOUSTAVY...3 DVOJKOVÁ
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
Jazyk symbolických adres
Jazyk symbolických adres 1 Proč programovat v JSA Pro některé procesory resp. MCU jsou překladače JSA dostupnější. Některé překladače vyšších jazyků neumí využít určité speciální vlastnosti procesoru.
Procesory, mikroprocesory, procesory na FPGA. 30.1.2013 O. Novák, CIE 11 1
Procesory, mikroprocesory, procesory na FPGA 30.1.2013 O. Novák, CIE 11 1 Od sekvenčních automatů k mikroprocesorům 30.1.2013 O. Novák, CIE 11 2 30.1.2013 O. Novák, CIE 11 3 Architektura počítačů Von Neumannovská,
PROTOKOL O LABORATORNÍM CVIČENÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ Provedl: Jan Kotalík Datum: 3.1. 2010 Číslo: Kontroloval/a Datum: 1. ÚLOHA: Návrh paměti Pořadové číslo žáka:
Architektury CISC a RISC, uplatnění v personálních počítačích
Architektury CISC a RISC, uplatnění v personálních počítačích 1 Cíl přednášky Vysvětlit, jak pracují architektury CISC a RISC, upozornit na rozdíly. Zdůraznit, jak se typické rysy obou typů architektur
Mikrokontrolery. Úvod do obvodů Atmega 328 a PIC16F88
Mikrokontrolery Úvod do obvodů Atmega 328 a PIC16F88 Texty sestavili Petr Nejedlý a Lukáš Čížek, 4EA, 2013 Vlastnosti a funkce: Atmega 328 Flash 32Kbyte Max. Frequence 20Mhz SRAM 2Kbyte EEPROM 1024 byte
Akademický rok: 2004/05 Datum: Příjmení: Křestní jméno: Osobní číslo: Obor:
Západočeská univerzita v Plzni Písemná zkouška z předmětu: Zkoušející: Katedra informatiky a výpočetní techniky Počítačová technika KIV/POT Dr. Ing. Karel Dudáček Akademický rok: 2004/05 Datum: Příjmení:
Technické prostředky počítačové techniky
Počítač - stroj, který podle předem připravených instrukcí zpracovává data Základní části: centrální procesorová jednotka (schopná řídit se posloupností instrukcí a ovládat další části počítače) zařízení
Vstupně - výstupní moduly
Vstupně - výstupní moduly Přídavná zařízení sloužící ke vstupu a výstupu dat bo k uchovávání a archivaci dat Nejsou připojována ke sběrnici přímo, ale prostřednictvím vstupně-výstupních modulů ( ů ). Hlavní
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice ČVUT V Praze Fakulta elektrotechnická, katedra měření Podklad k přednášce 1- X38MIP + Y38PMM, Je určen pouze pro studenty ČVUT FEL jako pomůcka při studiu předmětů
Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr
Struktura a architektura počítačů (BI-SAP) 9
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 9 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Mikroprocesory v přístrojové technice
Mikroprocesory v přístrojové technice A3B38MMP, katedra měření, ČVUT FEL Vyučující: přednášky: doc. Ing. Jan Fischer, CSc., konzultace: úterý 17.45 hod v 205, (příp. další po dohodě) čtvrtek 18.30 hod
Zadání semestrálního projektu PAM
P ř evaděč RS485 Navrhněte s procesorem AT89C2051 převaděč komunikační sběrnice RS485 s automatickým obracením směru převodníku po přenosu bytu. Převaděč vybavte manuálním nastavením přenosové rychlosti
Lojza - návrh a realizace µprocesoru
Vyšší odborná škola a Střední průmyslová škola elektrotechnická Olomouc STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor 18. Informatika Lojza - návrh a realizace µprocesoru DESIGN AND REALIZATION OF MICROPROCESSOR
VÝUKOVÝ MATERIÁL. 3. ročník učebního oboru Elektrikář Přílohy. bez příloh. Identifikační údaje školy
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
Návrh konstrukce odchovny 2. dil
