VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství
|
|
- Libuše Konečná
- před 5 lety
- Počet zobrazení:
Transkript
1
2 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství RNDr. Lukáš Rachůnek, Ph.D. Second order discrete boundary value problems Diskrétní okrajové problémy druhého řádu Zkrácená verze habilitační práce BRNO 2011
3 Klíčová slova: Diferenční rovnice, Dirichletův problém, smíšený problém, singularity, aproximační princip, problém membrány, modely bublin, homoklinický bod, homoklinické řešení. Keywords: Difference equations, Dirichlet problem, mixed problem, singularities, approximation principle, membrane problem, bubble models, homoclinic point, homoclinic solution. Originál práce je uložen ve fakultní knihovně Fakulty strojního inženýrství VUT v Brně. Lukáš Rachůnek, 2011 ISBN ISSN X
4 Contents Představení autora habilitační práce... 4 I. Introduction... 6 II. Discrete boundary value problems on compact intervals Dirichlet problem Singular mixed problem with p-laplacian III. Discretization of differential boundary value problems Discrete and continuous singular mixed problems Problems arising in the theory of shallow membrane caps IV. Boundary value problems arising in hydrodynamics Construction of bubble-models Four types of solutions of non-autonomous difference equations References Author s publications list Abstract
5 Představení autora habilitační práce Jméno: Lukáš Rachůnek Tituly: RNDr., Ph.D. Datum narození: Místo narození: Olomouc Bydliště: Olomouc Rodinný stav: svobodný Vzdělání: , Přírodovědecká fakulta Univerzity Palackého v Olomouci, obor Učitelství všeobecně vzdělávacích předmětů, aprobační předměty matematika a deskriptivní geometrie 1998 titul Mgr., Přírodovědecká fakulta Univerzity Palackého v Olomouci , Přírodovědecká fakulta Univerzity Palackého v Olomouci, doktorské studium, obor Algebra a geometrie 2004 titul Ph.D., Přírodovědecká fakulta Univerzity Palackého v Olomouci 2004 titul RNDr., Přírodovědecká fakulta Univerzity Palackého v Olomouci Zaměstnání: , Ústav matematiky Fakulty technologické Univerzity Tomáše Bati ve Zlíně, asistent, později odborný asistent 2001 dosud, Katedra algebry a geometrie Přírodovědecké fakulty Univerzity Palackého v Olomouci, odborný asistent Během svého působení na Univerzitě Tomáše Bati ve Zlíně vedl přednášky a cvičení z algebry, geometrie a informatiky a cvičení z matematické analýzy. Na Univerzitě Palackého v Olomouci vedl přednášky a cvičení předmětů Aplikace deskriptivní geometrie 1 a 2 s využitím programu DesignCAD a v současnosti zabezpečuje výuku předmětů Zobrazovací metody 1 a 2. Dále vybudoval a učí předměty Výpočetní geometrie 1 a 2 a Počítačová grafika 1 a 4 zaměřené na prostorové modelování, typografii, zobrazování grafů funkcí, technické rýsování a vytváření a úpravu digitální grafiky. Byl spoluřešitelem grantu na zřízení této učebny a je správcem její unixové části. Vedl tři bakalářské diplomové práce z geometrie a počítačové grafiky. Je autorem, resp. spoluautorem, tří učebních textů,znichždvajsouzmatematikyajedenzpočítačovétypografie. Podílelsena vypracování projektu FRVŠ pro vybavení počítačové učebny. Byl členem kolektivu, který připravil a zpracoval podklady pro studijní plán nového studijního oboru zaměřeného na počítačovou grafiku a grafický design. 4
6 V rámci doktorského studia pod vedením prof. Mikeše vypracoval a obhájil dizertační práci z diferenciální geometrie. V této oblasti je spoluautorem šesti vědeckých článků o torzoformních polích v semisymetrických prostorech. O publikovaných výsledcích referoval na seminářích a konferencích. Byl členem řešitelského kolektivu grantového projektu Riemannova a afinní geometrie podporovaná počítačem, 201/05/2707 (odpovědný řešitel prof. RNDr. Josef Mikeš, DrSc.). V současnosti svůj výzkum zaměřuje na diskrétní matematiku, speciálně na diskrétní dynamické systémy. Je autorem jednoho a spoluautorem devíti článků o řešitelnosti diferenčních rovnic, které byly publikovány v impaktovaných matematických časopisech. Je autorem nebo spoluautorem celkem 21 publikací, z toho 10 v impaktovaných časopisech (např. Jounal of Difference Equations and Applications, Nonlinear Analysis, Abstract and Applied Analysis). Je recenzentem mezinárodního časopisu Applications of Mathematics. 5
7 I. Introduction This habilitation dissertation is devoted to second order discrete boundary value problems. Essentially, this is a collection of the papers [26] [34], which provides new or more general existence results for regular discrete problems. Singular discrete problems studied here have not been solved before. Chapter II of the dissertation consists of Sections 1 5 and is a compilation of the papers [26] and [27]. Sections 1 and 2 deal with the discrete Dirichlet problem. In particular, known existence results by Y. Li [23] are generalized. A characterization of regular and singular boundary value problems is given in Section 3. Sections 4 and 5 study the discrete mixed problem with the p-laplacian φ p (y) = y p 2 y, p > 1, bothinregularandinsingularcases. Theexistenceresults proved here extend and generalize the previous ones for the regular case by Z. He [15]. The singular case is new. Chapter III of the thesis is formed by Sections 6 13 and contains results of the papers [28] [30]. The solvability of difference and differential boundary value problems on compact intervals and their connections are discussed there. In Section 6, the lower and upper functions method is extended for singular difference equations. The main result of Section 7 provides conditions for the solvability of a sequence of singular discrete mixed problems. In addition, solutions of these problems give a sequence of approximate functions locally uniformly converging for n to a solution of the corresponding singular differential mixed problem. Section 7 is completed by two examples demonstrating the theory. In Section 8 we derive a mathematical model describing a rescaled radial stress of shallow membrane caps. Such model can be transformed to a singular difference mixed problem and we provide conditions for its solvability. In Sections 8 and 9 we also prove the lower and upper functions method as well as the approximation principle for more general cases. Using these results, we find conditions for the solvability of the generalized membrane problems in Section 10. Further generalization of singular mixed problems of previous sections is proved in Sections 11 13, which are based on the paper [30]. Here we consider equations admitting discontinuities not only at a boundary, but also inside a given region. Difference and differential equations on the half-line are considered in Chapter IV of the dissertation, which is based on the papers [31] [34] and which has Sections Section 14 shows a construction of a mathematical model describing a density profile of a gas in bubbles in some liquid. Such model leads to the differential problem having so-called bubble-type solutions. If we properly extend the equation on the real line, bubble-type solutions become homoclinic solutions of the extended equation. Section 15 (by the paper [31]) investigates an autonomous discrete case of the problem and provides the existence of homoclinic points of the corresponding autonomous difference equation. A non-autonomous discrete case of the problem is studied in Sections Section 16 describes four types of possible solutions of this equation: escape, homoclinic, damped and 6
