Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava
|
|
- Antonín Jelínek
- před 9 lety
- Počet zobrazení:
Transkript
1 Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava
2 Podstata biologických signálů Signál nosič informace Biosignál signál, který je generovaný živým organismem
3 Rozdělení biosignálů podle matematických kritérií (dělení podle Cohena) Deterministický Periodický (sinusový, komplexní) Neperiodický (kvaziperiodický, přechodový) Stochastický Stacionární (ergodický, neergodický) (stat. parametry se nemění v čase) Nestacionární (speciální)
4 Elektroencefalografie a její přínos Elektroencefalografie neinvazivní diagnostická metoda snímáme bioelektrické potenciály vznikající při činnosti mozku výsledný záznam nazýváme elektroencefalogram vhodná pro zjištění mozkových onemocnění jako epilepsie, poruchy spánku aj. Výhody neinvazivnost nízká cena jednoduchá obsluha dobré časové rozlišení Nevýhody pouze 2D zobrazovací technika signál ze skalpu, nikoliv z hlubších struktur jako u SPECT, MRI apod.
5 Použití EEG Při výzkumu a diagnostice funkce mozku. Krátkodobá ambulantní vyšetření (20 30 minut), ale i dlouhodobé záznamy (celodenní, např. u epilepsie, spánku apod.). EEG vyšetření často doplněno záznamem dalších signálů: EKG, EMG, EOG ventilace, saturace krve kyslíkem, pohyby hrudníku, videozáznam a další Vyšetření řady chorob a poškození CNS: - epilepsie - poruchy spánku - mozková encefalitidita (zánět mozku) - poranění mozku, krvácení do mozku - mozková mrtvice, demence - Alzheimerova nemoc Použití EEG při terapii ve formě EEG biofeedbacku.
6 Příklad EEG signálu 19 EEG kanálů
7 Klinicky významné frekvenční pásma Elektrická aktivita mozku vykazuje rytmickou aktivitu o různé frekvenci: DELTA 3 Hz a méně hluboký spánek, v bdělosti patologické THETA 3-8 Hz kreativita, usínání ALPHA 8-13 Hz relaxace, zavřené oči BETA 14 Hz a více koncentrace, logicko-analytické myšlení, neklid
8 Grafoelementy Ostře časově omezené projevy výrazně se lišící od pozadí - základní frekvence - lambda/posts - MU vlna - K complex - small sharp spikes - Wicket spikes
9 Artefakty Elektrický potenciál mozku má na povrchu lebky napětí jen několik desítek mikrovoltů (µv), tudíž elektronické zesilovače v elektroencefalografu musí být velmi výkonné. Velká výkonnost zesilovačů -> vznik artefaktů. Artefakty jsou dvojího druhu: technické a biologické Technické: síťové napětí 50Hz (objevuje se v EEG křivce při velkých kožních odporech pod elektrodami nebo při nedokonalém uzemnění pacienta či EEG přístroje) nedostatečně vlhké elektrody porušené nebo oxidované elektrody (jsou zdrojem výbojů) polámané drátky v kabelech elektrod
10 Artefakty Biologické: oční artefakt - pohyb víček a bulbů, který se propaguje hlavně do frontálních elektrod. Akt otevření a zavření očí je díky těmto artefaktům dobře patrný informuje o tom, zda pacient má nebo nemá otevřené oči. svalové artefakty (např. ze svalů hlavy, krku apod., časté např. u novorozenců) změna kožního galvanického potenciálu pocení, dýchání, z ekg
11 Komplikace při zpracování EEG velký počet kanálů, vysoké vzorkovací frekvence
12 Komplikace při zpracování EEG Artefakty komplikují automatizované hodnocení dat (záznamy emočních událostí)
13 Komplikace při zpracování EEG - o pacientech často nemáme žádné dodatečné informace - bez lékaře je mnohdy nemožné data správně interpretovat Nslt (Bohnice, spánkový záznam, délka záznamu 300s)
14 Komplikace při zpracování EEG Neúplná data - některé kanály občas chybí - stejné kanály nelze mezi různými záznamy porovnat (novorozenecké záznamy)
15 Úvod do počítačového zpracování EEG Motivace - velké objemy EEG dat (celodenní záznamy apod.). Cíle data vhodně předzpracovat, k detailnímu posouzení předložit pouze zajímavé části záznamu cílem není nahradit zkušené oko neurologa, ale usnadnit mu práci. Prostředky výpočetní technika, metody kvantitativního EEG, zpracování signálů, rozpoznávání, metody umělé inteligence.