1 Portál pre odborné publikovanie ISSN 1338-0087 Návrh konstrukce odchovny 2. dil Pikner Michal Elektrotechnika 19.01.2011 V minulem dile jsme si popsali návrh konstrukce odchovny. senzamili jsme se s
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
Operace ALU. INP 2008 FIT VUT v Brně
Operace ALU INP 2008 FIT VUT v Brně 1 Princip ALU (FX) Požadavky: Logické operace Sčítání (v doplňkovém kódu) Posuvy/rotace Násobení ělení B A not AN OR XOR + Y 1) Implementace logických operací je zřejmá
Základní deska (1) Parametry procesoru (2) Parametry procesoru (1) Označována také jako mainboard, motherboard
Základní deska (1) Označována také jako mainboard, motherboard Deska plošného spoje tvořící základ celého počítače Zpravidla obsahuje: procesor (mikroprocesor) patici pro numerický koprocesor (resp. osazený
Sběrnicová struktura PC Procesory PC funkce, vlastnosti Interní počítačové paměti PC
Informatika 2 Technické prostředky počítačové techniky - 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah:
Procesor. Základní prvky procesoru Instrukční sada Metody zvýšení výkonu procesoru
Počítačové systémy Procesor Miroslav Flídr Počítačové systémy LS 2006-1/17- Západočeská univerzita v Plzni Víceúrovňová organizace počítače Digital logic level Microarchitecture level Processor Instruction
Témata profilové maturitní zkoušky
Střední průmyslová škola elektrotechniky, informatiky a řemesel, Frenštát pod Radhoštěm, příspěvková organizace Témata profilové maturitní zkoušky Obor: Elektrotechnika Třída: E4A Školní rok: 2010/2011
3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu.
3. Principy komunikace s perifériemi: V/V brány, programové řízení, přerušení, řešení priorit. Řadiče, DMA kanály. Popis činnosti DMA kanálu. Obsah 3. Principy komunikace s perifériemi: V/V brány, programové
Komunikace modulu s procesorem SPI protokol
Komunikace modulu s procesorem SPI protokol Propojení dvouřádkového LCD zobrazovače se sběrnicí SPI k procesotru (dále již jen MCU microcontroller unit) a rozložení pinů na HSES LCD modulu. Komunikace
Univerzální jednočipový modul pro řízení krokových motorů
Středoškolská odborná činnost 2005/2006 Obor 10 elektrotechnika, elektronika, telekomunikace a technická informatika Univerzální jednočipový modul pro řízení krokových motorů Autor: Jan Fíla SPŠ Trutnov,
Architektura počítačů
Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem
Úvod. Instrukce musí obsahovat: typ operace adresu operandu (operandů) typ operandů modifikátory adresy modifikátory operace POT POT
Úvod Instrukce musí obsahovat: typ operace adresu operandu (operandů) typ operandů modifikátory adresy modifikátory operace K.D. - přednášky 2 Pevná a proměnná délka instrukce (1) Pevná délka instrukce
Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL
VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným
Bakalářská práce Realizace jednoduchého uzlu RS485 s protokolem MODBUS
Bakalářská práce Realizace jednoduchého uzlu RS485 s protokolem MODBUS Autor: Michal Štrick Vedoucí práce: Ing. Josef Grosman TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových
Další aspekty architektur CISC a RISC Aktuálnost obsahu registru
Cíl přednášky: Vysvětlit principy práce s registry v architekturách RISC a CISC, upozornit na rozdíly. Vysvětlit možnosti využívání sad registrů. Zabývat se principy využívanými v procesorech Intel. Zabývat
3. Počítačové systémy
3. Počítačové systémy 3.1. Spolupráce s počítačem a řešení úloh 1. přímý přístup uživatele - neekonomické. Interakce při odlaďování programů (spusť., zastav.,krok, diagnostika) 2. dávkové zpracování (batch