8 non-monotonous solutions. Section 17 provides the first existence result about the existence of non-monotonous or damped solutions. This is contained in the paper [32]. Section 18 (by the paper [33]) gives the second existence result about the existence of escape solutions. Section 19 (by the paper [34]) presents the third existence result about the existence of homoclinic solutions. This is the main result of Chapter IV. Examples with numerical simulations illustrate the results of Chapter IV. Motivation of this work Difference equations and their associated operators occupy a central and growing area in modern applicable analysis. We refer to the monographs [1], [5], [6], [12], [19], [22], [36], [37], [40]. Linear and nonlinear difference equations appear as direct mathematical models in almost all areas of science, engineering and technology where discrete phenomena abound, but also provide the field of numerical analysis with powerful tools. From the advent and rise of computers, where differential equations are solved by employing their approximative difference formulations, the interest in studying difference equations has been increasing even more. Difference equations usually describe the evolution of certain phenomena over the course of time. This description allows to compute a sequence of values recursively from a given set of values. The following examples have been chosen to illustrate the diversity of the uses and types of difference equations. In some bottom-feeding fish populations, recruitment appears to be essentially unaffected by fishing. These species have very high fertility rates and very low survivorship to adulthood. This leads to the Beverton and Holt population model (1957) x(n+1) = ax(n) 1+bx(n) with positive constants a, b, which is equivalent to the Verhulst difference equation. ([8], p. 72) It was observed that some species of fish, including salmon, habitually cannibalize their eggs and young. Such population can be described be the Ricker metered model (1958) which has a form of the nonlinear first order difference equation x(n+1) = αx(n)e βx(n), where α, β are positive constants. ([8], p. 73) The difference equation of an order k +1 x(n+1) = ax(n)+f(x(n k)) 7
9 is often used to study whale populations. Here x(n) represents the adult breeding population, a [0,1] is the survival coefficient, and F(x(n k)) is the recruitment to the adult stage with a delay of k years. ([8], p. 77) In the study of the effects of selection and mutation in genetics a nonlinear difference equation of the form p(n) p(n+1) = (1 µ) 1 s+2sp(n) sp 2 (n) has been developed. Here one particular gene which has two alleles, A and a, is studied, and p(n) is the fraction of A-alleles among the adults of generation n. It is assumed that all individuals with at least one A- allele reach adulthood, but that only a certain fraction, say 1 s, of the a-homozygotes reach adulthood. Further assumption is that the alleles mutate from A- to a-alleles and µ is the mutation rate (the fraction of A-alleles that mutate). ([36], p. 143) Samuelson s business cycle model is built on the following assumptions. Current consumption C(t) is a linear increasing function of previous period s income Y(t 1) and current investment I(t) rises with rising consumption C(t) C(t 1). More precisely C(t) = cy(t 1), I(t) = v(c(t) C(t 1)), where c (0,1), v > 0 are parameters and Y(t) = C(t)+I(t)+G(t) is a national accounting identity and G(t) = 1 is a fixed government expenditure level. Substitution gives a typical second order difference equation for the national income Y(t) Y(t) c(1+v)y(t 1)+cvY(t 2) = 1, where Y(0), Y(1) are given. ([40], p. 54) The classical Hansen-Samuelson s accelerator-multiplier model is given by the same second order difference equation as before y(n) = cy(n 1)+α(y(n 1) y(n 2))+A 0, where the constant A 0 = C 0 +I 0 +G 0 represents the sum of the minimum consumption, the autonomous investment and the fixed government spending, and y(n) is the national income in period n. The coefficient α > 0 is the accelerator and the constant c (0, 1) represents Keynes marginal propensity to consume, while 1 is Keynes muiltiplier. ([37], p. 243) 1 c 8
10 International macroeconomic data exhibit substantial and persistent fluctuations in the real exchange rates for currencies. In the model proposed by S. Chen in 1999, the real exchange rate x(n) (defined as the ratio of the domestic currency price to the price of domestic output) of a given country is determined according to the second order nonlinear difference equation x(n+1) = x(n)+ 1 µ (bx3 (n 1) ax 2 (n)+cx(n) d), where a, b, c, d, µ are positive constants. ([37], p. 345) The system x(n+1) = ax(n)e by(n), y(n+1) = cx(n)(1 e by(n) ) is known as the Nicholson and Bailey model (1935) for a host-parasite system; x(n) denotes the number of hosts and y(n) the number of parasites. ([8], p. 79) A special case of the business cycles model by Botomazava and Touzé(1998) is given by the second order equation k(n+1) = (1 τ)βk(n) (1 τ) β α k2 (n 1), where k(n) is the capital per household in period n, the constants α, β satisfy α,β > 0 and a payroll tax rate τ belongs to [0,1). ([37], p. 352) Consider the simplest example of the Fermi acceleration model: a point mass moving between a fixed wall and an oscillating wall. We simplify the setup of the model by assuming that the amplitude a of the wall oscillation is very small compared to the distance L of the walls. When the particle with a velocity v is reflected elastically from the massive wall moving with a velocity V, it rebounds with a velocity ṽ = v+2v. In the case considered here, we register the particle velocity just before the n-th impact as v n > 0. The particle hits the oscillating wall at a phase Φ n and is reflected with a velocity v n +2V(Φ n ), where V is a velocity of the oscillating wall. Then it moves to the fixed wall, is reflected and returns with a velocity v n+1 = v n 2V(Φ n ), after a time 2L/ v n+1. If the wall velocity oscillates with period T, the phase of the wall oscillation at the next impact is given by Φ n+1 = Φ n + 2L Tv n+1. 9
11 This system can be transformed to the second order difference equation ([21], p. 137) 1 y(n+1) = y(n)+(y(n) y(n 1)) 1 TV(y(n)). L Finally, two models arising in the theory of shallow membrane caps and in the hydrodynamics, which have forms of nonlinear second order difference equations, are derived and investigated in details in Chapter III and Chapter IV of the habilitation dissertation, respectively. Main objectives of this work 1. To prove new existence results for Dirichlet problems and for singular mixed problems with p-laplacian. 2. To investigate the connection between singular difference and differential boundary value problems on compact intervals and to derive an approximation principle. 3. To construct a mathematical model describing a radial stress of shallow membrane caps and to find conditions for its solvability and for the solvability of its generalization. 4. To construct a mathematical model describing a density profile of a gas in bubbles in some liquid and to find conditions which guarantee the existence of homoclinic solutions of the model. II. Discrete boundary value problems on compact intervals Inmanyareas, forexampleinthestudyofsolidstatephysics, chemicalreactionor population dynamics, we can find difference equations subject to some boundary conditions. Such problems are called discrete boundary value problems. They have been investigated in several monographs. See R. P. Agarwal [1], R. P. Agarwal, D. O Regan, P. J. Y. Wong [5], R. P. Agarwal, P. J. Y. Wong [6] and W. G. Kelley, A. C. Peterson [19]. We can find also a lot of papers dealing with discrete boundary value problems. Here we investigate Dirichlet and singular mixed discrete problems. 10