16 Úvod do počítačového zpracování EEG Segmentace EEG, ECG, EOG, EMG, PNG Extrakce příznaků Především: FFT / waveletové koeficienty, problémově orientované příznaky Klasifikátor 1 Klasifikátor 2 Klasifikátor N Optimalizace (učící se klasifikátory / metody bez učení) Různé typy klasifikátorů: lineární modely, neuronové sítě, pravděpodobnostní modely, nejbližší soused, shlukování. Kombinace klasifikátorů Vážený průměr, Bagging, Boosting, Shaferův přístup, Fuzzy Integral Visualizace Vizualizace ve všech fázích procesu
17 Odstranění rušení z rozvodné sítě (50/60Hz) výsledky filtrace ve frekvenční oblasti a) před filtrací (FP1-GND) Typ filtru: Notch filtr b) po filtraci (FP1-GND)
18 Odstranění rušení z rozvodné sítě (50/60Hz) zobrazení filtrace v časové oblasti a) EEG signál před filtrací b) EEG signál po filtraci
19 Odstranění kolísání izolinie
20 Příklad detekce pohybových artefaktů pomocí histogramu je možné automaticky určit mez pro detekci artefaktů (červená přímka na obrázku). hodnoty v signálu přesahující tuto mez považujeme za artefakty.
21 Segmentace signálu Segmentace = rozdělení signálu na úseky Druhy segmentace konstantní segmentace adaptivní segmentace Účel segmentace EEG signál nelze zpracovávat celý najednou EEG signál je obecně nestacionární segmentací obdržíme po částech stacionární úseky signály, které lze lépe popsat metodami UI
22 Segmentace signálu (konstantní délka segmentů) 0.1 s 0.5 s 1 s 5 s 10 s Jak volit délku segmentů pro segmentaci?
23 Adaptivní segmentace signálu Požadovaná segmentace: Metoda dvou oken:
24 Adaptivní segmentace signálu vstupní signál amplitudové změny frekvenční změny prahování, hledání maxim výsledek segmentace [Krajča V., Biomed Comput., 28 (1991)]
25 Adaptivní segmentace signálu
26 Klasifikace Klasifikace: matematická metoda, kdy vstupní objekty X(i) jsou rozřazovány do tříd podle podobnosti I. Metody klasifikace bez učitele: podoba (a často ani počet tříd) není známa. Představitelé: shluková analýza, SOM, Kohonenovy mapy atd. II. Metody klasifikace s učitelem nutným doplňkovým vstupem klasifikátoru je tzv. trénovací množina množina ukázek objektů jednotlivých klasifikačních tříd. Představitelé: k-nn klasifikátor, neuronové sítě, rozhodovací stromy atd.
27 Klasifikace epileptického EEG 1. krok - segmentace (rozdělení signálu na úseky konstatní délky)
28 Klasifikace epileptického EEG 2. krok - výpočet příznaků (pro každý segment vypočítáme množinu příznaků) segment příznak 1 příznak 2 1 0,43 7,51 2 0,84 38,13 segment č. 1 => { 0,43 ; 7,51 } segment č. 2 => { 0,84 ; 38,13 }
29 Klasifikace epileptického EEG 3. krok - vytvoření trénovací množiny (trénovací množina = množina vzorových segmentů pro jednotlivé klasifikační třídy) Pro náš problém pouze 2 třídy: - normální aktivita třída 1 - epileptická aktivita třída 2
30 Klasifikace epileptického EEG 4. krok - klasifikace (nalézt pro každý segment původního signálu co nejpodobnější segment trénovací množiny a přiřadit mu tak třídu) Zobrazení - normální EEG černě, epileptické červeně
31 Klasifikace spánkového EEG 1. Wake (bdělost) 2. REM (Rapid Eye Movements) // sny 3. NREM1 (usínání) 4. NREM2 (lehký spánek) 5. NREM3 (hluboký spánek) 6. NREM4 (nejhlubší spánek) Hypnogram:
32 Porovnání spánkových fází (EEG: C3-GND, C4-GND)
33 freq. (10Hz/div) Spektrogram dlouhodobého EEG signálu Beta waves (13-30Hz) Alpha waves (8-12Hz) Delta waves (0.1-3Hz) Theta waves (4-7Hz) time (15min/div)
34 Analýza spektrogramu spánkového EEG hodnoceno lékařem hodnoceno ručně dle spektrogramu (Josef Rieger, 2006)
35 Metody vizualizace metody vizualizace umožňují nahlížet na signál diametrálně odlišným způsobem v porovnání s analýzou signálu v časové oblasti často jsou data transformována (např. pomocí integrálních transformací - FFT,..) do jiné oblasti, ve které je hledaná informace mnohem lépe viditelná.
