Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava

Rozměr: px
Začít zobrazení ze stránky:

Download "Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava 21. 10. 2013"

Transkript

1 Processing of EEG Data Marek Penhaker Konference IT4Innovations, Ostrava

2 Podstata biologických signálů Signál nosič informace Biosignál signál, který je generovaný živým organismem

3 Rozdělení biosignálů podle matematických kritérií (dělení podle Cohena) Deterministický Periodický (sinusový, komplexní) Neperiodický (kvaziperiodický, přechodový) Stochastický Stacionární (ergodický, neergodický) (stat. parametry se nemění v čase) Nestacionární (speciální)

4 Elektroencefalografie a její přínos Elektroencefalografie neinvazivní diagnostická metoda snímáme bioelektrické potenciály vznikající při činnosti mozku výsledný záznam nazýváme elektroencefalogram vhodná pro zjištění mozkových onemocnění jako epilepsie, poruchy spánku aj. Výhody neinvazivnost nízká cena jednoduchá obsluha dobré časové rozlišení Nevýhody pouze 2D zobrazovací technika signál ze skalpu, nikoliv z hlubších struktur jako u SPECT, MRI apod.

5 Použití EEG Při výzkumu a diagnostice funkce mozku. Krátkodobá ambulantní vyšetření (20 30 minut), ale i dlouhodobé záznamy (celodenní, např. u epilepsie, spánku apod.). EEG vyšetření často doplněno záznamem dalších signálů: EKG, EMG, EOG ventilace, saturace krve kyslíkem, pohyby hrudníku, videozáznam a další Vyšetření řady chorob a poškození CNS: - epilepsie - poruchy spánku - mozková encefalitidita (zánět mozku) - poranění mozku, krvácení do mozku - mozková mrtvice, demence - Alzheimerova nemoc Použití EEG při terapii ve formě EEG biofeedbacku.

6 Příklad EEG signálu 19 EEG kanálů

7 Klinicky významné frekvenční pásma Elektrická aktivita mozku vykazuje rytmickou aktivitu o různé frekvenci: DELTA 3 Hz a méně hluboký spánek, v bdělosti patologické THETA 3-8 Hz kreativita, usínání ALPHA 8-13 Hz relaxace, zavřené oči BETA 14 Hz a více koncentrace, logicko-analytické myšlení, neklid

8 Grafoelementy Ostře časově omezené projevy výrazně se lišící od pozadí - základní frekvence - lambda/posts - MU vlna - K complex - small sharp spikes - Wicket spikes

9 Artefakty Elektrický potenciál mozku má na povrchu lebky napětí jen několik desítek mikrovoltů (µv), tudíž elektronické zesilovače v elektroencefalografu musí být velmi výkonné. Velká výkonnost zesilovačů -> vznik artefaktů. Artefakty jsou dvojího druhu: technické a biologické Technické: síťové napětí 50Hz (objevuje se v EEG křivce při velkých kožních odporech pod elektrodami nebo při nedokonalém uzemnění pacienta či EEG přístroje) nedostatečně vlhké elektrody porušené nebo oxidované elektrody (jsou zdrojem výbojů) polámané drátky v kabelech elektrod

10 Artefakty Biologické: oční artefakt - pohyb víček a bulbů, který se propaguje hlavně do frontálních elektrod. Akt otevření a zavření očí je díky těmto artefaktům dobře patrný informuje o tom, zda pacient má nebo nemá otevřené oči. svalové artefakty (např. ze svalů hlavy, krku apod., časté např. u novorozenců) změna kožního galvanického potenciálu pocení, dýchání, z ekg

11 Komplikace při zpracování EEG velký počet kanálů, vysoké vzorkovací frekvence

12 Komplikace při zpracování EEG Artefakty komplikují automatizované hodnocení dat (záznamy emočních událostí)

13 Komplikace při zpracování EEG - o pacientech často nemáme žádné dodatečné informace - bez lékaře je mnohdy nemožné data správně interpretovat Nslt (Bohnice, spánkový záznam, délka záznamu 300s)

14 Komplikace při zpracování EEG Neúplná data - některé kanály občas chybí - stejné kanály nelze mezi různými záznamy porovnat (novorozenecké záznamy)

15 Úvod do počítačového zpracování EEG Motivace - velké objemy EEG dat (celodenní záznamy apod.). Cíle data vhodně předzpracovat, k detailnímu posouzení předložit pouze zajímavé části záznamu cílem není nahradit zkušené oko neurologa, ale usnadnit mu práci. Prostředky výpočetní technika, metody kvantitativního EEG, zpracování signálů, rozpoznávání, metody umělé inteligence.