12 1 Dirichlet problem For fixed T N we define the discrete interval [1,T] = {1,2,...,T} and study a difference equation of the form (p(t) u(t 1))+f(t,u(t)) = g(t), t [1,T] (1.1) subject to the boundary conditions u(0) = 0, u(t +1) = 0. (1.2) The discrete boundary value problem (1.1), (1.2) is called the Dirichlet problem. Here } p:[1,t +1] R is positive, g:[1,t] R (1.3) f:[1,t] R R is continuous. Recall that f(t,x) is continuous on [1,T] R if for each t [1,T], f(t,x) is a continuous function of x. Definition 1.1 By a solution u of problem (1.1), (1.2) we mean u:[0,t+1] R such that u satisfies the difference equation (1.1) on [1,T] and the boundary conditions (1.2). The following results are based on the paper [27]. We were motivated by the paper [23] by Yongjin Li, where he used the variational approach and proved the existence result for problem (1.1), (1.2). Here we use a completely different approach based on the lower and upper functions method. By means of this we generalized the result in [23]. Theorem 1.2 (Existence) Assume that (1.3) and r > 0 such that xf(t,x) 0 for t [1,T] and x r, (1.4) hold. Then problem (1.1), (1.2) has at least one solution. Corollary 1.3 Assume that (1.3) holds. Let g(t) < 0, f(t,0) 0 for t [1,T], (1.5) r > 0 such that f(t,x) 0 for t [1,T] and x r. (1.6) Then problem (1.1), (1.2) has a solution u such that Corollary 1.4 Assume that (1.3) holds. Let u(t) > 0 for t [1,T]. (1.7) g(t) > 0, f(t,0) 0 for t [1,T], (1.8) r > 0 such that f(t,x) 0 for t [1,T] and x r. (1.9) Then problem (1.1), (1.2) has a solution u such that u(t) < 0 for t [1,T]. (1.10) 11
13 2 Singular mixed problem with p-laplacian Problem(1.1), (1.2) studied in the previous sections is regular, because function f in equation (1.1) is continuous (see (1.3)). Otherwise the corresponding problem is singular (see e.g. (2.3)). Most existence results in literature concern regular problems. Singular discrete problems have received less attention. We refer to [3], [4] and [5] where the solvability of the singular Dirichlet discrete problem was studied. Existence theorems for singular higher order discrete problems can be found in [6]. LetT Nbefixed. Wedefinethediscreteinterval[1,T+1] = {1,2,...,T+1} and consider a singular mixed problem which has a form of the following second order difference equation with the p-laplacian ( φ p ( u(t 1)) ) +f(t,u(t), u(t 1)) = 0, t [1,T +1] (2.1) subject to the mixed boundary conditions u(0) = 0, u(t +2) = 0. (2.2) We denote φ p (y) = y p 2 y, p > 1 and investigate the solvability of problem (2.1), (2.2). Definition 2.1 By a solution u of the mixed problem (2.1), (2.2) we mean u:[0,t +2] R such that u satisfies the difference equation (2.1) on [1,T +1] and the boundary conditions (2.2). If u(t) > 0 for t [1,T +1], we say that u is a positive solution of problem (2.1), (2.2). Let D R 2. We say that f is continuous on [1,T + 1] D, if f(t,, ) is continuous on D for each t [1,T +1]. If D = R 2, problem (2.1), (2.2) is regular. If D = R 2 and f has singularities on D, then problem (2.1), (2.2) is singular. We will assume that D = (0, ) R, f is continuous on [1,T +1] D and f has a singularity at x = 0, i.e. lim sup f(t,x,y) = for each t [1,T +1] (2.3) x 0+ and for some y R. Problem (2.1), (2.2) where f is continuous and has the form f(t,x) = a(t)g(x) has been investigated by Zhimin He in [15]. Here we extend the existence results of [15] onto the singular problem (2.1), (2.2) where f depends both on u and on u. These results have been published in [26]. The next theorem provides sufficient conditions for the solvability of the singularproblem(2.1), (2.2). Theproofisbasedontheconstructionofasequenceof approximating auxiliary regular problems and on the lower and upper functions method. 12
14 Theorem 2.2 (Existence) Assume (2.3) and let the following conditions hold: there exists c (0, ) such that f(t,c,0) 0 for t [1,T +1], (2.4) f is nonincreasing in y for t [1,T +1], x (0,c], (2.5) lim f(t,x,y) = for t [1,T +1], y [ c,c]. (2.6) x 0+ Then problem (2.1), (2.2) has a solution u satisfying 0 < u(t) c for t [0,T +1]. (2.7) III. Discretization of differential boundary value problems In this chapter, which is based on the papers [28] [30], we study a connection between discrete (difference) and continuous (differential) boundary value problems. Particular significance of our investigation lies in the fact that strange and interesting distinctions can occur between the theory of differential equations and the theory of difference equations. For example [2], properties such as existence, uniqueness and multiplicity of solutions may not be shared between the theory of differential equations and the theory of difference equation, even though the right hand side of the equations under consideration may be the same. Questions about difference problems associated with regular differential problems have been also discussed for example in [13], [16], [19], [38], [39]. 3 Discrete and continuous singular mixed problems We investigate discrete mixed problems as approximations of continuous mixed problems. Therefore we choose T (0, ), n N, n 2 and introduce a step h = T. Using this notation we consider the singular discrete mixed boundary n value problem 1 h 2 2 u k 1 +f(t k,u k ) = 0, k = 1,...,n 1, (3.1) u 0 = 0, u n = 0, (3.2) where f:[0,t] (0, ) R is continuous and f(t,x) has a singularity at x = 0, i.e. we assume f C([0,T] (0, )), limsup f(t,x) = for each t (0,T). (3.3) x 0+ 13
15 Here t 0 = 0, t k = hk, u k 1 = u k u k 1 for k = 1,...,n. (3.4) Definition 3.1 A vector (u 0,...,u n ) R n+1 satisfying equation (3.1) and the mixed boundary conditions (3.2) is called a solution of problem (3.1), (3.2). If u k > 0 for k = 0,...,n 1, the solution is called positive. The continuous version of problem (3.1), (3.2) has the form y (t)+f(t,y(t)) = 0, (3.5) y (0) = 0, y(t) = 0. (3.6) Definition 3.2 A function y C[0,T] C 2 [0,T) satisfying equation (3.5) for t [0,T) and fulfilling the mixed boundary conditions (3.6) is called a solution of problem (3.5), (3.6). If y(t) > 0 for t [0,T), the solution is called positive. Following the paper [28], we assume that there exist functions and denote α,β C[0,T], 0 < α(t) β(t) for t (0,T) (3.7) α k = α(t k ), β k = β(t k ), k = 0,...,n. (3.8) Using this we provide conditions which imply that for each n N, n 2, the singular discrete problem (3.1), (3.2) has a positive solution (u 0,...,u n ) in the sense of Definition 3.1. Then we construct an approximate function S [n] C[0,T] by S [n] (t) = u k +v k (t t k ), t [t k,t k+1 ], k = 0,...,n 1, (3.9) where hv k = u k. Having the sequence {S [n] } we prove that, under proper conditions, there is a subsequence {S [m] } locally uniformly converging on [0,T) for m to a positive solution y of the singular continuous problem (3.5), (3.6). This is so-called Approximation principle, which is contained in Theorem 3.3. Theorem 3.3 (Approximation principle) Assume that conditions (3.3), (3.7) and (3.8) hold. Let for each n 2 the vectors (α 0,...,α n ) and (β 0,...,β n ) be a lower function and an upper function of problem (3.1), (3.2) and let α 0 > 0, β n = 0. Then for each n 2 problem (3.1), (3.2) has a solution (u 0,...,u n ), a sequence {S [n] } can be given by (3.9) and there exists a subsequence {S [m] } {S [n] } which converges locally uniformly on [0,T) to a solution y C[0,T] C 2 [0,T) of problem (3.5), (3.6). If, in addition, f(t,x) g 0 (t,x)+g 1 (t,x) for t [0,T], x (0, ), (3.10) 14