36 Spektrální, koherentní a korelační analýza spektrogramy 2D mapování koherence korelace
37 Spektrální, koherentní a korelační analýza spektrogramy 2D mapování koherence korelace
38 Spektrální, koherentní a korelační analýza spektrogramy 2D mapování koherence korelace
39 Spektrogram dlouhodobého EEG signálu spektrogram spánkového EEG délky 8.5 hodiny patrná periodická struktura typická pro lidský spánek analýza spánkových stádií možná analýza poruch spánku apod.
40 2D a 3D spektrogram frekvence čas čas frekvence
41 2D spektrogram: audio-visuální stimulace 0:30-2:40 12Hz 2:40-6:00 8Hz 6:00-8:00 7Hz 8:00-10:00 6Hz 10:00-12:00 5Hz 12:00-14:00 4.5Hz 14:00-16:00 4Hz 16:00-18:00 3.5Hz 18:00-20:00 3Hz 20:00-21:00 2.5Hz 21:00-22:00 2Hz 22:00-23:00 4Hz 23:00-24:00 6Hz 24:00-25:00 7Hz 25:00-27:00 8Hz 27:00-31:58 od 8Hz do 1.5Hz 31:58-33:00 1.5Hz 33:00-34:00 4Hz 34:00-37:00 8Hz 37:00-37:20 pozvolna od 8Hz do 12Hz 37:20 probuzeni
42 2D spektrogram: více elektrod
43 2D mapování 00:00-00:09 00:10-00:19 00:20-00:29 00:30-00:39 00:40-00:49 00:50-00:59 01:00-01:09 01:10-01:19 01:20-01:29 01:30-01:38
44 3D mapování výsledek analýzy zobrazíme barevnou modulací na modelu hlavy získáme topografickou představu o distribuci mapované veličiny (např. rozložení celkového výkonu v daném frekvenčním pásmu)
45
46 EEG Biofeedback klinický biofeedback léčení fóbií omezení stresu sledování pozornosti
47 Technická realizace měření současné zázemí Hardwarové a SW zajištění sběru dat Měření bioelektrických signálů ± 250mV s rozlišením 30 nv Frekvenční rozsah do 40kHz při 24 bitovém vzorkování Vstupně výstupní synchronizace měření Až 128 synchronních monopolárních záznamů současně Pasivní i aktivní elektrody pro měření Předzpracování a vizualizace výsledků Filtrace pásmovými a úzko pásmovými filtry v reálném čase Kalibrace a impedanční kontrola vodivého spojení Práce v MATLAB, Simulink, LabView DC korekce, odstranění driftů, převzorkování reinholdbehringer.blogspot.com cortechsolutions.com
48 Závěr a zhodnocení zpracování EEG Možnosti automatické analýzy: filtrace signálu segmentace výpočet příznaků shlukování vizualizační techniky (spektrogram, koherence, mapování) Co se nedaří provádět zcela automaticky: klasifikace do tříd Proč se nedaří plně automatická klasifikace? nebývá k dispozici kvalitní trénovaní množina (EEG databáze) artefakty komplikují klasifikaci počítačová reprezentace znalostí a zkušeností lékařů je složitá velký počet kanálů a dlouhé signály vysoké časové nároky
49 Děkuji za pozornost Kontakt: Katedra kyberentiky a biomedicínského inženýrství VŠB-TU Ostrava, FEI 17.listopadu Ostrava-Poruba Lékařské diagnostické přístroje
Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace
Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace Václav Gerla, Josef Rieger, Lenka Lhotská, Vladimír Krajča ČVUT, FEL, Katedra kybernetiky, Technická 2, Praha 6 Fakultní nemocnice Na Bulovce,
VíceZPRACOVÁNÍ A ANALÝZA BIOSIGNÁLŮ V. Institut biostatistiky a analýz
ZPRACOVÁNÍ A ANALÝZA BIOSIGNÁLŮ V. ELEKTROENCEFALOGRAM ELEKTROENCEFALOGRAM ELEKTROENCEFALOGRAM (EEG) je (grafická) reprezentace časové závislosti rozdílu elektrických potenciálů, snímaných z elektrod umístěných
VíceBiologické signály. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů
Biologické signály X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Biologické signály mají původ v živém organismu jsou vyvolány buď samotnými životními projevy
Více8. PŘEDNÁŠKA 20. dubna 2017
8. PŘEDNÁŠKA 20. dubna 2017 EEG systém rozložení elektrod 10/20 základní typy zapojení požadavky na EEG přístroj analýza EEG a způsoby zobrazení ontogeneze normální EEG úvod ke cvičení montáž, filtrace,
VíceRÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ.