16 Úvod do počítačového zpracování EEG Segmentace EEG, ECG, EOG, EMG, PNG Extrakce příznaků Především: FFT / waveletové koeficienty, problémově orientované příznaky Klasifikátor 1 Klasifikátor 2 Klasifikátor N Optimalizace (učící se klasifikátory / metody bez učení) Různé typy klasifikátorů: lineární modely, neuronové sítě, pravděpodobnostní modely, nejbližší soused, shlukování. Kombinace klasifikátorů Vážený průměr, Bagging, Boosting, Shaferův přístup, Fuzzy Integral Visualizace Vizualizace ve všech fázích procesu

17 Odstranění rušení z rozvodné sítě (50/60Hz) výsledky filtrace ve frekvenční oblasti a) před filtrací (FP1-GND) Typ filtru: Notch filtr b) po filtraci (FP1-GND)

18 Odstranění rušení z rozvodné sítě (50/60Hz) zobrazení filtrace v časové oblasti a) EEG signál před filtrací b) EEG signál po filtraci

19 Odstranění kolísání izolinie

20 Příklad detekce pohybových artefaktů pomocí histogramu je možné automaticky určit mez pro detekci artefaktů (červená přímka na obrázku). hodnoty v signálu přesahující tuto mez považujeme za artefakty.

21 Segmentace signálu Segmentace = rozdělení signálu na úseky Druhy segmentace konstantní segmentace adaptivní segmentace Účel segmentace EEG signál nelze zpracovávat celý najednou EEG signál je obecně nestacionární segmentací obdržíme po částech stacionární úseky signály, které lze lépe popsat metodami UI

22 Segmentace signálu (konstantní délka segmentů) 0.1 s 0.5 s 1 s 5 s 10 s Jak volit délku segmentů pro segmentaci?

23 Adaptivní segmentace signálu Požadovaná segmentace: Metoda dvou oken:

24 Adaptivní segmentace signálu vstupní signál amplitudové změny frekvenční změny prahování, hledání maxim výsledek segmentace [Krajča V., Biomed Comput., 28 (1991)]

25 Adaptivní segmentace signálu

26 Klasifikace Klasifikace: matematická metoda, kdy vstupní objekty X(i) jsou rozřazovány do tříd podle podobnosti I. Metody klasifikace bez učitele: podoba (a často ani počet tříd) není známa. Představitelé: shluková analýza, SOM, Kohonenovy mapy atd. II. Metody klasifikace s učitelem nutným doplňkovým vstupem klasifikátoru je tzv. trénovací množina množina ukázek objektů jednotlivých klasifikačních tříd. Představitelé: k-nn klasifikátor, neuronové sítě, rozhodovací stromy atd.

27 Klasifikace epileptického EEG 1. krok - segmentace (rozdělení signálu na úseky konstatní délky)

28 Klasifikace epileptického EEG 2. krok - výpočet příznaků (pro každý segment vypočítáme množinu příznaků) segment příznak 1 příznak 2 1 0,43 7,51 2 0,84 38,13 segment č. 1 => { 0,43 ; 7,51 } segment č. 2 => { 0,84 ; 38,13 }

29 Klasifikace epileptického EEG 3. krok - vytvoření trénovací množiny (trénovací množina = množina vzorových segmentů pro jednotlivé klasifikační třídy) Pro náš problém pouze 2 třídy: - normální aktivita třída 1 - epileptická aktivita třída 2

30 Klasifikace epileptického EEG 4. krok - klasifikace (nalézt pro každý segment původního signálu co nejpodobnější segment trénovací množiny a přiřadit mu tak třídu) Zobrazení - normální EEG černě, epileptické červeně

31 Klasifikace spánkového EEG 1. Wake (bdělost) 2. REM (Rapid Eye Movements) // sny 3. NREM1 (usínání) 4. NREM2 (lehký spánek) 5. NREM3 (hluboký spánek) 6. NREM4 (nejhlubší spánek) Hypnogram:

32 Porovnání spánkových fází (EEG: C3-GND, C4-GND)

33 freq. (10Hz/div) Spektrogram dlouhodobého EEG signálu Beta waves (13-30Hz) Alpha waves (8-12Hz) Delta waves (0.1-3Hz) Theta waves (4-7Hz) time (15min/div)

34 Analýza spektrogramu spánkového EEG hodnoceno lékařem hodnoceno ručně dle spektrogramu (Josef Rieger, 2006)

35 Metody vizualizace metody vizualizace umožňují nahlížet na signál diametrálně odlišným způsobem v porovnání s analýzou signálu v časové oblasti často jsou data transformována (např. pomocí integrálních transformací - FFT,..) do jiné oblasti, ve které je hledaná informace mnohem lépe viditelná.