16 where g 0 C([0,T] (0, )) is nonincreasing in its second variable with T and g 1 C([0,T] [0, )), then moreover y C 1 [0,T]. 0 g 0 (t,α(t))dt < (3.11) Remark 3.4 The singular discrete problem (3.1), (3.2) has not been studied before. Assumptions (3.10) and (3.11) are forced from a singularity of this problem. We point out that these assumptions are needed neither for the solvability of problem (3.1), (3.2) nor for the convergence of the sequence {S [m] } to a solution y C[0,T] C 2 [0,T) of problem (3.5), (3.6). They are used just in order to prove that y (t) is continuous also at t = T. 4 Problems arising in the theory of shallow membrane caps Consider a shallow membrane cap which is rotationally symmetric in its undeformedstateanditsshapeisdescribedincylindricalcoordinatedbyz = C(1 r γ ), where r [0,1] and γ > 1. The undeformed radius is r = 1 and C > 0 is the height at the center of the cap. When a radial stress is applied on the boundary and a small uniform vertical pressure P is applied to the membrane, the shape that the cap takes is described by a nonlinear model. Baxley and Robinson [7], Dickey [11] and Johnson [17] showed that under the assumptions of small strain and small constant vertical pressure, if the deformed membrane is also rotationally symmetric, the rescaled radial stress S r on a membrane satisfies the differential equation r 2 S r +3rS r = λ2 r 2γ 2 + βνr2 r2. (4.1) 2 S r 8Sr 2 Here ν [0,0.5) is the Poisson ratio while λ and β are positive constants depending on the pressure P, the thickness of the membrane and Young s modulus. Dickey focused his attention on boundary conditions lim r 0+ r3 S r(r) = 0, S r (1) = A > 0, where the first (regularity) condition follows from the radial symmetry and the second condition means that the stress boundary is specified. Motivated by 4.1 we investigate the solvability of the singular discrete mixed boundary value problem ( 1 1 h k u 2 (t3 k 1 )+t 3 k 8u 2 k a ) 0 b 0 t 2γ 4 k = 0, k = 1,...,n 1, (4.2) u k 15
17 u 0 = 0, u n = 0, (4.3) where a 0 0, b 0 > 0, γ > 1. The continuous version of problem (4.2), (4.3) has the form ( 1 (t 3 y ) +t 3 8y a ) 0 2 y b 0t 2γ 4 = 0, (4.4) lim t 0+ t3 y (t) = 0, y(t) = 0, (4.5) and it was studied for example in [18] and [25]. The next theorem provide the existence result for the discrete membrane problem (4.2), (4.3) and its continuous version (4.4), (4.5), which is contained in the paper [29]. Theorem 4.1 (Solvability of the membrane problem) Let a 0 0, b 0 > 0, γ > 1. Then for each n 2, the difference problem (4.2), (4.3) has a positive solution (u 0,...,u n ). Let y [n] C[0,T] be a piece-wise linear function with y [n] (t k ) = u k, k = 0,...,n. Then there exists a subsequence {y [m] } {y [n] } such that lim m y[m] (t) = y(t) locally uniformly on (0,T), and y C[0,T] C 2 (0,T) is a positive solution of the differential problem (4.4), (4.5). Further generalization of singular mixed problems is proved in Sections of the dissertation. These results are based on the paper [30]. IV. Boundary value problems arising in hydrodynamics This chapter is based on the papers [31] [34] and is devoted to the study of difference and differential equations on the half-line. This study has been inspired by some models arising in hydrodynamics. 5 Construction of bubble-models We investigate singular boundary value problems originating from the Cahn- Hilliard theory, which is used in hydrodynamics to study a behavior of nonhomogeneous fluids. The state of a non-homogeneous fluid is described by the following system of partial differential equations (see [14], [20], [24]) t +div( v) = 0 (5.1) 16
18 d v + (µ( ) γ ) = 0, (5.2) dt where is the density of the fluid, v denotes the vector-velocity of the particles of the fluid, µ( ) is the chemical potential of the fluid and γ is a constant parameter. By considering the case where the motion of the fluid is zero, system (5.1), (5.2) is reduced to a single equation of the form γ = µ( ) µ 0, (5.3) where µ 0 is a constant depending of the state of the fluid. Equation (5.3) can describe the formation of microscopical bubbles in a non-homogeneous fluid, in particular, vapor inside a liquid. When we introduce the spherical coordinate system in R 3 and search for radially symmetric strictly increasing solutions depending only on the radial variable r, then equation (5.3) leads to an ordinary differential equation of the form ( γ + 2 ) = µ( ) µ( l), (5.4) r with the boundary conditions (0) = 0, lim r (r) = l > 0. (5.5) The first condition in (5.5) follows from the central symmetry and it is also necessary for the smoothness of solution (r) of equation (5.4) at r = 0. The second condition in (5.5) means that the bubble is surrounded by an external liquid with the density l. If there exists a strictly increasing solution of problem (5.4), (5.5) for some (0) = 0 with 0 < 0 < l, then 0 is the density of the gas at the center of the bubble and the solution (r) determines an increasing mass density in the bubble. Such solution are called bubble-type solutions and equation (5.4) is known as the density profile equation. If the bubble-type solutions exist, many important physical properties of the non-homogeneous fluid depend on them, [10], [14], [24]. Note that boundary value problems of the same kind arise in the nonlinear field theory, in particular, when describing bubbles generated by scalar fields of the Higgs type in the Minkowski spaces [35], which can be treated as the classical pattern of elementary particles [9]. 6 Four types of solutions of non-autonomous difference equations In the simplest models for non-homogeneous fluids, the chemical potential µ in equation (5.4) is a third degree polynomial with three distinct real roots. After some substitution (see [24]), problem (5.4), (5.5) is reduced to the form (t 2 u ) = 4λ 2 t 2 (u+1)u(u ξ), (6.1) 17
19 where λ (0, ) and ξ (0,1) are parameters. u (0) = 0, u( ) = ξ, (6.2) Now, we construct a discretization of problem (6.1), (6.2). Consider h > 0 and a sequence {t n } n=0 [0, ) such that t 0 = 0, t n = nh, n N. (6.3) Then the discrete analogy of problem (6.1), (6.2) has the form of the following difference problem 1 h 2 (t2 n x(n 1)) = 4λ 2 t 2 n(x(n)+1)x(n)(x(n) ξ), n N, (6.4) x(0) = 0, lim n x(n) = ξ. (6.5) Here t n = hn, n N and problem (6.4), (6.5) has an equivalent form x(n+1) = x(n)+ ( ) 2 ( n n+1 x(n) x(n 1)+ +4λ 2 h 2 (x(n)+1)x(n)(x(n) ξ) ), n N, (6.6) x(0) = x(1), lim n x(n) = ξ. (6.7) We will investigate the following generalization of the non-autonomous equation (6.6) x(n+1) = x(n)+ where f is supposed to fulfil ( ) n 2 (x(n) x(n 1)+h 2 f(x(n)) ), n N, (6.8) n+1 L 0 < 0 < L, f Lip loc (R), f(l 0 ) = f(0) = f(l) = 0, (6.9) xf(x) < 0 for x (L 0,L)\{0}, (6.10) B [L 0,0) such that L B f(z)dz = 0. (6.11) A sequence {x(n)} n=0 which satisfies (6.8) is called a solution of equation (6.8). We will work with the initial condition x(0) = B, x(1) = B, B (L 0,0). (6.12) Definition 6.1 Let {x(n)} n=0 be a solution of problem (6.8), (6.12) such that {x(n)} n=1 is increasing, lim n x(n) = 0. (6.13) Then {x(n)} n=0 is called a damped solution. 18
20 Definition 6.2 Let {x(n)} n=0 be a solution of problem (6.8), (6.12) which fulfils {x(n)} n=1 is increasing, lim n x(n) = L. (6.14) Then {x(n)} n=0 is called a homoclinic solution. Definition 6.3 Let {x(n)} n=0 be a solution of problem (6.8), (6.12). Assume that there exists b N, such that {x(n)} b+1 n=1 is increasing and Then {x(n)} n=0 is called an escape solution. x(b) L < x(b+1). (6.15) Definition 6.4 Let {x(n)} n=0 be a solution of problem (6.8), (6.12). Assume that there exists b N, b > 1, such that {x(n)} b n=1 is increasing and 0 < x(b) < L, x(b+1) x(b). (6.16) Then {x(n)} n=0 is called a non-monotonous solution. Theorem 6.5 (On four types of solutions) Assume that (6.9) and (6.10) hold. Let {x(n)} n=0 be a solution of problem (6.8), (6.12). Then {x(n)} n=0 is just one of the following four types: (I) {x(n)} n=0 is an escape solution; (II) {x(n)} n=0 is a homoclinic solution; (III) {x(n)} n=0 is a damped solution; (IV) {x(n)} n=0 is a non-monotonous solution. Theorem 6.6 (On the existence of non-monotonous or damped solutions) Assume that (6.9), (6.10) and (6.11) hold. Let B ( B,0). Then there exists h B > 0 such that if h (0,h B ], then the corresponding solution {x(n)} n=0 of problem (6.8), (6.12) is non-monotonous or damped. Theorem 6.7 (On the existence of escape solutions) There exists h > 0 such that for any h (0,h ] the initial value problem (6.8), (6.12) has an escape solution for some B (L 0, B). Theorem 6.8 (On the existence of homoclinic solutions) There exists h > 0 such that for any h (0,h ] there exists a homoclinic solution {x (n)} n=0 of problem (6.8), (6.12), that is {x (n)} n=1 is increasing and lim n x (n) = L. Theorems have been proved in sections of the habilitation. In Section 15 of the habilitation the autonomous case of problem (6.8), (6.12) has been investigated. 19