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ pro BIOMEDICÍNSKÉ INŽENÝRY 1. Cíl specializačního vzdělávání
VíceRÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ.
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ pro BIOMEDICÍNSKÉ TECHNIKY 1. Cíl specializačního vzdělávání
VíceÚvod do medicínské informatiky pro Bc. studium. 6. přednáška
Metody zpracování biosignálů 6. přednáška 1 Biosignály Živé objekty produkují signály biologického původu. Tyto signály mohou být elektrické (např. elektrické potenciály vznikající při svalové činnosti),
VíceBioelektromagnetismus. Zdeněk Tošner
Bioelektromagnetismus Zdeněk Tošner Bioelektromagnetismus Elektrické, elektromagnetické a magnetické jevy odehrávající se v biologických tkáních elektromagnetické vlastnosti tkání chování vzrušivých tkání
VíceElektroencefalografie. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů
Elektroencefalografie X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektroencefalografie diagnostická metoda, umožňující snímání a záznam elektrické aktivity
VíceElektroencefalografie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů
Elektroencefalografie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektroencefalografie diagnostická metoda, umožňující snímání a záznam elektrické aktivity mozku invazivní
VíceAlgoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
VíceBiosignál snímání, zpracování, hodnocení
Biosignál snímání, zpracování, hodnocení MICHAL HUPTYCH Katedra kybernetiky, FEL, ČVUT Přehled přednášky Přehled biologických signálů Snímání biologických signálů Základy zpracování Předzpracování signálu
Více6.4 Zpracování elektroencefalografických záznamů pomocí umělých neuronových sítí
PŘÍKLADY APLIKACÍ NEURONOVÝCH SÍTÍ 136 Důležité je, jako ve všech úlohách, ve kterých aplikujeme UNS, předzpracování dat. Do oblasti predikce časových řad patří např. systémy pro odhad vývoje zahraničního
VíceElektroencefalografie
Elektroencefalografie EEG vzniká součinností neuronů thalamu a kortexu thalamus - funkce generátoru rytmů hlavní zdroj EEG - elektrická aktivita synaptodendritických membrán v povrchních vrstvách kortexu
VíceLaboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Více10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální
10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální iktální periodické Evokované potenciály sluchové (AEP) zrakové
VíceRÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA DIAGNOSTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA DIAGNOSTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE pro BIOMEDICÍNSKÉ INŽENÝRY 1. Cíl specializačního vzdělávání
VíceOKRUHY MODELOVÝCH SITUACÍ
OKRUHY MODELOVÝCH SITUACÍ k atestační zkoušce z praktické části vzdělávání v atestačním oboru Klinické inženýrství se zaměřením Zpracování a analýza biosignálů 29 úloh Obsah atestační zkoušky odpovídá
VíceSIMULTÁNNÍ EEG-fMRI. EEG-fMRI. Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ. EEG-fMRI. pozorování jevu z různých úhlú lepší pochopení
SIMULTÁNNÍ Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace obsažená
VíceRÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA LABORATORNÍ ZDRAVOTNICKÉ PŘÍSTROJE.
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA LABORATORNÍ ZDRAVOTNICKÉ PŘÍSTROJE pro BIOMEDICÍNSKÉ TECHNIKY 1. Cíl specializačního vzdělávání
VíceRÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÝ INŽENÝR PRO TERAPEUTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÝ INŽENÝR PRO TERAPEUTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání ve
VíceKatedra biomedicínské techniky
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Katedra biomedicínské techniky BAKALÁŘSKÁ PRÁCE 2008 Jakub Schlenker Obsah Úvod 1 1 Teoretický úvod 2 1.1 Elektrokardiografie............................
VíceEOG. ERG Polysomnografie. spánkové cykly poruchy spánku. Úvod ke cvičení
EOG Úvod ke cvičení ERG Polysomnografie spánkové cykly poruchy spánku Laboratorní úloha č. 11 Elektrookulogram Cíle úlohy: podstata a snímání EOG základní typy očních pohybů volní a mimovolní fixace při
Více5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
VíceAnotace. Klíčová slova: 1. Úvod
Vladana Djordjevic, Václav Gerla, Lenka Lhotská, Vladimír Krajča 28 MULTIMEDIÁLNÍ PODPORA VE VÝUCE BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Vladana Djordjevic, Václav Gerla, Lenka Lhotská, Vladimír Krajča Anotace Tento
VíceDiagnostika infarktu myokardu pomocí pravidlových systémů
pomocí pravidlových systémů Bakalářská práce 2009 pomocí pravidlových systémů Přehled prezentace Motivace a cíle Infarkt myokardu, EKG Pravidlové systémy Výsledky Motivace Infarkt myokardu Detekce infarktu
VíceVYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie
VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3
Více1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Více12. PŘEDNÁŠKA 10. května 2018
12. PŘEDNÁŠKA 10. května 2018 EOG elektrookulogram Úvod ke cvičení ERG elektroretinogram Polysomnografie spánkové cykly poruchy spánku Elektrookulogram EOG slouží k měření polohy oka pomocí elektrických
VíceElektroencefalografie v intenzivní péči. Petr Aulický
Elektroencefalografie v intenzivní péči Petr Aulický Elektroencefalografie (EEG) Metoda pro vyšetření mozkové elektrické aktivity Hlavní význam v epileptologii Pomocná metoda nutná korelace s klinickým
VíceZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
VíceAnalýza novorozeneckých polysomnografických záznamů
České Vysoké Učení Technické v Praze Fakulta elektrotechnická Bakalářská Práce Analýza novorozeneckých polysomnografických záznamů Jakub Hrebeňár Vedoucí práce: Doc.Ing. Lenka Lhotská, CSc. Studijní program:
Vícediogram III. II. Úvod: Elektrokardiografie elektrod) potenciálu mezi danou a svorkou Amplituda [mv] < 0,25 0,8 1,2 < 0,5 Elektrická
Laboratorní úloha č.6: Elektrokardiogram a vektorkardv diogram Úvod: Elektrokardiografie je velmi jednoduché, neinvazivní vyšetření. Každý stahh srdečního svalu je doprovázen vznikem slabého elektrického
VícePokročilé operace s obrazem
Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání
VíceZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ
metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných
VíceElektrofyziologické metody a studium chování a paměti
Elektrofyziologické metody a studium chování a paměti EEG - elektroencefalogram Skalpové EEG Intrakraniální EEG > 1 cm < 1 cm Lokální potenciály Extracelulární akční potenciály ~ 1 mm ~ 1 um EEG - elektroencefalogram
VícePříloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA
Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA 1. Technická specifikace Možnost napájení ze sítě nebo akumulátoru s UPS funkcí - alespoň 2 hodiny provozu z akumulátorů
VíceModerní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY Bc. Milan Cejnar Zpracování biomedicínských signálů na platformě Android Biomedical Signal Processing on the Android
VíceSIMULTÁNNÍ EEG-fMRI. Radek Mareček
SIMULTÁNNÍ EEG-fMRI Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace
VíceBiomedicínské inženýrství na ČVUT FEL
Biomedicínské inženýrství na ČVUT FEL Přehled pracovišť katedra fyziky elektrotechnologie elektromagnetického pole teorie obvodů kybernetiky mikroelektroniky počítačů měření témata fyzikální metody v medicíně
VíceMĚŘENÍ BIOPOTENCIÁLŮ
Středoškolská technika 2009 Setkání a prezentace prací středoškolských studentů na ČVUT MĚŘENÍ BIOPOTENCIÁLŮ Čeněk Ráliš SPŠ elektrotechnická a VOŠ Karla IV. 13, 531 69 Pardubice Tento projekt seznamuje
VíceOmezení barevného prostoru
Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceKlasifikace hudebních stylů
Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů
VíceElektrické biosignály lidského těla měřené ISESem
Elektrické biosignály lidského těla měřené ISESem BRONISLAV BALEK BALMED, Ivančice Úvod Elektrické signály lidského těla (elektrické biosignály) jsou generovány nervovými a svalovými buňkami a jsou výsledkem
VíceBiofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
VíceAUTOMATICKÁ SEGMENTACE DAT EEG
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VícePerspektivy využití pulzní oxymetrie k synchronizaci akvizice s činností srdce.
Perspektivy využití pulzní oxymetrie k synchronizaci akvizice s činností srdce. T. Steinberger, O. Lang, H. Trojanová Fakultní nemocnice Královské Vinohrady Univerzita Karlova v Praze - 3. lékařská fakulta
VíceUčící se klasifikátory obrazu v průmyslu
Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:
VíceANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION BIOMEDICAL
VíceElektronický systém a programové vybavení pro detekci a optimalizaci pulzů kardiostimulátoru
Elektronický systém a programové vybavení pro detekci a optimalizaci pulzů kardiostimulátoru Milan Štork Katedra aplikované elektroniky a telekomunikací & Regionálním inovační centrum pro elektrotechniku
VíceKlasifikace předmětů a jevů
Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou
VíceBIOLOGICKÉ SIGNÁLY. Pokroky v EEG. doc. Ing. Vladimír Krajča, CSc. ČVUT FBMI, katedra biomedicínské techniky
BIOLOGICKÉ SIGNÁLY Pokroky v EEG doc. Ing. Vladimír Krajča, CSc. ČVUT FBMI, katedra biomedicínské techniky e-mail Vladimir.Krajca@FBMI.CVUT.cz 1 Cíle kursu Proniknout do principů a praktického nasazení
VíceSignál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
VíceZesilovače biologických signálů, PPG. A6M31LET Lékařská technika Zdeněk Horčík, Jan Havlík Katedra teorie obvodů
Zesilovače biologických signálů, PPG A6M31LET Lékařská technika Zdeněk Horčík, Jan Havlík Katedra teorie obvodů horcik@fel.cvut.cz Zesilovače biologických signálů zesilovače pro EKG (elektrokardiografie,
VíceVyužití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANALÝZA SPÁNKOVÝCH EEG BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceDolování z textu. Martin Vítek
Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu
Více1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií DIPLOMOVÁ PRÁCE Brno, 2016 Bc. Michaela Pecníková VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY
VíceIng. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence
APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY
VíceAUTOMATICKÁ DETEKCE GRAFOELEMENTŮ V SIGNÁLU EEG
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceEtiologie epilepsie. Epilepsie nevychází z centra jizvy nebo postmalatické pseudocysty, ale spíše z jejího okraje, kde přežívají poškozené neurony.
Epilepsie Epilepsie Chronické mozkové onemocnění charakterizované opakujícím se výskytem (nevyprovokovaných) epileptických záchvatů. Ojedinělý epileptický záchvat může být vyprovokován i u člověka bez
Vícedoc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
VíceDuševní stabilita z pohledu obecné psychologie
Duševní stabilita z pohledu obecné psychologie Ondřej Bezdíček, Ph.D. Ústí nad Orlicí, 16. 12. 2014 Neurologická klinika a Centrum klinických neurověd Universita Karlova v Praze, 1. lékařská fakulta a
VíceEpilepsie. Silvia Čillíková FEL ČVUT. 9th May 2006
Epilepsie Silvia Čillíková FEL ČVUT 9th May 2006 Úvod Epilepsie (zkr. epi) je skupina poruch mozku projevujících se opakovanými záchvaty (paroxysmy) různého charakteru Je to relativně běžné onemocnění,
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a
VíceANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
Více3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
VíceMonitorování kontinuálního EEG v intenzivní péči. Mgr. Moravčík Branislav, KARIM FN Brno Mgr. Flajšingrová Jana, KARIM FN Brno
Monitorování kontinuálního EEG v intenzivní péči Mgr. Moravčík Branislav, KARIM FN Brno Mgr. Flajšingrová Jana, KARIM FN Brno Elektroencefalografie - EEG definice Registruje časoprostorové změny mozkových
VíceKLASIFIKACE SPÁNKOVÝCH FÁZI ZA POUŽITÍ POLYSOMNOGRAFICKÝCH DAT
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceUltrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací
VíceZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
VíceMerkur perfekt Challenge Studijní materiály
Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 11 Název úlohy: Svalem na robota Anotace: Úkolem týmu je
VíceAktivační metody v průběhu EEG - výhody a rizika. Petr Zlonický
Aktivační metody v průběhu EEG - výhody a rizika Petr Zlonický Aktivační metody - výhody Používají se k vyprovokování, zvýraznění nebo lepšímu definování abnormální aktivity při normálním nebo neprůkazném
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ DEPARTMENT
VíceÚvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
VíceMerkur perfekt Challenge Studijní materiály
Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 10 Název úlohy: Svalem na robota Anotace: Úkolem týmu je
VíceStrojové učení se zaměřením na vliv vstupních dat
Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications
VíceAlgoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
VícePsychologie Spánek a snění
Psychologie Spánek a snění Mgr. et Mgr. Martin Zielina, Ph.D. Spánek Podtitul (rozdělovací snímek mezi částmi) Spánek Spánek je přirozený psychosomatický stav provázený značným snížením psychické i tělesné
VíceNeurofeedback. Úvod. Princip
Radek Procházka prochra4@fel.cvut.cz Neurofeedback Úvod Neurofeedback je moderní terapeutická metoda, používaná k léčbě či alespoň potlačení příznaků poruch soustředění, hyperaktivity a epilepsie, zejména
VíceROZPOZNÁNÍ TITULU GRAMOFONOVÉ DESKY PODLE KRÁTKÉ UKÁZKY
ROZPOZNÁNÍ TITULU GRAMOFONOVÉ DESKY PODLE KRÁTKÉ UKÁZKY V. Moldan, F. Rund Katedra radioelektroniky, fakulta elektrotechnická České vysoké učení technické v Praze, Česká republika Abstrakt Tento článek
VíceNOVÉ MOŽNOSTI HOLTEROVSKÉ DIAGNOSTIKY
EkG HOLTER 2 EKG HOLTER NOVÉ MOŽNOSTI HOLTEROVSKÉ DIAGNOSTIKY BTL EKG Holter BTL EKG Holter uspokojí nároky nejnáročnějších odborníků na EKG, jejichž práce ale bude zároveň snadná a rychlá. Při vývoji
Více4. PŘEDNÁŠKA 15. března 2018
EMG 4. PŘEDNÁŠKA 15. března 2018 nativní EMG (jehlová EMG) stimulační (konduktivní studie) EMG při funkčním zatěžování svalů Motorická jednotka model generování EMG Záznam EMG signálu Zpracování EMG signálu
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
VíceBIOLOGICKÉ SIGNÁLY. léto Biologické signály (2+2)
BIOLOGICKÉ SIGNÁLY léto 2017 Biologické signály (2+2) hodina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 čas 7:30-9:00 9:15-10:45 11:00-12:30 12:45-14:15 14:30-16:00 16:15-17:45 18:00-19:30 čt Přednáška R.Čmejla
Více13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
VíceKLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ
KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ Marie Richterová 1, David Juráček 2 1 Univerzita obrany, Katedra KIS, 2 PČR MŘ Brno Abstrakt Článek se zabývá rozpoznáváním analogových a diskrétních
Více1. ELEKTROMYOGRAM (EMG)
1. ELEKTROMYOGRAM (EMG) 1.1. DEFINICE Elektromyogram je (grafická) reprezentace časové závislosti elektrických potenciálů vznikajících jako důsledek aktivity svalových potenciálů a nesoucí informaci o
VíceElektronická podpora výuky na ÚBMI
Závěrečná zpráva rozvojového projektu Elektronická podpora výuky na ÚBMI MŠMT č. 645 Odpovědný řešitel: Prof. Ing. Jiří Holčík, CSc. ČVUT v Praze - FBMI Kladno, leden 2006 Vyhodnocení splněných cílů a
Vícefluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot Heart Rate Variability) je jev, který
BIOLOGICKÉ A LÉKAŘSKÉ SIGNÁLY VI. VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU, tj. fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot okamžité
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
VíceAutomatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011
Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe
VíceDETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceElektrokardiografie. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů
Elektrokardiografie X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektrokardiografie základní diagnostická metoda, umožňující snímání a záznam elektrické aktivity
VíceOperace s obrazem II
Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů
Více