36 Spektrální, koherentní a korelační analýza spektrogramy 2D mapování koherence korelace

37 Spektrální, koherentní a korelační analýza spektrogramy 2D mapování koherence korelace

38 Spektrální, koherentní a korelační analýza spektrogramy 2D mapování koherence korelace

39 Spektrogram dlouhodobého EEG signálu spektrogram spánkového EEG délky 8.5 hodiny patrná periodická struktura typická pro lidský spánek analýza spánkových stádií možná analýza poruch spánku apod.

40 2D a 3D spektrogram frekvence čas čas frekvence

41 2D spektrogram: audio-visuální stimulace 0:30-2:40 12Hz 2:40-6:00 8Hz 6:00-8:00 7Hz 8:00-10:00 6Hz 10:00-12:00 5Hz 12:00-14:00 4.5Hz 14:00-16:00 4Hz 16:00-18:00 3.5Hz 18:00-20:00 3Hz 20:00-21:00 2.5Hz 21:00-22:00 2Hz 22:00-23:00 4Hz 23:00-24:00 6Hz 24:00-25:00 7Hz 25:00-27:00 8Hz 27:00-31:58 od 8Hz do 1.5Hz 31:58-33:00 1.5Hz 33:00-34:00 4Hz 34:00-37:00 8Hz 37:00-37:20 pozvolna od 8Hz do 12Hz 37:20 probuzeni

42 2D spektrogram: více elektrod

43 2D mapování 00:00-00:09 00:10-00:19 00:20-00:29 00:30-00:39 00:40-00:49 00:50-00:59 01:00-01:09 01:10-01:19 01:20-01:29 01:30-01:38

44 3D mapování výsledek analýzy zobrazíme barevnou modulací na modelu hlavy získáme topografickou představu o distribuci mapované veličiny (např. rozložení celkového výkonu v daném frekvenčním pásmu)

45

46 EEG Biofeedback klinický biofeedback léčení fóbií omezení stresu sledování pozornosti

47 Technická realizace měření současné zázemí Hardwarové a SW zajištění sběru dat Měření bioelektrických signálů ± 250mV s rozlišením 30 nv Frekvenční rozsah do 40kHz při 24 bitovém vzorkování Vstupně výstupní synchronizace měření Až 128 synchronních monopolárních záznamů současně Pasivní i aktivní elektrody pro měření Předzpracování a vizualizace výsledků Filtrace pásmovými a úzko pásmovými filtry v reálném čase Kalibrace a impedanční kontrola vodivého spojení Práce v MATLAB, Simulink, LabView DC korekce, odstranění driftů, převzorkování reinholdbehringer.blogspot.com cortechsolutions.com

48 Závěr a zhodnocení zpracování EEG Možnosti automatické analýzy: filtrace signálu segmentace výpočet příznaků shlukování vizualizační techniky (spektrogram, koherence, mapování) Co se nedaří provádět zcela automaticky: klasifikace do tříd Proč se nedaří plně automatická klasifikace? nebývá k dispozici kvalitní trénovaní množina (EEG databáze) artefakty komplikují klasifikaci počítačová reprezentace znalostí a zkušeností lékařů je složitá velký počet kanálů a dlouhé signály vysoké časové nároky

49 Děkuji za pozornost Kontakt: Katedra kyberentiky a biomedicínského inženýrství VŠB-TU Ostrava, FEI 17.listopadu Ostrava-Poruba Lékařské diagnostické přístroje

Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace

Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace Měření EEG, spánek, hodnocení EEG záznamů a následná vizualizace Václav Gerla, Josef Rieger, Lenka Lhotská, Vladimír Krajča ČVUT, FEL, Katedra kybernetiky, Technická 2, Praha 6 Fakultní nemocnice Na Bulovce,

Více

ZPRACOVÁNÍ A ANALÝZA BIOSIGNÁLŮ V. Institut biostatistiky a analýz

ZPRACOVÁNÍ A ANALÝZA BIOSIGNÁLŮ V. Institut biostatistiky a analýz ZPRACOVÁNÍ A ANALÝZA BIOSIGNÁLŮ V. ELEKTROENCEFALOGRAM ELEKTROENCEFALOGRAM ELEKTROENCEFALOGRAM (EEG) je (grafická) reprezentace časové závislosti rozdílu elektrických potenciálů, snímaných z elektrod umístěných

Více

Biologické signály. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů

Biologické signály. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů Biologické signály X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Biologické signály mají původ v živém organismu jsou vyvolány buď samotnými životními projevy

Více

8. PŘEDNÁŠKA 20. dubna 2017

8. PŘEDNÁŠKA 20. dubna 2017 8. PŘEDNÁŠKA 20. dubna 2017 EEG systém rozložení elektrod 10/20 základní typy zapojení požadavky na EEG přístroj analýza EEG a způsoby zobrazení ontogeneze normální EEG úvod ke cvičení montáž, filtrace,

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ.