21 References [1] R. P. Agarwal. Difference Equations and Inequalities. Theory, Methods and Applications. Second edition, revised and expanded. Marcel Dekker, New York [2] R. P. Agarwal. On multipoint boundary value problems for discrete equations. J. Math. Anal. Appl. 96 (1983), [3] R. P. Agarwal, K. Perera, D. O Regan. Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Analysis 58 (2004), [4] R. P. Agarwal, D. O Regan. Singular discrete boundary value problems. Applied Mathematics Letters 12 (1999), [5] R. P. Agarwal, D. O Regan, P. J. Y. Wong. Positive Solutions of Differential, Difference and Integral Equations. Kluwer, Dordrecht [6] R. P. Agarwal, P. J. Y. Wong. Advanced Topics in Difference Equations. Kluwer, Dordrecht [7] J. V. Baxley and S. B. Robinson. Nonlinear boundary value problems for shallow membrane caps II. J. Comp. Appl. Math. 88 (1998), [8] F. Brauer, C. Castillo-Chávez. Mathematical Models in Population Biology and Epidemiology. Springer, New York [9] G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Math. Physics 5 (1965), [10] F. Dell Isola, H. Gouin and G. Rotoli. Nucleation of spherical shelllike interfaces by second gradient theory: numerical simulations. Eur. J. Mech B/Fluids 15 (1996), [11] R. W. Dickey. Rotationally symmetric solutions for shallow membrane caps. Quart. Appl. Math. 47 (1989), [12] S. N. Elaydi. An Introduction to Difference Equations. 2nd ed. Springer, New York [13] R. Gaines. Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations. SIAM J. Numer. Anal. 11 (1974), [14] H. Gouin, G. Rotoli. An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Research Communic. 24 (1997),
22 [15] Z. He. On the existence of positive solutions of p-laplacian difference equations. J. Comp. Appl. Math. 161 (2003), [16] J. Henderson, H. B. Thompson. Difference equations associated with fully nonlinear boundary value problems for second order ordinary differential equations. J. Difference Equ. Appl. 7 (2001), [17] K. N. Johnson. Circularly symmetric deformation of shallow elastic membrane caps. Quart. Appl. Math. 55 (1997), [18] R. Kannan and D. O Regan. Singular and nonsingular boundary value problems with sign changing nonlinearities. J. Inequal. Appl. 5 (2000), [19] W. G. Kelley, A. C. Peterson. Difference equations. An introduction with applications. 2nd ed. Academic Press, San Diego [20] G. Kitzhofer, O. Koch, P. Lima, E. Weinmüller. Efficient numerical solution of the density profile equation in hydrodynamics. J. Sci. Comput. 32 (2007), [21] H. J. Korsch, H.-J. Jodl. Chaos. Springer-Verlag, Berlin [22] M. R. S. Kulenović, G. Ladas. Dynamics of Second Order Rational Difference Equations. Chapman & Hall/CRC, Boca Raton [23] Y. Li. The existence of solutions for second-order difference equations. J. Difference Equ. Appl. 12 (2006), [24] P. M. Lima, N. V. Chemetov, N. B. Konyukhova, A. I. Sukov. Analytical numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), [25] I. Rachůnková, O. Koch, G. Pulverer and E. Weinmüller. On a singular boundary value problem arising in the theory of shallow membrane caps. J. Math. Anal. Appl. 332 (2007), [26] I. Rachůnková, L. Rachůnek. Singular discrete second order BVPs with p-laplacian. J. Difference Equ. Appl. 12 (2006), [27] I. Rachůnková, L. Rachůnek. Solvability of discrete Dirichlet problem via lower and upper functions method. J. Difference Equ. Appl. 13 (2007), [28] I. Rachůnková, L. Rachůnek. Singular discrete and continuous mixed boundary value problems. Math. Comp. Modelling 49 (2009),
23 [29] I. Rachůnková, L. Rachůnek. Singular discrete problem arising in the theory of shallow membrane caps. J. Difference Equ. Appl. 14 (2008), [30] L. Rachůnek, I. Rachůnková. Approximation of differential problems with singularities and time discontinuities. Nonlinear Analysis, TMA 71 (2009), e1448 e1460. [31] L. Rachůnek, I. Rachůnková. On a homoclinic point of some autonomous second-order difference equation. J. Difference Equ. Appl., DOI: / [32] L. Rachůnek. On four types of solutions of a second-order difference equation. J. Difference Equ. Appl., DOI: / [33] L. Rachůnek, I. Rachůnková. Strictly increasing solutions of nonautonomous difference equations arising in hydrodynamics. Advances in Difference Equations. Recent Trends in Differential and Difference Equations. Vol. 2010, Article ID , [34] L. Rachůnek, I. Rachůnková. Homoclinic solutions of non-autonomous difference equations arising in hydrodynamics. Nonlinear Analysis: Real World Applications 12 (2011), [35] V. A. Rubakov. Classical Gauge Fields (in Russian). Editorial URSS, Moscow [36] J. T. Sanderfur. Discrete Dynamical Systems. Clarendon Press, Oxford [37] H. Sedaghat. Nonlinear Difference Equations. Kluwer, Dordrecht [38] H. B. Thompson, C. Tisdell. Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations. Applied Mathematics Letters 15 (2002), [39] H. B. Thompson, C. Tisdell. The nonexistence of spurious solutions to discrete, two-point boundary value problems. Applied Mathematics Letters 16 (2003), [40] P. N. V. Tu. Dynamical Systems. Springer, Berlin
24 Author s publications list a) Original scientific papers published in scientific journals with IF > 0.5 [a1] I. Rachůnková, L. Rachůnek: Singular discrete second order BVPs with p-laplacian. Journal of Difference Equations and Applications 12 (2006), IF: 0,748 [a2] I. Rachůnková, L. Rachůnek: Solvability of discrete Dirichlet problem via lower and upper functions method. Journal of Difference Equations and Applications 13 (2007), IF: 0,748 [a3] I. Rachůnková, L. Rachůnek: Singular discrete problem arising in the theory of shallow membrane caps. Journal of Difference Equations and Applications 14 (2008), IF: 0,748 [a4] I. Rachůnková, L. Rachůnek: Singular discrete and continuous mixed boundary value problems. Math. Comp. Modelling 49 (2009), IF: 1,103 [a5] L. Rachůnek, I. Rachůnková: Approximation of differential problems with singularities and time discontinuities. Nonlinear Analysis, TMA 71 (2009), e1448 e1460. IF: 1,487 [a6] L. Rachůnek, I. Rachůnková: On a homoclinic point of some autonomous second-order difference equation. Journal of Difference Equations and Applications. DOI: / IF: 0,748 [a7] L. Rachůnek, I. Rachůnková: Strictly increasing solutions of non-autonomous difference equations arising in hydrodynamics. Advances in Difference Equations, Recent Trends in Differential and Difference Equations Vol. 2010, Article ID , 11 pages. IF: 0,892 [a8] L. Rachůnek, I. Rachůnková: Homoclinic solutions of non-autonomous difference equations arising in hydrodynamics. Nonlinear Analysis: Real World Applications 12 (2011) IF: 2,381 [a9] L. Rachůnek: On four types of solutions of a second-order difference equation. Journal of Difference Equations and Applications. DOI: / IF: 0,748 [a10] I. Rachůnková, L. Rachůnek, J. Tomeček: Existence of oscillatory solutions of singular nonlinear differential equations. Abstract and Applied Analysis Vol. 2011, Article ID , 20 pages. IF: 2,221 b) Original scientific papers without IF [b1] J. Mikeš, L. Rachůnek: On T-semisymmetric Riemannian spaces admitting torse-forming vector fields. Abstr. of Contrib. Papers, The XI Petrov School, Kazan 1999,
25 [b2] Lukáš Rachůnek: Vytváření ilustrací z deskriptivní geometrie pomocí programu METAFONT. Sborník konference z geometrie a počítačové grafiky, Zadov 1999, [b3] J. Mikeš, L. Rachůnek: Torse-forming vector fields in T-semisymmetric Riemannian spaces. Steps in Differential Geometry, July 25 30, Debrecen 2000, Univ. Debrecen, Debrecen 2001, [b4] L. Rachůnek, J. Mikeš: T-semisymmetric spaces and concircular vector fields. 8th Intern. Conf. Diff. Geom. Appl., Opava 2001, [b5] J. Mikeš, L. Rachůnek: T-semisymmetric spaces and concircular vector fields. Supplemento ai Rendiconti del Circolo Matematico di Palermo, II. Ser. 69, Palermo 2002, [b6] L. Rachůnek, J. Mikeš: On semitorse-forming vector fields. Proceedings of Aplimat 2004, Bratislava 2004, [b7] M. Lehocký, L. Lapčík, Jr., R. Dlabaja, L. Rachůnek, J. Stoch: Influence of artificially accelerated ageing on the adhesive joint of plasma treated polymer materials. Czechoslovak Journal of Physics, Vol. 54 (2004), Suppl. C, Praha 2004, [b8] L. Rachůnek, J. Mikeš: On tensor fields semiconjugated with torse-forming vector fields. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 44 (2005), Olomouc 2005, c) Textbooks [c1] L. Novák, J. Mikeš, L. Rachůnek, J. Zedník: Algebra a geometrie. FT VUT, Zlín [c2] Lukáš Rachůnek: TEX a plain. PřF UP, Olomouc [c3] L. Rachůnek, I. Rachůnková: Diferenciální počet funkcí více proměnných. PřF UP, Olomouc
26 Abstract This habilitation dissertation is devoted to second order discrete boundary value problems. Essentially, this is a collection of the papers [26] [34], which provides new or more general existence results for regular discrete problems. Singular discrete problems studied here have not been solved before. Chapter II of the dissertation deals with the discrete Dirichlet problem. In particular, known existence results by Y. Li[23] are generalized. Then the discrete mixed problem with the p-laplacian, both in regular and in singular cases, is investigated. The existence results proved here extend and generalize the previous ones for the regular case by Z. He [15]. The singular case is new. Chapter III of the thesis contains new results about the solvability of singular difference and differential boundary value problems on compact intervals and about their connections. The application on mathematical models describing a radial stress of shallow membrane caps is given. Chapter IV investigates difference and differential equations on the half-line and provides new existence results of four types of their possible solutions: escape, homoclinic, damped and non-monotonous solutions. The application on a mathematical model describing a density profile of a gas in bubbles in some liquid is given. Examples with numerical simulations illustrate the results of Chapter IV. 25
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
Využití hybridní metody vícekriteriálního rozhodování za nejistoty. Michal Koláček, Markéta Matulová
Využití hybridní metody vícekriteriálního rozhodování za nejistoty Michal Koláček, Markéta Matulová Outline Multiple criteria decision making Classification of MCDM methods TOPSIS method Fuzzy extension
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
The Over-Head Cam (OHC) Valve Train Computer Model
The Over-Head Cam (OHC) Valve Train Computer Model Radek Tichanek, David Fremut Robert Cihak Josef Bozek Research Center of Engine and Content Introduction Work Objectives Model Description Cam Design
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
Základy teorie front III
Základy teorie front III Aplikace Poissonova procesu v teorii front II Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta
Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.
Czech Republic EDUCAnet Střední odborná škola Pardubice, s.r.o. ACCESS TO MODERN TECHNOLOGIES Do modern technologies influence our behavior? Of course in positive and negative way as well Modern technologies
2. Entity, Architecture, Process
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
Litosil - application
Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical
Třída: VI. A6 Mgr. Pavla Hamříková VI. B6 RNDr. Karel Pohaněl Schváleno předmětovou komisí dne: Podpis: Šárka Richterková v. r.
MATURITNÍ TÉMATA Školní rok: 2016/2017 Ředitel školy: PhDr. Karel Goš Předmětová komise: Matematika a deskriptivní geometrie Předseda předmětové komise: Mgr. Šárka Richterková Předmět: Matematika Třída:
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA
CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG
Návrh ideální struktury a funkce krajské knihovny Bakalářská práce
Univerzita Hradec Králové Pedagogická fakulta Ústav českého jazyka a literatury Návrh ideální struktury a funkce krajské knihovny Bakalářská práce Autor: Michal Mulač Studijní program: B7202 Mediální a
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
On large rigid sets of monounary algebras. D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia
On large rigid sets of monounary algebras D. Jakubíková-Studenovská P. J. Šafárik University, Košice, Slovakia coauthor G. Czédli, University of Szeged, Hungary The 54st Summer School on General Algebra
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku
Vliv metody vyšetřování tvaru brusného kotouče na výslednou přesnost obrobku Aneta Milsimerová Fakulta strojní, Západočeská univerzita Plzeň, 306 14 Plzeň. Česká republika. E-mail: anetam@kto.zcu.cz Hlavním
DC circuits with a single source
Název projektu: utomatizace výrobních procesů ve strojírenství a řemeslech egistrační číslo: Z..07/..0/0.008 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je spolufinancován
SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91
SEZNAM PŘÍLOH Příloha 1 Dotazník Tartu, Estonsko (anglická verze)... 90 Příloha 2 Dotazník Praha, ČR (česká verze)... 91 Příloha 3 Emailové dotazy, vedení fakult TÜ... 92 Příloha 4 Emailové dotazy na vedení
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA
GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA What is an FTP client and how to use it? FTP (File transport protocol) - A protocol used to transfer your printing data files to the MAFRAPRINT
Compression of a Dictionary
Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 714-0513 Garantující institut: Garant předmětu: Vybrané kapitoly z matematiky (VKM) Katedra matematiky a deskriptivní geometrie doc. RNDr.
Právní formy podnikání v ČR
Bankovní institut vysoká škola Praha Právní formy podnikání v ČR Bakalářská práce Prokeš Václav Leden, 2009 Bankovní institut vysoká škola Praha Katedra Bankovnictví Právní formy podnikání v ČR Bakalářská
Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University Olomouc Czech Republic
ROBUST 13. září 2016 regression regresních modelů Categorical Continuous - explanatory, Eva Fišerová Department of Mathematical Analysis and Applications of Mathematics Faculty of Science, Palacký University
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Oddělení celoživotního vzdělávání Závěrečná práce Výuka odborného předmětu z elektrotechniky na SPŠ Strojní a Elektrotechnické Vypracoval:
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová
VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová VZDĚLÁVÁNÍ V ČR VY_32_INOVACE_AH_3_03 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět
STLAČITELNOST. σ σ. během zatížení
STLAČITELNOST Princip: Naneseme-li zatížení na zeminu, dojde k porušení rovnováhy a dochází ke stlačování zeminy (přemístňují se částice). Stlačení je ukončeno jakmile nastane rovnováha mezi působícím
VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace
VY_32_INOVACE_06_Předpřítomný čas_03 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo projektu: CZ.1.07/1.4.00/21.2400
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.