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ. RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ pro BIOMEDICÍNSKÉ INŽENÝRY 1. Cíl specializačního vzdělávání

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ.

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ. RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA ANALÝZU A ZPRACOVÁNÍ BIOSIGNÁLŮ pro BIOMEDICÍNSKÉ TECHNIKY 1. Cíl specializačního vzdělávání

Více

Úvod do medicínské informatiky pro Bc. studium. 6. přednáška

Úvod do medicínské informatiky pro Bc. studium. 6. přednáška Metody zpracování biosignálů 6. přednáška 1 Biosignály Živé objekty produkují signály biologického původu. Tyto signály mohou být elektrické (např. elektrické potenciály vznikající při svalové činnosti),

Více

Bioelektromagnetismus. Zdeněk Tošner

Bioelektromagnetismus. Zdeněk Tošner Bioelektromagnetismus Zdeněk Tošner Bioelektromagnetismus Elektrické, elektromagnetické a magnetické jevy odehrávající se v biologických tkáních elektromagnetické vlastnosti tkání chování vzrušivých tkání

Více

Elektroencefalografie. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů

Elektroencefalografie. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů Elektroencefalografie X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektroencefalografie diagnostická metoda, umožňující snímání a záznam elektrické aktivity

Více

Elektroencefalografie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů

Elektroencefalografie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů Elektroencefalografie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektroencefalografie diagnostická metoda, umožňující snímání a záznam elektrické aktivity mozku invazivní

Více

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně

Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších

Více

Biosignál snímání, zpracování, hodnocení

Biosignál snímání, zpracování, hodnocení Biosignál snímání, zpracování, hodnocení MICHAL HUPTYCH Katedra kybernetiky, FEL, ČVUT Přehled přednášky Přehled biologických signálů Snímání biologických signálů Základy zpracování Předzpracování signálu

Více

6.4 Zpracování elektroencefalografických záznamů pomocí umělých neuronových sítí

6.4 Zpracování elektroencefalografických záznamů pomocí umělých neuronových sítí PŘÍKLADY APLIKACÍ NEURONOVÝCH SÍTÍ 136 Důležité je, jako ve všech úlohách, ve kterých aplikujeme UNS, předzpracování dat. Do oblasti predikce časových řad patří např. systémy pro odhad vývoje zahraničního

Více

Elektroencefalografie

Elektroencefalografie Elektroencefalografie EEG vzniká součinností neuronů thalamu a kortexu thalamus - funkce generátoru rytmů hlavní zdroj EEG - elektrická aktivita synaptodendritických membrán v povrchních vrstvách kortexu

Více

Laboratorní úloha č. 8: Elektroencefalogram

Laboratorní úloha č. 8: Elektroencefalogram Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační

Více

10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální

10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální 10. PŘEDNÁŠKA 27. dubna 2017 Artefakty v EEG Abnormální EEG abnormality základní aktivity paroxysmální abnormality epileptiformní interiktální iktální periodické Evokované potenciály sluchové (AEP) zrakové

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA DIAGNOSTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA DIAGNOSTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÉ INŽENÝRSTVÍ SE ZAMĚŘENÍM NA DIAGNOSTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE pro BIOMEDICÍNSKÉ INŽENÝRY 1. Cíl specializačního vzdělávání

Více

OKRUHY MODELOVÝCH SITUACÍ

OKRUHY MODELOVÝCH SITUACÍ OKRUHY MODELOVÝCH SITUACÍ k atestační zkoušce z praktické části vzdělávání v atestačním oboru Klinické inženýrství se zaměřením Zpracování a analýza biosignálů 29 úloh Obsah atestační zkoušky odpovídá

Více

SIMULTÁNNÍ EEG-fMRI. EEG-fMRI. Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ. EEG-fMRI. pozorování jevu z různých úhlú lepší pochopení

SIMULTÁNNÍ EEG-fMRI. EEG-fMRI. Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ. EEG-fMRI. pozorování jevu z různých úhlú lepší pochopení SIMULTÁNNÍ Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace obsažená

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA LABORATORNÍ ZDRAVOTNICKÉ PŘÍSTROJE.

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA LABORATORNÍ ZDRAVOTNICKÉ PŘÍSTROJE. RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ TECHNIKA SE ZAMĚŘENÍM NA LABORATORNÍ ZDRAVOTNICKÉ PŘÍSTROJE pro BIOMEDICÍNSKÉ TECHNIKY 1. Cíl specializačního vzdělávání

Více

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÝ INŽENÝR PRO TERAPEUTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE

RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI. v oboru KLINICKÝ INŽENÝR PRO TERAPEUTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÝ INŽENÝR PRO TERAPEUTICKÉ ZDRAVOTNICKÉ PŘÍSTROJE 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání ve

Více

Katedra biomedicínské techniky

Katedra biomedicínské techniky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Katedra biomedicínské techniky BAKALÁŘSKÁ PRÁCE 2008 Jakub Schlenker Obsah Úvod 1 1 Teoretický úvod 2 1.1 Elektrokardiografie............................

Více

EOG. ERG Polysomnografie. spánkové cykly poruchy spánku. Úvod ke cvičení

EOG. ERG Polysomnografie. spánkové cykly poruchy spánku. Úvod ke cvičení EOG Úvod ke cvičení ERG Polysomnografie spánkové cykly poruchy spánku Laboratorní úloha č. 11 Elektrookulogram Cíle úlohy: podstata a snímání EOG základní typy očních pohybů volní a mimovolní fixace při

Více

5. Umělé neuronové sítě. Neuronové sítě

5. Umělé neuronové sítě. Neuronové sítě Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně

Více

Anotace. Klíčová slova: 1. Úvod

Anotace. Klíčová slova: 1. Úvod Vladana Djordjevic, Václav Gerla, Lenka Lhotská, Vladimír Krajča 28 MULTIMEDIÁLNÍ PODPORA VE VÝUCE BIOMEDICÍNSKÉHO INŽENÝRSTVÍ Vladana Djordjevic, Václav Gerla, Lenka Lhotská, Vladimír Krajča Anotace Tento

Více

Diagnostika infarktu myokardu pomocí pravidlových systémů

Diagnostika infarktu myokardu pomocí pravidlových systémů pomocí pravidlových systémů Bakalářská práce 2009 pomocí pravidlových systémů Přehled prezentace Motivace a cíle Infarkt myokardu, EKG Pravidlové systémy Výsledky Motivace Infarkt myokardu Detekce infarktu

Více

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

12. PŘEDNÁŠKA 10. května 2018

12. PŘEDNÁŠKA 10. května 2018 12. PŘEDNÁŠKA 10. května 2018 EOG elektrookulogram Úvod ke cvičení ERG elektroretinogram Polysomnografie spánkové cykly poruchy spánku Elektrookulogram EOG slouží k měření polohy oka pomocí elektrických

Více

Elektroencefalografie v intenzivní péči. Petr Aulický

Elektroencefalografie v intenzivní péči. Petr Aulický Elektroencefalografie v intenzivní péči Petr Aulický Elektroencefalografie (EEG) Metoda pro vyšetření mozkové elektrické aktivity Hlavní význam v epileptologii Pomocná metoda nutná korelace s klinickým

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Analýza novorozeneckých polysomnografických záznamů

Analýza novorozeneckých polysomnografických záznamů České Vysoké Učení Technické v Praze Fakulta elektrotechnická Bakalářská Práce Analýza novorozeneckých polysomnografických záznamů Jakub Hrebeňár Vedoucí práce: Doc.Ing. Lenka Lhotská, CSc. Studijní program:

Více

diogram III. II. Úvod: Elektrokardiografie elektrod) potenciálu mezi danou a svorkou Amplituda [mv] < 0,25 0,8 1,2 < 0,5 Elektrická

diogram III. II. Úvod: Elektrokardiografie elektrod) potenciálu mezi danou a svorkou Amplituda [mv] < 0,25 0,8 1,2 < 0,5 Elektrická Laboratorní úloha č.6: Elektrokardiogram a vektorkardv diogram Úvod: Elektrokardiografie je velmi jednoduché, neinvazivní vyšetření. Každý stahh srdečního svalu je doprovázen vznikem slabého elektrického

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Elektrofyziologické metody a studium chování a paměti

Elektrofyziologické metody a studium chování a paměti Elektrofyziologické metody a studium chování a paměti EEG - elektroencefalogram Skalpové EEG Intrakraniální EEG > 1 cm < 1 cm Lokální potenciály Extracelulární akční potenciály ~ 1 mm ~ 1 um EEG - elektroencefalogram

Více

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA

Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA Příloha č. 3 TECHNICKÉ PARAMETRY PRO DODÁVKU TECHNOLOGIE: UNIVERZÁLNÍ MĚŘICÍ ÚSTŘEDNA 1. Technická specifikace Možnost napájení ze sítě nebo akumulátoru s UPS funkcí - alespoň 2 hodiny provozu z akumulátorů

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDICÍ TECHNIKY Bc. Milan Cejnar Zpracování biomedicínských signálů na platformě Android Biomedical Signal Processing on the Android

Více

SIMULTÁNNÍ EEG-fMRI. Radek Mareček

SIMULTÁNNÍ EEG-fMRI. Radek Mareček SIMULTÁNNÍ EEG-fMRI Radek Mareček MULTIMODÁLNÍ FUNKČNÍ ZOBRAZOVÁNÍ pozorování jevu z různých úhlú lepší pochopení některé jevy jsou lépe pozorovány pomocí jedné modality, pozorovatele však zajímá informace

Více

Biomedicínské inženýrství na ČVUT FEL

Biomedicínské inženýrství na ČVUT FEL Biomedicínské inženýrství na ČVUT FEL Přehled pracovišť katedra fyziky elektrotechnologie elektromagnetického pole teorie obvodů kybernetiky mikroelektroniky počítačů měření témata fyzikální metody v medicíně

Více

MĚŘENÍ BIOPOTENCIÁLŮ

MĚŘENÍ BIOPOTENCIÁLŮ Středoškolská technika 2009 Setkání a prezentace prací středoškolských studentů na ČVUT MĚŘENÍ BIOPOTENCIÁLŮ Čeněk Ráliš SPŠ elektrotechnická a VOŠ Karla IV. 13, 531 69 Pardubice Tento projekt seznamuje

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Klasifikace hudebních stylů

Klasifikace hudebních stylů Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů

Více

Elektrické biosignály lidského těla měřené ISESem

Elektrické biosignály lidského těla měřené ISESem Elektrické biosignály lidského těla měřené ISESem BRONISLAV BALEK BALMED, Ivančice Úvod Elektrické signály lidského těla (elektrické biosignály) jsou generovány nervovými a svalovými buňkami a jsou výsledkem

Více

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Biofyzikální ústav LF MU Brno. jarní semestr 2011 pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít

Více

AUTOMATICKÁ SEGMENTACE DAT EEG

AUTOMATICKÁ SEGMENTACE DAT EEG VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Perspektivy využití pulzní oxymetrie k synchronizaci akvizice s činností srdce.

Perspektivy využití pulzní oxymetrie k synchronizaci akvizice s činností srdce. Perspektivy využití pulzní oxymetrie k synchronizaci akvizice s činností srdce. T. Steinberger, O. Lang, H. Trojanová Fakultní nemocnice Královské Vinohrady Univerzita Karlova v Praze - 3. lékařská fakulta

Více

Učící se klasifikátory obrazu v průmyslu

Učící se klasifikátory obrazu v průmyslu Učící se klasifikátory obrazu v průmyslu FCC průmyslové systémy s.r.o. FCC průmyslové systémy je technicko obchodní společností, působící v oblasti průmyslové automatizace. Tvoří ji dvě základní divize:

Více

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ

ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION BIOMEDICAL

Více

Elektronický systém a programové vybavení pro detekci a optimalizaci pulzů kardiostimulátoru

Elektronický systém a programové vybavení pro detekci a optimalizaci pulzů kardiostimulátoru Elektronický systém a programové vybavení pro detekci a optimalizaci pulzů kardiostimulátoru Milan Štork Katedra aplikované elektroniky a telekomunikací & Regionálním inovační centrum pro elektrotechniku

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

BIOLOGICKÉ SIGNÁLY. Pokroky v EEG. doc. Ing. Vladimír Krajča, CSc. ČVUT FBMI, katedra biomedicínské techniky

BIOLOGICKÉ SIGNÁLY. Pokroky v EEG. doc. Ing. Vladimír Krajča, CSc. ČVUT FBMI, katedra biomedicínské techniky BIOLOGICKÉ SIGNÁLY Pokroky v EEG doc. Ing. Vladimír Krajča, CSc. ČVUT FBMI, katedra biomedicínské techniky e-mail Vladimir.Krajca@FBMI.CVUT.cz 1 Cíle kursu Proniknout do principů a praktického nasazení

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Zesilovače biologických signálů, PPG. A6M31LET Lékařská technika Zdeněk Horčík, Jan Havlík Katedra teorie obvodů

Zesilovače biologických signálů, PPG. A6M31LET Lékařská technika Zdeněk Horčík, Jan Havlík Katedra teorie obvodů Zesilovače biologických signálů, PPG A6M31LET Lékařská technika Zdeněk Horčík, Jan Havlík Katedra teorie obvodů horcik@fel.cvut.cz Zesilovače biologických signálů zesilovače pro EKG (elektrokardiografie,

Více

Využití metod strojového učení v bioinformatice David Hoksza

Využití metod strojového učení v bioinformatice David Hoksza Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANALÝZA SPÁNKOVÝCH EEG BAKALÁŘSKÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANALÝZA SPÁNKOVÝCH EEG BAKALÁŘSKÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Dolování z textu. Martin Vítek

Dolování z textu. Martin Vítek Dolování z textu Martin Vítek Proč dolovat z textu Obrovské množství materiálu v nestrukturované textové podobě knihy časopisy vědeckéčlánky sborníky konferencí internetové diskuse Proč dolovat z textu

Více

1 Zpracování a analýza tlakové vlny

1 Zpracování a analýza tlakové vlny 1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií DIPLOMOVÁ PRÁCE Brno, 2016 Bc. Michaela Pecníková VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

AUTOMATICKÁ DETEKCE GRAFOELEMENTŮ V SIGNÁLU EEG

AUTOMATICKÁ DETEKCE GRAFOELEMENTŮ V SIGNÁLU EEG VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Etiologie epilepsie. Epilepsie nevychází z centra jizvy nebo postmalatické pseudocysty, ale spíše z jejího okraje, kde přežívají poškozené neurony.

Etiologie epilepsie. Epilepsie nevychází z centra jizvy nebo postmalatické pseudocysty, ale spíše z jejího okraje, kde přežívají poškozené neurony. Epilepsie Epilepsie Chronické mozkové onemocnění charakterizované opakujícím se výskytem (nevyprovokovaných) epileptických záchvatů. Ojedinělý epileptický záchvat může být vyprovokován i u člověka bez

Více

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

doc. Dr. Ing. Elias TOMEH   Elias Tomeh / Snímek 1 doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací

Více

Duševní stabilita z pohledu obecné psychologie

Duševní stabilita z pohledu obecné psychologie Duševní stabilita z pohledu obecné psychologie Ondřej Bezdíček, Ph.D. Ústí nad Orlicí, 16. 12. 2014 Neurologická klinika a Centrum klinických neurověd Universita Karlova v Praze, 1. lékařská fakulta a

Více

Epilepsie. Silvia Čillíková FEL ČVUT. 9th May 2006

Epilepsie. Silvia Čillíková FEL ČVUT. 9th May 2006 Epilepsie Silvia Čillíková FEL ČVUT 9th May 2006 Úvod Epilepsie (zkr. epi) je skupina poruch mozku projevujících se opakovanými záchvaty (paroxysmy) různého charakteru Je to relativně běžné onemocnění,

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2014/2015 tm-ch-spec. 1.p 2014 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.

Více

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU

3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU 3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,

Více

Monitorování kontinuálního EEG v intenzivní péči. Mgr. Moravčík Branislav, KARIM FN Brno Mgr. Flajšingrová Jana, KARIM FN Brno

Monitorování kontinuálního EEG v intenzivní péči. Mgr. Moravčík Branislav, KARIM FN Brno Mgr. Flajšingrová Jana, KARIM FN Brno Monitorování kontinuálního EEG v intenzivní péči Mgr. Moravčík Branislav, KARIM FN Brno Mgr. Flajšingrová Jana, KARIM FN Brno Elektroencefalografie - EEG definice Registruje časoprostorové změny mozkových

Více

KLASIFIKACE SPÁNKOVÝCH FÁZI ZA POUŽITÍ POLYSOMNOGRAFICKÝCH DAT

KLASIFIKACE SPÁNKOVÝCH FÁZI ZA POUŽITÍ POLYSOMNOGRAFICKÝCH DAT VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Merkur perfekt Challenge Studijní materiály

Merkur perfekt Challenge Studijní materiály Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 11 Název úlohy: Svalem na robota Anotace: Úkolem týmu je

Více

Aktivační metody v průběhu EEG - výhody a rizika. Petr Zlonický

Aktivační metody v průběhu EEG - výhody a rizika. Petr Zlonický Aktivační metody v průběhu EEG - výhody a rizika Petr Zlonický Aktivační metody - výhody Používají se k vyprovokování, zvýraznění nebo lepšímu definování abnormální aktivity při normálním nebo neprůkazném

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ DEPARTMENT

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Merkur perfekt Challenge Studijní materiály

Merkur perfekt Challenge Studijní materiály Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 10 Název úlohy: Svalem na robota Anotace: Úkolem týmu je

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Algoritmy a struktury neuropočítačů ASN - P11

Algoritmy a struktury neuropočítačů ASN - P11 Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova

Více

Psychologie Spánek a snění

Psychologie Spánek a snění Psychologie Spánek a snění Mgr. et Mgr. Martin Zielina, Ph.D. Spánek Podtitul (rozdělovací snímek mezi částmi) Spánek Spánek je přirozený psychosomatický stav provázený značným snížením psychické i tělesné

Více

Neurofeedback. Úvod. Princip

Neurofeedback. Úvod. Princip Radek Procházka prochra4@fel.cvut.cz Neurofeedback Úvod Neurofeedback je moderní terapeutická metoda, používaná k léčbě či alespoň potlačení příznaků poruch soustředění, hyperaktivity a epilepsie, zejména

Více

ROZPOZNÁNÍ TITULU GRAMOFONOVÉ DESKY PODLE KRÁTKÉ UKÁZKY

ROZPOZNÁNÍ TITULU GRAMOFONOVÉ DESKY PODLE KRÁTKÉ UKÁZKY ROZPOZNÁNÍ TITULU GRAMOFONOVÉ DESKY PODLE KRÁTKÉ UKÁZKY V. Moldan, F. Rund Katedra radioelektroniky, fakulta elektrotechnická České vysoké učení technické v Praze, Česká republika Abstrakt Tento článek

Více

NOVÉ MOŽNOSTI HOLTEROVSKÉ DIAGNOSTIKY

NOVÉ MOŽNOSTI HOLTEROVSKÉ DIAGNOSTIKY EkG HOLTER 2 EKG HOLTER NOVÉ MOŽNOSTI HOLTEROVSKÉ DIAGNOSTIKY BTL EKG Holter BTL EKG Holter uspokojí nároky nejnáročnějších odborníků na EKG, jejichž práce ale bude zároveň snadná a rychlá. Při vývoji

Více

4. PŘEDNÁŠKA 15. března 2018

4. PŘEDNÁŠKA 15. března 2018 EMG 4. PŘEDNÁŠKA 15. března 2018 nativní EMG (jehlová EMG) stimulační (konduktivní studie) EMG při funkčním zatěžování svalů Motorická jednotka model generování EMG Záznam EMG signálu Zpracování EMG signálu

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické

Více

BIOLOGICKÉ SIGNÁLY. léto Biologické signály (2+2)

BIOLOGICKÉ SIGNÁLY. léto Biologické signály (2+2) BIOLOGICKÉ SIGNÁLY léto 2017 Biologické signály (2+2) hodina 1 2 3 4 5 6 7 8 9 10 11 12 13 14 čas 7:30-9:00 9:15-10:45 11:00-12:30 12:45-14:15 14:30-16:00 16:15-17:45 18:00-19:30 čt Přednáška R.Čmejla

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ

KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ KLASIFIKÁTOR MODULACÍ S VYUŽITÍM UMĚLÉ NEURONOVÉ SÍTĚ Marie Richterová 1, David Juráček 2 1 Univerzita obrany, Katedra KIS, 2 PČR MŘ Brno Abstrakt Článek se zabývá rozpoznáváním analogových a diskrétních

Více

1. ELEKTROMYOGRAM (EMG)

1. ELEKTROMYOGRAM (EMG) 1. ELEKTROMYOGRAM (EMG) 1.1. DEFINICE Elektromyogram je (grafická) reprezentace časové závislosti elektrických potenciálů vznikajících jako důsledek aktivity svalových potenciálů a nesoucí informaci o

Více

Elektronická podpora výuky na ÚBMI

Elektronická podpora výuky na ÚBMI Závěrečná zpráva rozvojového projektu Elektronická podpora výuky na ÚBMI MŠMT č. 645 Odpovědný řešitel: Prof. Ing. Jiří Holčík, CSc. ČVUT v Praze - FBMI Kladno, leden 2006 Vyhodnocení splněných cílů a

Více

fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot Heart Rate Variability) je jev, který

fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot Heart Rate Variability) je jev, který BIOLOGICKÉ A LÉKAŘSKÉ SIGNÁLY VI. VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU, tj. fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot okamžité

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné

Více

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011

Automatická detekce anomálií při geofyzikálním průzkumu. Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Automatická detekce anomálií při geofyzikálním průzkumu Lenka Kosková Třísková NTI TUL Doktorandský seminář, 8. 6. 2011 Cíle doktorandské práce Seminář 10. 11. 2010 Najít, implementovat, ověřit a do praxe

Více

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Elektrokardiografie. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů

Elektrokardiografie. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů Elektrokardiografie X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektrokardiografie základní diagnostická metoda, umožňující snímání a záznam elektrické aktivity

Více

Operace s obrazem II

Operace s obrazem II Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů

Více