CURRICULUM VITAE - EDUCATION Jindřich Bláha Výukový materiál zpracován v rámci projektu EU peníze školám Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Bc. Jindřich Bláha. Dostupné z Metodického
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients
KYBERNETIKA VOLUME 8 (1972), NUMBER 6 A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients JAROSLAV KRAL In many applications (for example if the effect
EXACT DS OFFICE. The best lens for office work
EXACT DS The best lens for office work EXACT DS When Your Glasses Are Not Enough Lenses with only a reading area provide clear vision of objects located close up, while progressive lenses only provide
Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.
1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím
Jednoduché polookruhy. Katedra algebry
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Vítězslav Kala Jednoduché polookruhy Katedra algebry Vedoucí bakalářské práce: Prof. RNDr. Tomáš Kepka, DrSc. Studijní program:
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY. Číslo Servisní Informace Mechanika: 5-2013
Mechanika Teplice, výrobní družstvo, závod Děčín TACHOGRAFY Servisní Informace Datum vydání: 20.2.2013 Určeno pro : AMS, registrované subj.pro montáž st.měř. Na základě SI VDO č./datum: Není Mechanika
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING
USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING Eva Minaříková Institute for Research in School Education, Faculty of Education, Masaryk University Structure of the presentation What can we as teachers
PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I
E L E C T R O N I C C O N N E C T O R S 196 ept GmbH I Tel. +49 (0) 88 61 / 25 01 0 I Fax +49 (0) 88 61 / 55 07 I E-Mail sales@ept.de I www.ept.de Contents Introduction 198 Overview 199 The Standard 200
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Libuše Matulová Název materiálu: Education Označení materiálu: VY_32_INOVACE_MAT27 Datum vytvoření: 10.10.2013
Chapter 7: Process Synchronization
Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Critical Regions Monitors Synchronization in Solaris
AIC ČESKÁ REPUBLIKA CZECH REPUBLIC
ČESKÁ REPUBLIKA CZECH REPUBLIC ŘÍZENÍ LETOVÉHO PROVOZU ČR, s.p. Letecká informační služba AIR NAVIGATION SERVICES OF THE C.R. Aeronautical Information Service Navigační 787 252 61 Jeneč A 1/14 20 FEB +420
Czech Technical University in Prague DOCTORAL THESIS
Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering DOCTORAL THESIS CERN-THESIS-2015-137 15/10/2015 Search for B! µ + µ Decays with the Full Run I Data of The ATLAS
PAINTING SCHEMES CATALOGUE 2012
Evektor-Aerotechnik a.s., Letecká č.p. 84, 686 04 Kunovice, Czech Republic Phone: +40 57 57 Fax: +40 57 57 90 E-mail: sales@evektor.cz Web site: www.evektoraircraft.com PAINTING SCHEMES CATALOGUE 0 Painting
DYNAMICS - Force effect in time and in space - Work and energy
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.
VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O. Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová práce 2013 Návrh konceptu konkurenceschopného hotelu v době ekonomické krize Diplomová
FIRE INVESTIGATION. Střední průmyslová škola Hranice. Mgr. Radka Vorlová. 19_Fire investigation CZ.1.07/1.5.00/
FIRE INVESTIGATION Střední průmyslová škola Hranice Mgr. Radka Vorlová 19_Fire investigation CZ.1.07/1.5.00/34.0608 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/21.34.0608 Šablona: III/2 Inovace a zkvalitnění
DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16
zákaznická linka: 840 50 60 70 DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1997 Apr 16 1999 Apr 23 str 1 Dodavatel: GM electronic, spol. s r.o., Křižíkova 77, 186 00 Praha
User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 VÍTKOVICE STEEL, a.s. vitkovicesteel.com
1/ 11 User manual SŘHV Online WEB interface for CUSTOMERS June 2017 version 14 2/ 11 Contents 1. MINIMUM SYSTEM REQUIREMENTS... 3 2. SŘHV ON-LINE WEB INTERFACE... 4 3. LOGGING INTO SŘHV... 4 4. CONTRACT
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Problematika disertační práce a současný stav řešení
Problematika disertační práce a současný stav řešení I never worry about the future. It comes soon enough Albert Einstein 2 /12 CONTENTS Topic of thesis and objectives Introduction Background of problem
Dynamic programming. Optimal binary search tree
The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity
Návrh na zahájení habilitačního řízení Mgr. Petra Vodstrčila, Ph.D. v oboru Aplikovaná matematika na FEI VŠB-TU Ostrava
Návrh na zahájení habilitačního řízení Mgr. Petra Vodstrčila, Ph.D. v oboru Aplikovaná matematika na FEI VŠB-TU Ostrava Osobní údaje Uchazeč: Petr Vodstrčil Datum a místo narození: 1.12. 1977, Svitavy
Inovace bakalářského studijního oboru Aplikovaná chemie. Reg. č.: CZ.1.07/2.2.00/
Inovace bakalářského studijního oboru Aplikovaná chemie Reg. č.: CZ.1.07/2.2.00/15.0247 Lecture vocabulary: Liquid Viscosity Surface tension Liquid state Definite shape Container Arrangement Random Translational
Dobrovolná bezdětnost v evropských zemích Estonsku, Polsku a ČR
MASARYKOVA UNIVERZITA V BRNĚ Fakulta sociálních studií Katedra sociologie Dobrovolná bezdětnost v evropských zemích Estonsku, Polsku a ČR Bakalářská diplomová práce Vypracovala: Kateřina Jurčová Vedoucí
Fytomineral. Inovace Innovations. Energy News 04/2008
Energy News 4 Inovace Innovations 1 Fytomineral Tímto Vám sdělujeme, že již byly vybrány a objednány nové lahve a uzávěry na produkt Fytomineral, které by měly předejít únikům tekutiny při přepravě. První
Theme 6. Money Grammar: word order; questions
Theme 6 Money Grammar: word order; questions Čas potřebný k prostudování učiva lekce: 8 vyučujících hodin Čas potřebný k ověření učiva lekce: 45 minut KLÍNSKÝ P., MÜNCH O., CHROMÁ D., Ekonomika, EDUKO
IMPORTANCE OF 3D ANIMATIONS IN MATHEMATICS II EDUCATION FOR STUDENTS OF SECURITY TECHNOLOGIES STUDY FIELD AT TBU IN ZLÍN
IMPORTANCE OF 3D ANIMATIONS IN MATHEMATICS II EDUCATION FOR STUDENTS OF SECURITY TECHNOLOGIES STUDY FIELD AT TBU IN ZLÍN FIALKA Miroslav URBANČOK Lukáš CHARVÁTOVÁ Hana, ČR Abstract Nowadays a large number
Bibliometric probes into the world of scientific publishing: Economics first
Bibliometric probes into the world of scientific publishing: Economics first Daniel Münich VŠE, Nov 7, 2017 Publication space Field coverage of WoS Source: Henk F. Moed, Citation Analysis in Research Evaluation,
Melting the ash from biomass
Ing. Karla Kryštofová Rožnov pod Radhoštěm 2015 Introduction The research was conducted on the ashes of bark mulch, as representatives of biomass. Determining the influence of changes in the chemical composition
Mikrokvadrotor: Návrh,
KONTAKT 2011 Mikrokvadrotor: Návrh, Modelování,, Identifikace a Řízení Autor: Jaromír r Dvořák k (md( md@unicode.cz) Vedoucí: : Zdeněk Hurák (hurak@fel.cvut.cz) Katedra řídicí techniky FEL ČVUT Praha 26.5.2011
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting
Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting Petr Macháček PETALIT s.r.o. 1 What is Redwood. Sensor Network Motion Detection Space Utilization Real Estate Management 2 Building
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Radiova meteoricka detekc nı stanice RMDS01A
Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah
Dynamic Signals. Ananda V. Mysore SJSU
Dynamic Signals Ananda V. Mysore SJSU Static vs. Dynamic Signals In principle, all signals are dynamic; they do not have a perfectly constant value over time. Static signals are those for which changes
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: CZ.1.07/1.5.00/34.0536 Název projektu školy: Výuka s ICT na SŠ obchodní České Budějovice Šablona
UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9
www.regulus.cz UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9 CZ EN UPM3 Hybrid 1. Úvod V továrním nastavení čerpadla UPM3 Hybrid je profil PWM
CHAIN TRANSMISSIONS AND WHEELS
Second School Year CHAIN TRANSMISSIONS AND WHEELS A. Chain transmissions We can use chain transmissions for the transfer and change of rotation motion and the torsional moment. They transfer forces from
The Czech education system, school
The Czech education system, school Pracovní list Číslo projektu Číslo materiálu Autor Tematický celek CZ.1.07/1.5.00/34.0266 VY_32_INOVACE_ZeE_AJ_4OA,E,L_10 Mgr. Eva Zemanová Anglický jazyk využívání on-line
Přehled odborné činnosti Ústavu matematiky a deskriptivní geometrie za rok 2013
Personální obsazení ústavu: Profesoři Josef Diblík, Jiří Vala Docenti Přehled odborné činnosti Ústavu matematiky a deskriptivní geometrie za rok 2013 Josef Dalík, Jiří Novotný, Václav Tryhuk, Alena Vanžurová
MC Tlumiče (řízení pohybu) MC Damper
MC Tlumiče (řízení pohybu) MC Damper Fitness a volný čas Leisure and Training equipment Strojírenství Machinery Automobilový průmysl Vehicle Industry MC Tlumiče (pro řízení pohybu) se používají jako bezpečnostní
Uni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
Ja n T. Št e f a n. Klíčová slova: Řada knih, srovnání cen v čase, cena vazby a ocelorytové viněty, lineární regresní analýza.
K CENĚ KNIH Z PRVNÍ POLOVINY 19. století NA PŘÍKLADU SOMMEROVA DÍLA DAS KÖNIGREICH BÖHMEN Ja n T. Št e f a n Abstrakt: V příspěvku je analyzována možnost nalezení dvou složek ceny knihy, a) jejího rozsahu
Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products
Energy news2 1 Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products Doposud jste Energy znali jako výrobce a dodavatele humánních přírodních doplňků stravy a kosmetiky.
II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách
Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona Označení materiálu II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách VY_22_INOVACE_Mrh16 Vypracoval(a),
By David Cameron VE7LTD
By David Cameron VE7LTD Introduction to Speaker RF Cavity Filter Types Why Does a Repeater Need a Duplexer Types of Duplexers Hybrid Pass/Reject Duplexer Detail Finding a Duplexer for Ham Use Questions?
RNDr. Jakub Lokoč, Ph.D. RNDr. Michal Kopecký, Ph.D. Katedra softwarového inženýrství Matematicko-Fyzikální fakulta Univerzita Karlova v Praze
RNDr. Jakub Lokoč, Ph.D. RNDr. Michal Kopecký, Ph.D. Katedra softwarového inženýrství Matematicko-Fyzikální fakulta Univerzita Karlova v Praze 1 Relační algebra / Relational Algebra 2 Kino(Jmeno, Mesto,
Next line show use of paragraf symbol. It should be kept with the following number. Jak může státní zástupce věc odložit zmiňuje 159a.
1 Bad line breaks The follwing text has prepostions O and k at end of line which is incorrect according to Czech language typography standards: Mezi oblíbené dětské pohádky patří pohádky O Palečkovi, Alenka
Univerzita Pardubice Fakulta filozofická. Franz Kafka: Pojetí systému v Proměně. Lukáš Vavrečka
Univerzita Pardubice Fakulta filozofická Franz Kafka: Pojetí systému v Proměně Lukáš Vavrečka Bakalářská práce 2009 University of Pardubice Faculty of Arts and Philosophy Franz Kafka: The Conception of
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Student: Draw: Convex angle Non-convex angle
WORKBOOK http://agb.gymnaslo.cz Subject: Student: Mathematics.. School year:../ Topic: Trigonometry Angle orientation Types of angles 90 right angle - pravý less than 90 acute angles ("acute" meaning "sharp")-
TECHSTA 2000 ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB
ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB 1 SBORNÍK PŘEDNÁŠEK Z KONFERENCE Vydalo ČVUT, Stavební fakulta, ČR ZÁŘÍ 2000 Tématické oblasti konference Příprava a modelování realizace staveb Moderní
dokumentu: Proceedings of 27th International Conference Mathematical Methods in
1. Empirical Estimates in Stochastic Optimization via Distribution Tails Druh výsledku: J - Článek v odborném periodiku, Předkladatel výsledku: Ústav teorie informace a automatizace AV ČR, v. v. i., Dodavatel
1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení.
Moje hlavní město Londýn řešení: 1, Žáci dostanou 5 klíčových slov a snaží se na jejich základě odhadnout, o čem bude následující cvičení. Klíčová slova: capital, double decker bus, the River Thames, driving
Geometry of image formation
eometry of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: July 4, 2008 Talk Outline Pinhole
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Číslo projektu: Číslo šablony: Název materiálu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 CZ.1.07/1.5.00/34.0410 II/2 Parts of a computer IT English Ročník: Identifikace materiálu: Jméno
LOGOMANUÁL / LOGOMANUAL
LOGOMANUÁL / LOGOMANUAL OBSAH / CONTENTS 1 LOGOTYP 1.1 základní provedení logotypu s claimem 1.2 základní provedení logotypu bez claimu 1.3 zjednodušené provedení logotypu 1.4 jednobarevné a inverzní provedení
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University I would like to enroll at a university. Stating that you want to enroll I want to apply for course. Stating that you want to apply for a course an undergraduate a postgraduate a PhD a full-time
Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.
- University Rád/a bych se zapsal/a na vysoké škole. Stating that you want to enroll Rád/a bych se zapsal/a na. Stating that you want to apply for a course bakalářské studium postgraduální studium doktorské
Program konference MITAV 2015 (Matematika, Informační Technologie a Aplikované Vědy)
Program konference MITAV 2015 (Matematika, Informační Technologie a Aplikované Vědy) Nad konferencí převzal záštitu primátor statutárního města Brna Ing. Petr Vokřál. Klub Univerzity obrany v Brně Šumavská
A constitutive model for non-reacting binary mixtures
A constitutive model for non-reacting binary mixtures Ondřej Souček ondrej.soucek@mff.cuni.cz Joint work with Vít Průša Mathematical Institute Charles University 31 March 2012 Ondřej Souček Charles University)
TECHSTA 2000 ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB
ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB 1 SBORNÍK PŘEDNÁŠEK Z KONFERENCE Vydalo ČVUT Praha, Stavební fakulta, ČR ZÁŘÍ 2000 Tématické oblasti konference Příprava a modelování realizace staveb
Klepnutím lze upravit styl předlohy. Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. Aleš Křupka.
1 / 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Aleš Křupka akrupka@phd.feec.vutbr.cz Department of Telecommunications Faculty of Electrotechnical Engineering
Silicified stems of upper Paleozoic plants from the Intra Sudetic and Krkonoše Piedmont basins
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Geologie Studijní obor: Paleobotanika Mgr. Václav Mencl Zkřemenělé stonky svrchnopaleozoických rostlin z vnitrosudetské a podkrkonošské
Použití modelu Value at Risk u akcií z
Použití modelu Value at Risk u akcií z pražské Burzy cenných papírů Radim Gottwald Mendelova univerzita v Brně Abstrakt Článek se zaměřuje na model Value at Risk, který se v současnosti často používá na
Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení
Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ..07/..30/0.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je
Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.
Third School Year FRICTION DRIVES 1. Introduction In friction drives the peripheral force between pressed wheels is transferred by friction. To reach peripheral forces we need both a pressed force and
CZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice