Mezipředmětové výukové téma Barvy kolem nás III.
|
|
- Viktor Bařtipán
- před 9 lety
- Počet zobrazení:
Transkript
1 Školská fyzika 2014/1 Na pomoc školské praxi Mezipředmětové výukové téma Barvy kolem nás III. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň V minulých číslech časopisu školská fyzika jste měli možnost si přečíst třídílnou sérii článků Historie a elementární základy teorie barev. Na tuto sérii navazují další tři díly popisující mezipředmětové výukové téma Barvy kolem nás, které na základě přehledu nauky o barvách vzniklo. Problematika barev je na rozhraní fyziky, informatiky a výpočetní techniky, přírodopisu, výtvarné výchovy a případně i dalších vyučovacích předmětů, proto je těžké ji zařadit do některého ze standardních vyučovacích předmětů. Jako nejlepší volba se ukazuje mezipředmětové výukové téma s prezentací v podobě samostatného tematického dne. SW podoba výukového tématu 2 Předkládané mezipředmětové výukové téma Barvy kolem nás vzniklo primárně v podobě multimediální výukové lekce určené pro prezentaci prostřednictvím interaktivní dotykové tabule. Výuková lekce byla zpracována pomocí autorského nástroje Flexibook Composer z dílny Nakladatelství Fraus. Lekce v podobě klasické interaktivní učebnice byla následně transformována do podoby prezentace pro MS PowerPoint a do podoby série statických PDF dokumentů opatřených sadou samostatných multimediálních souborů. V tomto článku však bude prezentována pouze základní výchozí podoba multimediální lekce vytvořená pomocí nástroje Flexibook Composer. Zařazení tématu do výuky a jeho obsah 2 Mezipředmětové výukové téma Barvy kolem nás může být do výuky zařazeno v principu dvojím způsobem. Buď je možné vkládat dílčí informace obsažené v připravené multimediální lekci postupně v průběhu běžných hodin fyziky a informatiky a výpočetní techniky (na závěr se samostatnou prací v hodině výtvarné výchovy), nebo je možné připravit ucelený tematický či projektový den věnovaný problematice barev. Výukové téma Barvy kolem nás je optimální zařadit do výuky ve druhém pololetí 7. ročníku základní školy. Při tomto doporučení vycházíme z běžného řazení učiva fyziky a informatiky a výpočetní techniky na základních školách. Celá multimediální výuková lekce Barvy kolem nás se skládá ze šesti následujících kapitol: Barva světla a rozklad světla hranolem Barva předmětů, co je to barva? RGB znamená red green blue Jsou i jiná čísla než jen RGB, třeba CMYK Není RGB jako RGB, není CMYK jako CMYK Zelenou dostanu, když smíchám modrou a žlutou Předmětem prezentace v tomto dílu jsou poslední dvě označené kapitoly, tj. tři strany výukové lekce. Každá z kapitol (s výjimkou poslední jednostranové) je zpracována do podoby dvoustrany multimediální interaktivní učebnice, která kombinuje text a obrázky jako každý standardní učební text s přidanými multimediálními materiály. Tyto materiály jsou skryty pod tlačítky umístěnými v rámci stránek a jsou popsány na konci článku. Ke každé kapitole jsou navrženy i doplňující frontální i žákovské experimenty, také jejich popis je uveden na konci článku. Celou lekci Barvy kolem nás ve formátu i-učebnice Fraus je možno si stáhnout z webu Školské fyziky zde: Pro zmenšení velikosti lekce a usnadnění stažení byla vnořená videa umístěna na server YouTube. Pro otevření lekce je potřebný FlexiBook Reader, jehož instalace je ke stažení zde: Pro spuštění lekce použijte ve vstupním dialogovém okně aplikace volbu Přihlásit se k multilicenci. 1 kohout@fraus.cz 2 První dva odstavce jsou stručným souhrnem nejdůležitějších poznatků úvodní části prvního dílu článku. Jejich cílem je připomenutí obecných východisek článku bez nutnosti se k prvnímu dílu článku vracet. 23
2 Na pomoc školské praxi Školská fyzika 2014/1 Není RGB jako RGB, není CMYK jako CMYK Vyfotili jsme si digitálním fotoaparátem pěknou přírodní scenérii se zelenou trávou a modrou oblohou. Na displeji fotoaparátu vypadá záběr barevně moc hezky. Snímek jsme stáhli do levného starého notebooku, který s sebou občas taháme na výlety, a barvy jsou pryč, zelená je do hněda, obloha také nic moc. Po zobrazení snímku na kvalitním monitoru domácího počítače jsou naštěstí barvy opět v pořádku. Soubor se snímkem nebyl po celou dobu nijak upravovaný, čísla RGB zůstala stále stejná a barvy byly pokaždé jiné. Jak je to možné? Je třeba si uvědomit, že různá zařízení mohou zobrazovat barvy v různé kvalitě. kvalitní fotoaparát obyčejný notebook profesionální monitor Je zřejmé, že ani tři přesná čísla RGB nám nedávají o výsledné barvě jednoznačnou představu, závisí na tom, na jakém zařízení se zobrazí. Říkáme, že RGB je závislé na zařízení. Na displej obyčejného notebooku jsou dva základní požadavky aby byl co nejlevnější a aby vůbec nějaké barvy zobrazoval. Podobné je to i s barvami CMY. Výsledný odstín bude záviset na kvalitě jednotlivých inkoustů, azurového, purpurového a žlutého. Barvy v reprezentativním časopise na kvalitním papíře budou vypadat jinak, než barvy v obyčejných novinách na zašedlém recyklovaném papíře. Profesionální monitor výtvarníka nebo fotografa je vyrobený lepší technologií, tři základní barvy červená, zelená a modrá jsou jasné a zářivé. Proto jsou i barvy, které vzniknou jejich smícháním, velice dobře zobrazené. U takového monitoru je kvalitní zobrazování barev základním předpokladem. 24
3 Školská fyzika 2014/1 Na pomoc školské praxi Tento problém nedával spát vědcům, kteří se popisem barev zabývají. Definovali různé zápisy barev, které sice nejsou tak názorné, jako RGB nebo CMY, ale mají tu výhodu, že nezávisí na konkrétním způsobu zobrazení. Jedním z nich je zápis xyy, kde hodnoty x a y společně udávají barevný odstín a sytost dané barvy a Y popisuje její jas. Je ale těžké si představit pod trojicí čísel x, y a Y konkrétní barvu. Často se proto používá zobrazení hodnot x a y, které se nazývá chromatický diagram (chroma = řecky barva). Tento diagram je zajímavý tím, že v něm můžeme znázornit všechny barvy, které dokáže vnímat lidské oko. Ať to jsou barvy displeje laciného notebooku, barvy profesionálního monitoru, barvy novinového tisku, barvy nejkvalitnějších tiskovin, čisté spektrální barvy duhy a spousty dalších. Podívejte se na obrázek chromatického diagramu a uvidíte, že ani nejkvalitnější monitory zdaleka nezobrazí všechny viditelné barvy, natož abychom mohli vytisknout skutečné barvy duhy. Při zkoumání přiloženého diagramu nezapomeňte na to, že i tento obrázek byl vytištěný na papír případně zobrazený na monito chromatický diagram ru počítače nebo promítnutý dataprojektorem, a proto jsou barvy zkreslené a vždy zkreslené budou. Na následujících obrázcích vidíte různé světelné zdroje a různá zařízení, která pracují s barvami. Zkuste o nich něco říct a ukázat, která část chromatického diagramu s nimi souvisí... 25
4 Na pomoc školské praxi Školská fyzika 2014/1 SAmOSTATNÁ VýTVARNÁ PRÁCE Zelenou dostanu, když smíchám modrou a žlutou Tuto větu patrně většina z Vás v nějaké podobě už slyšela. Je to taková základní malířská poučka a při malování vodovkami jste si mnohokrát vyzkoušeli, že funguje. Není to trochu divné? Modrou barvu mám v RGB, žlutou barvu mám mezi barvami CMY, jak smíchám modré světlo a žlutý inkoust? V tomto případě jde pouze o nepřesné nebo ještě lépe nejednoznačné názvosloví. Pojem modrá barva se v běžném životě používá pro mnoho odstínů od modrofialové až po zelenomodrou. I v malířství máme modrých barev spoustu. Namátkou vybíráme z jednoho katalogu olejových barev pro malíře pruská modř, orientální modř tmavá, francouzský ultramarín tmavý, francouzský ultramarín světlý, kobaltová modř sytá, kobaltová modř pravá, základní phthalocyaninová modrá, královská modrá, blankytně modrá sytá, blankytně modrá pravá, zářivě modrá, tyrkysová modrá. Modrou z nadpisu kapitoly rozumí malíř odstín modré, který my označujeme jako azurovou. Pak je vše jasné a v pořádku. Z obrázku míchání barev CMY je zřejmé, že smícháním azurového a žlutého inkoustu opravdu vznikne zelená barva. Když malíři nebo tiskaři hovoří o základních barvách modré, červené a žluté, mají na mysli barvy, které my označujeme názvy azurová, purpurová a žlutá. Zkuste pomocí těchto tří základních barev a jejich míchání namalovat nějaký pěkný obrázek. Povolíme Vám ještě čtvrtou barvu černou. Podaří se Vám to?? 26
5 Školská fyzika 2014/1 Na pomoc školské praxi Přehled rozšiřujících materiálů Jednotlivé multimediální a další materiály jsou zde uváděny v pořadí, v jakém se vyskytují na stránkách lekce ve směru shora dolů, případně zleva doprava. Materiály jsou uvozeny ikonou v podobě tlačítka charakterizujícího typ materiálu. Význam použitých ikon je zřejmý z kontextu, případně byl vysvětlen v první části článku. Není RGB jako RGB, není CMYK jako CMYK Rozšiřující materiály, 1. strana Na uvedené straně nejsou žádné rozšiřující multimediální materiály. Rozšiřující materiály, 2. strana textová poznámka: Oblast chromatického diagramu zahrnující barvy, které umí nějaké zařízení (monitor, videokamera, tiskárna,...) zobrazit, se nazývá gamut neboli barevný rozsah tohoto zařízení. Jedná se o ty trojúhelníkové nebo mnohoúhelníkové oblasti na sousedním obrázku. Gamutem lidského oka je celá podkova chromatického diagramu. Výslovnost: gamut [gemit], ale již také po česku [gamut] video: chromatický diagram, jeho základní vlastnosti a využití Doporučené experimenty experiment frontální i žákovský Porovnání kvality barev různých druhů zobrazovacích zařízení; pomůcky: více druhů monitorů starý CRT, kvalitní LCD (PVA, IPS) apod., obyčejné LCD netbooku, dataprojektor pro demonstraci závislosti barvového prostoru RGB na zařízení Zelenou dostanu, když smíchám modrou a žlutou Rozšiřující materiály, 1. strana Na uvedené straně nejsou žádné rozšiřující multimediální materiály. Doporučené experimenty experiment žákovský Malba čtyřmi základními barvami, samostatná práce; pomůcky: kreslící čtvrtky, tempery 4 základních barev zhruba CMYK azurová = kobalt imitace, purpurová = alizarin, žlutá = žluť citrónová, čerň kostní, běžné potřeby na malování (pozn. barvy se míchají malířským způsobem na paletě) Obr. 1, 2 průběh samostatné práce žáků z výtvarné výchovy 27
6 Při divadelních vystoupeních a různých estrádních akcích je možno si všimnout, že jeviště je osvětlováno svítidly, která vydávají světlo různé barvy. Můžeme spočítat, kolik různých barev na světě existuje, kolik jich zaznamená lidské oko? Kde se vlastně berou různé barvy, když obyčejné světlo je bílé? A co je to duha? Anglický matematik a fyzik Isaac Newton ( ) pozoroval v 17. století, jak z bílého slunečního světla vznikají po průchodu skleněným hranolem světla různých barev podobná duze na obloze. Ten jev podrobně zkoumal a popsal. Původně bílé světlo se rozloží do barevného pásu, ve kterém je zastoupeno velké množství barev. Bílé světlo je složené z jednoduchých, tzv. spektrálních barev. Ty však není lidské oko schopno v bílém světle přímo rozeznat. K rozložení bílého světla na jednoduché spektrální barvy můžeme využít například lomu světla. Když na skleněný hranol dopadne úzký paprsek bílého světla, dojde na obou rozhraních vzduchu a skla k lomu světla. Úhel lomu závisí na rychlosti světla ve skle a světla různých barev se ve skle šíří různou rychlostí. Nejvíce se lomí světlo fialové, nejméně světlo červené. Po průchodu svazku bílého světla hranolem ho necháme dopadat na stínítko a na něm vznikne pruh mnoha barev spektrum, které přecházejí jedna v druhou. Newton pojmenoval sedm základních barev fialová, indigová (modrofialová), modrá, zelená, žlutá, oranžová, červená. Je třeba si uvědomit, že mezi těmito sedmi barvami je nekonečně mnoho dalších barevných odstínů. Pokud barvy spektra složíme spojnou čočkou, dostaneme opět bílé světlo. rozklad bílého světla lomem při průchodu skleněným hranolem V přírodě se bílé sluneční světlo může rozkládat na jednoduché barvy při průchodu kapkami vody. Opět se jedná o rozklad světla lomem. V takovém případě vzniká jeden z nejhezčích a nejvýraznějších atmosférických optických jevů duha. 9 Isaac Newton Při průchodu světla broušeným drahokamem dochází také k lomu a rozkladu světla. Také při odrazu světla na disku CD dochází k rozkladu světla. Nejedná se ale o rozklad lomem. složení barevných světel pomocí spojné čočky; vzniká zase bílé světlo. Když se podíváš lupou na televizní obrazovku, uvidíš, že celá její plocha je složena z maličkých barevných plošek, které svítí střídavě červeně, zeleně a modře. V místech s červeným obrazem září pouze červené plošky a také v místech, kde je zelená nebo modrá plocha vidíte pouze odpovídající plošky. Ve žlutých místech pozorujete svítící plošky červené a zelené, v oranžových svítí červené více a zelené méně. Právě hodnoty RGB uvádějí, jak moc svítí jednotlivé barevné plošky. Když chci zobrazit výše zmíněnou zářivě žlutozelenou barvu , musím červené plošky rozsvítit na polovinu maximálního jasu (128 = ½ 255), zelené plošky naplno (255) a modré zůstanou zhasnuté (0). Když se podíváš na monitor počítače v místě barevné palety aplikace Windows Malování, uvidíš ty samé plošky tří barev jako na televizní obrazovce a můžeš sledovat jejich jas v závislosti na zobrazené barvě. detail barevné LCD obrazovky Pomocí barev RGB nemusíme míchat barvy jen na televizní obrazovce či počítačovém monitoru. Když vezmeme tři svítidla s červeným zeleným a modrým světlem, docílíme stejného výsledku. Míchání barevných světel: I další zařízení, která pracují s barvami, je popisují pomocí RGB. Světlocitlivé čipy skenerů, digitálních fotoaparátů nebo videokamer jsou citlivé na červenou, zelenou a modrou stejně jako lidské oko. Ve všech případech, kdy mícháme barevná světla, můžeme použít zápis barvy v míchání světel RGB RGB. Tuto větu patrně většina z Vás v nějaké podobě už slyšela. Je to taková základní malířská poučka a při malování vodovkami jste si mnohokrát vyzkoušeli, že funguje. Není to trochu divné? Modrou barvu mám v RGB, žlutou barvu mám mezi barvami CMY, jak smíchám modré světlo a žlutý inkoust? V tomto případě jde pouze o nepřesné nebo ještě lépe nejednoznačné názvosloví. Pojem modrá barva se v běžném životě používá pro mnoho odstínů od modrofialové až po zelenomodrou. I v malířství máme modrých barev spoustu. Namátkou vybíráme z jednoho katalogu olejových barev pro malíře pruská modř, orientální modř tmavá, francouzský ultramarín tmavý, francouzský ultramarín světlý, kobaltová modř sytá, kobaltová modř pravá, základní phthalocyaninová modrá, královská modrá, blankytně modrá sytá, blankytně modrá pravá, zářivě modrá, tyrkysová modrá. Modrou z nadpisu kapitoly rozumí malíř odstín modré, který my označujeme jako azurovou. Pak je vše jasné a v pořádku. Z obrázku míchání barev CMY je zřejmé, že smícháním azurového a žlutého inkoustu opravdu vznikne zelená barva. Když malíři nebo tiskaři hovoří o základních barvách modré, červené a žluté, mají na mysli barvy, které my označujeme názvy azurová, purpurová a žlutá. Zkuste pomocí těchto tří základních barev a jejich míchání namalovat nějaký pěkný obrázek. Povolíme Vám ještě čtvrtou barvu černou. Podaří se Vám to? Duhu můžeme pozorovat, pokud svítí slunce a zároveň prší. Střed oblouku duhy leží přímo proti Slunci. Je-li Slunce nízko na obloze, zasahuje proto oblouk duhy výše. Nejvýraznější hlavní duha má vnitřní okraj fialový a vnější červený. Kromě hlavní duhy můžeme někdy pozorovat i duhu vedlejší, vzniklou dvojnásobným odrazem v kapce vody. Ta je méně zřetelná, nachází se vně duhy hlavní a má obrácené pořadí barev. Duhu můžeme vidět nejen při dešti, ale také jindy, pokud jsou ve vzduchu rozptýleny kapky vody, např. ve vodní tříšti nad vodopádem, peřejemi nebo i při zalévání zahradní hadicí. V přírodě existuje daleko více barev, než jen jednoduché, které můžeme pozorovat v barevném spektru. Nenajdeme v něm například hnědou, šedou, růžovou, khaki (zelenohnědou) barvu a spoustu dalších. Tyto barvy nazýváme složené a vznikají stejně jako bílé světlo skládáním jednoduchých barev. Pouze je skládáme v různých poměrech nebo neskládáme všechny barvy. žlutá červená růžová (purpurová) bílý papír zelená modrofialová modrá (azurová) černý papír Máte doma inkoustovou tiskárnu k počítači a nakupovali jste do ní někdy barevné inkousty? Pokud jste všímaví, určitě si vybavíte, jaké barvy jsou na krabičce znázorněné. Jsou to barvy jednotlivých náplní a rozhodně to nejsou červená, zelená a modrá. Proč asi? Vypnutý monitor nebo obrazovka TV je černý. Když na něm chci něco zobrazit, musím rozsvítit v různém poměru červené, zelené a modré barevné plošky. Pokud budou svítit plošky všech tří barev naplno, uvidím bílou barvu. Na obrázku vpravo vidíte míchání barev postupným odebíráním červené, zelené a modré z bílého světla pomocí azurového, purpurového a žlutého inkoustu (CMY). Žlutý inkoust pohlcuje z dopadajícího světla modrou a odráží ostatní, proto se jeví žlutý. Stejně tak azurový inkoust pohlcuje z dopadajícího světla červenou a purpurový inkoust pohlcuje z dopadajícího světla zelenou. Opět mícháme červené, zelené a modré světlo, ale tentokrát je pomocí azurového, purpurového a žlutého inkoustu z dopadajícího bílého světla odebíráme. míchání barev CMY Pro označení barev Azurová Purpurová Žlutá použijeme opět mezinárodní označení CMY (Cyan Magenta Yellow). Častěji než s CMY se setkáte s označením CMYK. Při tisku se totiž kromě tří barev CMY používá ještě čtvrtá barva černá pro tisk obyčejného textu (black nebo Key). Ta nás teď ale zajímat nebude. ofsetový tiskový stroj duha ukázky zařízení CMYK Ke zjištění, z jakých jednoduchých barev jsou barvy složené, používáme přístroje spektrofotometry. Na následujících obrázcích se můžete podívat, jak některé složené barvy vznikají. spektrofotometry Sestrojte si jednoduchý spektroskop návod zde: Prázdný papír je bílý, nesvítí, pouze se od něj odráží dopadající bílé světlo. Když chci něco vytisknout, nanáším na něj barevné inkousty azurový, purpurový a žlutý. Pokud smíchám všechny tři inkousty dohromady, bude papír černý. azurová purpurová žlutá Na jevišti vystupují artisté v červených kostýmech. Najednou je osvětlí ostře zelené světlo a kostýmy zčernají. Jako barvu má jejich oblečení červenou nebo černou? A jak vidí jejich oblečení barvoslepý člověk, který nedokáže červenou od zelené rozlišit? Neprůhledné předměty světlo odrážejí, průhledné předměty světlo propouštějí. I průhledné předměty mohou některé barvy pohlcovat. Proč se nám jeví červené sklíčko jako červené? Z dopadajícího bílého světla pohltí zelené barvy a propustí jen ty ostatní, které dohromady dávají načervenalý tón barvy. Průhledným předmětům, které pohlcují některé barvy procházejícího světla, a tím mění jeho barvu, říkáme barevné filtry. Používají se třeba v divadelních svítidlech, abychom získali zdroj barevného světla. Existují také speciální světelné zdroje, které vyzařují světlo pouze jedné spektrální barvy. Jsou to např. sodíkové výbojky, reklamní neonové trubice nebo lasery. barevné divadelní a fotografické filtry spektrum sodíkové výbojky sodíková výbojka zelený laser spektrum zeleného laseru Srovnejte spektrum bílého světla, světla odraženého od žlutého papíru a světla sodíkové výbojky. Pro hodnoty CMY se běžně nepoužívají čísla od 0 do 255, ale procenta od 0 % do 100 %, která udávají, jak sytý je daný inkoust. Např. barva CMY znamená 50% pokrytí purpurovou a 100% pokrytí žlutou. Kdo aspoň jednou maloval vodovkami, snadno odhadne, že výsledkem bude oranžová. Podobným způsobem jako u barev RGB odhadni, jaká barva se skrývá pod trojicí čísel CMY nebo pod trojicí Najdi nějakou světle modrou barvu a zapiš ji pomocí čísel CMY. Známe již zápis barvy pomocí RGB a CMY. V aplikaci Windows Malování jsme objevili také hodnoty Odstín Sytost Jas (mezinárodně Hue Saturation Brightness = HSB). Sami si můžete ve Windows Malování nebo v jiné grafické aplikaci vyzkoušet, jaké je rozmezí hodnot pro jednotlivá čísla a jak které z nich ovlivňuje výslednou barvu. Seznámili jsme se se zápisem barev RGB, CMY a HSB. Všechny barvy, které můžeme pomocí uvedených hodnot zapsat, můžeme také znázornit graficky. Podívejte se na následující obrázky. barvový prostor RGB barvový prostor HSL V běžném životě jsme zvyklí, že předměty jsou osvětlené bílým denním světlem nebo světlem žárovek či zářivek, jejichž barva se od bílé příliš neliší. Barva předmětů závisí na jejich schopnosti pohlcovat některé barvy a jiné barvy odrážet. Když se podíváme na graf znázorňující, jaké spektrální barvy obsahuje nějaká složená červená barva, zjistíme, že to mohou být téměř všechny barvy spektra s výjimkou zelených odstínů. Pokud bude povrch předmětu pohlcovat žlutozelené, zelené a modro-zelené barvy a ostatní bude odrážet, bude se nám jevit jako červený. Ale pouze červená při osvětlení bílým světlem! Co se stane, když stejný povrch osvítíme zeleným světlem? Řekli jsme, že zelené barvy se pohltí. Jiné barvy v dopadajícím světle nejsou, od povrchu předmětu se nic neodrazí a předmět se nám jeví tmavý, černý. Zkuste přijít na to, jaké barvy musí pohlcovat povrch předmětu, který se nám v bílém světle jeví modrý. Jakým světlem ho musím osvítit, aby vypadal černý? Nakreslete pro tento případ podobné obrázky, jako jsou výše pro červený předmět nasvícený postupně bílým a zeleným světlem. Řešení je skryté pod tlačítky vpravo. V úvodu jsme se zmínili o barvoslepém člověku. Je těžké se vžít do jeho role, ale víme, že červenou a zelenou nerozliší. Nemůžeme chtít, aby je takto pojmenoval. Vidíme, že s barvou předmětů je to složité. Abychom předmět viděli červený, musí mít povrch určitých vlastností (pohlcuje zelené barvy), musí na něj dopadat správné světlo (nejlépe bílé, ale určitě ne zelené) a ještě k tomu musíme mít zdravé oči, které barvy vidí. Jak to může dopadnout, když má člověk barevné brýle... Barva je vjem, který závisí na předmětu, na osvětlení a na vlastnostech pozorovatele. Vyfotili jsme si digitálním fotoaparátem pěknou přírodní scenérii se zelenou trávou a modrou oblohou. Na displeji fotoaparátu vypadá záběr barevně moc hezky. Snímek jsme stáhli do levného starého notebooku, který s sebou občas taháme na výlety, a barvy jsou pryč, zelená je do hněda, obloha také nic moc. Po zobrazení snímku na kvalitním monitoru domácího počítače jsou naštěstí barvy opět v pořádku. Soubor se snímkem nebyl po celou dobu nijak upravovaný, čísla RGB zůstala stále stejná a barvy byly pokaždé jiné. Jak je to možné? Je třeba si uvědomit, že různá zařízení mohou zobrazovat barvy v různé kvalitě. zelená Barvoslepost, v lehčím případě porucha barvocitu, se dá zjistit pomocí čtení jednoduchých testovacích obrazců. obrazce pro testy barvocitu kvalitní fotoaparát obyčejný notebook profesionální monitor Je zřejmé, že ani tři přesná čísla Na displej obyčejného notebooku jsou dva základní níka nebo fotografa je vyrobený Profesionální monitor výtvar- RGB nám nedávají o výsledné barvě jednoznačnou představu, požadavky aby byl co nejlevnější a aby vůbec nějaké barvy červená, zelená a modrá lepší technologií, tři základní závisí na tom, na jakém zařízení se zobrazí. Říkáme, že RGB je barvy zobrazoval. jsou jasné a zářivé. Proto jsou závislé na zařízení. i barvy, které vzniknou jejich smícháním, velice dobře zobrazené. U takového monitoru Podobné je to i s barvami CMY. Výsledný odstín bude záviset na kvalitě jednotlivých inkoustů, azurového, purpurového a žlutého. Barvy je kvalitní zobrazování barev v reprezentativním časopise na kvalitním papíře budou vypadat jinak, základním předpokladem. než barvy v obyčejných novinách na zašedlém recyklovaném papíře. V aplikaci Windows Malování si chceme zvolit svoji pěknou barvu. Jak na to? Každý jistě snadno najde v menu aplikace volbu Barvy -> Upravit barvy -> Definovat vlastní barvy. Každý jistě také zvládne umístit křížek někam do zobrazené barevné palety, ale co s těmi šesti číselnými políčky vpravo dole? Jaká čísla tam mohu napsat a jak vůbec souvisejí barvy s čísly? Podíváme se na hodnoty Červená Zelená Modrá (k hodnotám Odstín Sytost Světelnost se vrátíme později). Raději budeme dále pracovat s mezinárodním označením RGB (Red Green Blue). Zkusme v aplikaci Windows Malování vybírat vlastní barvu a přitom posouvat záměrným křížkem v barevném čtverci a táhlem v barevném sloupci úplně vpravo. (screenshoty Malování, několik barev) Vidíme, že se číselné hodnoty mění. Tři nuly odpovídají černé, třikrát 255 odpovídá bílé. Každou barvu můžeme popsat trojicí čísel z rozmezí 0 až 255. První číslo v trojici udává, kolik je v barvě základní červené, druhé číslo udává, kolik je v barvě základní zelené, třetí číslo udává totéž pro modrou. Urči, jaká barva se skrývá pod trojicí nebo pod trojicí Najdi nějakou světle modrou barvu a zapiš ji pomocí čísel RGB. Řešení úkolů: Proč ale používáme k číselnému zápisu barev právě trojici červená modrá zelená? Souvisí to s vlastnostmi lidského oka. V přírodopisu se budete učit, že lidské oko obsahuje dva základní typy buněk citlivých na světlo tyčinky a čípky. Barvy vnímáme pomocí čípků a těch jsou tři druhy citlivé po řadě na červené, zelené a modré světlo. Nejjednodušší způsob, jak nasimulovat v oku barevný vjem třeba při sledování televize, je smíchat konkrétní barvu z červené, zelené a modré. Každou ze tří barevných složek budeme vnímat jedním druhem čípků. tyčinky a čípky citlivost světlocitlivých buněk tyčinek (rods) a čípků (cons) na různé barvy světla Tento problém nedával spát vědcům, kteří se popisem barev zabývají. Definovali různé zápisy barev, které sice nejsou tak názorné, jako RGB nebo CMY, ale mají tu výhodu, že nezávisí na konkrétním způsobu zobrazení. Jedním z nich je zápis xyy, kde hodnoty x a y společně udávají barevný odstín a sytost dané barvy a Y popisuje její jas. Je ale těžké si představit pod trojicí čísel x, y a Y konkrétní barvu. Často se proto používá zobrazení hodnot x a y, které se nazývá chromatický diagram (chroma = řecky barva). Tento diagram je zajímavý tím, že v něm můžeme znázornit všechny barvy, které dokáže vnímat lidské oko. Ať to jsou barvy displeje laciného notebooku, barvy profesionálního monitoru, barvy novinového tisku, barvy nejkvalitnějších tiskovin, čisté spektrální barvy duhy a spousty dalších. Podívejte se na obrázek chromatického diagramu a uvidíte, že ani nejkvalitnější monitory zdaleka nezobrazí všechny viditelné barvy, natož abychom mohli vytisknout skutečné barvy duhy. Při zkoumání přiloženého diagramu nezapomeňte na to, že i tento obrázek byl vytištěný na papír případně zobrazený na monito chromatický diagram ru počítače nebo promítnutý dataprojektorem, a proto jsou barvy zkreslené a vždy zkreslené budou. Na následujících obrázcích vidíte různé světelné zdroje a různá zařízení, která pracují s barvami. Zkuste o nich něco říct a ukázat, která část chromatického diagramu s nimi souvisí... Na pomoc školské praxi Školská fyzika 2014/1 Obr. 3, 4 výsledky samostatné práce žáků z výtvarné výchovy Aktuální článek je poslední částí série popisující mezipředmětové výukové téma Barvy kolem nás. Pro lepší orientaci v této sérii článků a v multimediální výukové lekci samotné uvádíme ještě jednou miniatury všech jedenácti stránek lekce. Barva světla a rozklad světla hranolem Vznik barevného spektra Duha Jednoduché a složené barvy, spektrofotometr Barva předmětů, co je to barva? Barevné světlo Barva povrchu při osvětlení barevným světlem Vnímání barev, barvoslepost RGB znamená Red Green Blue Televizní obrazovka, barevný monitor RGB zařízení Jsou i jiná čísla, než jen RGB, třeba CMYK Není RGB jako RGB, není CMYK jako CMYK SAmOSTATNÁ VýTVARNÁ PRÁCE Zelenou dostanu, když smíchám modrou a žlutou? 28
Mezipředmětové výukové téma Barvy kolem nás I.
Školská fyzika 2013/3 Na pomoc školské praxi Mezipředmětové výukové téma Barvy kolem nás I. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň V minulých číslech časopisu školská fyzika jste měli možnost
CZ.1.07/1.5.00/34.0304
Barevné modely Barevné modely se používají především pro zjednodušení záznamu barevné informace. Pokud bychom chtěli věrně reprodukovat barvy nějakého objektu, pak bychom museli zaznamenat v každém bodu
Mezipředmětové výukové téma Barvy kolem nás II.
Školská fyzika 2013/4 Na pomoc školské praxi Mezipředmětové výukové téma Barvy kolem nás II. Václav Kohout 1, Nakladatelství Fraus, s. r. o., Plzeň V minulých číslech časopisu školská fyzika jste měli
5.2.2 Rovinné zrcadlo
5.2.2 Rovinné zrcadlo ředpoklady: 5101, 5102, 5201 Terminologie pro přijímačky z fyziky Optická soustava = soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných paprsků. Optické
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 OHYB SVĚTLA V paprskové optice jsme se zabývali optickým zobrazováním (zrcadly, čočkami a jejich soustavami).
Využití ICT techniky především v uměleckém vzdělávání. Akademie - VOŠ, Gymn. a SOŠUP Světlá nad Sázavou
Datum: 1. 12. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Obor: Časová dotace: Vzdělávací cíl: Pomůcky: Využití ICT techniky především v uměleckém
WEBDISPEČINK NA MOBILNÍCH ZAŘÍZENÍCH PŘÍRUČKA PRO WD MOBILE
WEBDISPEČINK NA MOBILNÍCH ZAŘÍZENÍCH PŘÍRUČKA PRO WD MOBILE Úvodem WD je mobilní verze klasického WEBDISPEČINKU, která je určena pro chytré telefony a tablety. Je k dispozici pro platformy ios a Android,
4.5.1 Magnety, magnetické pole
4.5.1 Magnety, magnetické pole Předpoklady: 4101 Pomůcky: magnety, kancelářské sponky, papír, dřevěná dýha, hliníková kulička, měděná kulička (drát), železné piliny, papír, jehla (špendlík), korek (kus
Modul Řízení objednávek. www.money.cz
Modul Řízení objednávek www.money.cz 2 Money S5 Řízení objednávek Funkce modulu Obchodní modul Money S5 Řízení objednávek slouží k uskutečnění hromadných akcí s objednávkami, které zajistí dostatečné množství
Novinky verzí SKLADNÍK 4.24 a 4.25
Novinky verzí SKLADNÍK 4.24 a 4.25 Zakázky standardní přehled 1. Možnosti výběru 2. Zobrazení, funkce Zakázky přehled prací 1. Možnosti výběru 2. Mistři podle skupin 3. Tisk sumářů a skupin Zakázky ostatní
Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 1 VY 32 INOVACE 0101 0201
Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace Šablona 1 VY 32 INOVACE 0101 0201 VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor
Metodika pro učitele Optika SŠ
Metodika pro učitele Optika SŠ Základní charakteristika výukového programu: Popis: V šesti kapitolách se žáci seznámí se základními principy geometrické optiky, s optickými klamy a světelným spektrem.
Manuál Kentico CMSDesk pro KDU-ČSL
Manuál Kentico CMSDesk pro KDU-ČSL 2011 KDU-ČSL Obsah 1 Obecně... 3 1.1 Přihlašování... 3 1.2 Uživatelské prostředí... 4 2 Stránky... 4 2.1 Vytvoření nové stránky... 4 2.1.1 Texty... 7 2.1.2 Styly textu...
Uživatelská dokumentace
Uživatelská dokumentace k projektu Czech POINT Provozní řád Konverze dokumentů z elektronické do listinné podoby (z moci úřední) Vytvořeno dne: 29.11.2011 Verze: 2.0 2011 MVČR Obsah 1. Přihlášení do centrály
Laboratorní práce: Záření
Bezpečnost práce: 1. V průběhu práce si budete ohřívat vodu ve varné konvici. Při manipulace je zapotřebí opatrnost. Horké může být také pečivou ohřáté v mikrovlnné troubě. 2. Při práci s laserovými ukazovátky
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl
Podrobný postup pro doplnění Žádosti o dotaci prostřednictvím Portálu Farmáře. 1. kolo příjmu žádostí Programu rozvoje venkova (2014 2020)
Podrobný postup pro doplnění Žádosti o dotaci prostřednictvím Portálu Farmáře 1. kolo příjmu žádostí Programu rozvoje venkova (2014 2020) V tomto dokumentu je uveden podrobný postup doplnění Žádosti o
DATABÁZE 2007. DŮLEŽITÉ: Před načtením nové databáze do vaší databáze si prosím přečtěte následující informace, které vám umožní:
DATABÁZE 2007 DŮLEŽITÉ: Před načtením nové databáze do vaší databáze si prosím přečtěte následující informace, které vám umožní: - jednoduše a rychle provést úpravy ve struktuře vaší databáze podle potřeby
Grafický návrh v oděvním designu
Grafický návrh v oděvním designu Eva Nováková SSOGD Lysá nad Labem OBSAH ÚVOD... 1 Rozdělení grafických programů... 1 Bitmapová (rastrová) grafika... 3 Barvy... 5 Druhy barevných modulů... 5 VEKTOROVÁ
Teleskopie díl pátý (Triedr v astronomii)
Teleskopie díl pátý (Triedr v astronomii) Na první pohled se může zdát, že malé dalekohledy s převracející hranolovou soustavou, tzv. triedry, nejsou pro astronomická pozorování příliš vhodné. Čas od času
Základní škola, Staré Město, okr. Uherské Hradiště, příspěvková organizace. Komenské 1720, Staré Město, www.zsstmesto.cz. Metodika
Základní škola, Staré Město, okr. Uherské Hradiště, příspěvková organizace Komenské 1720, Staré Město, www.zsstmesto.cz Metodika k použití počítačové prezentace A Z kvíz Mgr. Martin MOTYČKA 2013 1 Metodika
Návod k používání registračního systému ČSLH www.hokejovaregistrace.cz
Návod k používání registračního systému ČSLH www.hokejovaregistrace.cz Osnova Přihlášení do systému Základní obrazovka Správa hráčů Přihlášky hráčů k registraci Žádosti o prodloužení registrace Žádosti
LED osvětlen. tlení. telné zdroje LED. LED diody. spektrum LED. Ing. Jana Lepší
Světeln telné zdroje LED osvětlen Ing. Jana Lepší Zdravotní ústav se sídlem v Ústí nad Labem Oddělení faktorů prostředí - pracoviště Plzeň jana.lepsi@zuusti.cz LED dioda - polovodičová elektronická součástka
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů
4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici
Vítězslav Bártl. únor 2013
VY_32_INOVACE_VB03_K Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav
TVORBA MULTIMEDIÁLNÍCH PREZENTACÍ. Mgr. Jan Straka
TVORBA MULTIMEDIÁLNÍCH PREZENTACÍ Mgr. Jan Straka Nejčastěji používaný program pro tvorbu multimediálních prezentací je PowerPoint. V naší škole v současné době užíváme verzi 2010, budeme se tedy věnovat
V této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému.
V této části manuálu bude popsán postup jak vytvářet a modifikovat stránky v publikačním systému Moris a jak plně využít všech možností systému. MENU Tvorba základního menu Ikona Menu umožňuje vytvořit
NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE
NÁVRHOVÝ PROGRAM VÝMĚNÍKŮ TEPLA FIRMY SECESPOL CAIRO 3.5.5 PŘÍRUČKA UŽIVATELE 1. Přehled možností programu 1.1. Hlavní okno Hlavní okno programu se skládá ze čtyř karet : Projekt, Zadání, Výsledky a Návrhový
Obsah. Obsah. Úvod... 7
Obsah Obsah Úvod... 7 1. Digitální fotografie... 10 1.1 Prohlížení obrázků pomocí Nero PhotoSnap Viewer... 10 1.1.1 Zobrazení na celou obrazovku...12 1.1.2 Jak zjednodušit přechod do jiné složky...13 1.1.3
Osvětlovací modely v počítačové grafice
Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz
TIP: Pro vložení konce stránky můžete použít klávesovou zkratku CTRL + Enter.
Dialogové okno Sloupce Vložení nového oddílu Pokud chcete mít oddělené jednotlivé části dokumentu (například kapitoly), musíte roz dělit dokument na více oddílů. To mimo jiné umožňuje jinak formátovat
CAD II přednáška č. 1
Oko je velmi citlivý a komplikovaný orgán. Všechny jeho části velice úzce spolupracují, aby zprostředkovaly vnímání obrazu. A jsou to oči a zejména mozek, orgány, které nám dokáží přiblížit okolní svět,
INTERNETOVÝ TRH S POHLEDÁVKAMI. Uživatelská příručka
INTERNETOVÝ TRH S POHLEDÁVKAMI Uživatelská příručka 1. března 2013 Obsah Registrace... 3 Registrace fyzické osoby... 3 Registrace právnické osoby... 6 Uživatelské role v systému... 8 Přihlášení do systému...
1 - Prostředí programu WORD 2007
1 - Prostředí programu WORD 2007 Program WORD 2007 slouží k psaní textů, do kterých je možné vkládat různé obrázky, tabulky a grafy. Vytvořené texty se ukládají jako dokumenty s příponou docx (formát Word
Smyslová soustava člověka (laboratorní práce)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.1.28/02.0055 Smyslová soustava člověka (laboratorní práce) Označení: EU-Inovace-Př-8-34 Předmět: přírodopis Cílová skupina: 8. třída
Gymnázium Jana Pivečky a Střední odborná škola Slavičín. III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT
Název projektu Číslo projektu Název školy Autor Název šablony Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748 Gymnázium Jana Pivečky a Střední odborná škola Slavičín Ing. Alois Kužela
Vzdělávání a podpora pedagogických pracovníků ZŠ a SŠ při integraci ICT do výuky POČÍTAČOVÁ GRAFIKA - 1 -
POČÍTAČOVÁ GRAFIKA B1 POČÍTAČOVÁ GRAFIKA RNDr. Jan Preclík, Ph.D. 2. 1. 2015-1 - Obsah Počítačová grafika úvod................................ 3 Zoner Callisto 5...................................... 6
Specifikace pravidel hodnocení pro vzdělávací obor: český jazyk a literatura
Specifikace pravidel hodnocení pro vzdělávací obor: český jazyk a literatura Na základě 69 zákona 561/2004 Sb., na základě 3, 4 vyhlášky MŠMT 13/2005 (o středním vzdělávání), 14, 15 a 16 vyhlášky MŠMT
Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře
Podrobný postup pro vygenerování a zaslání Žádosti o podporu a příloh OPR přes Portál farmáře 3. a 4. výzva příjmu žádostí Operačního programu Rybářství (2014 2020) V následujícím dokumentu je uveden podrobný
11. Pravidla pro provádění informačních a propagačních aktivit
11. Pravidla pro provádění informačních a propagačních aktivit 11.1 Obecná pravidla zajišťování publicity projektu Na základě Nařízení Evropské komise (ES) č. 1828/2006 je příjemce povinen informovat příjemce
Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.
7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,
Úprava fotografií hledání detailu, zvětšování (pracovní list)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055 Úprava fotografií hledání detailu, zvětšování (pracovní list) Označení: EU-Inovace-Inf-6-01 Předmět: Informatika Cílová
Programový komplet pro evidence provozu jídelny v. 2.55. modul Sklad. 2001 Sviták Bechyně Ladislav Sviták hotline: 608/253 642
Programový komplet pro evidence provozu jídelny v. 2.55 modul Sklad 2001 Sviták Bechyně Ladislav Sviták hotline: 608/253 642 Obsah 1 Programový komplet pro evidenci provozu jídelny modul SKLAD...3 1.1
Příprava na 1. čtvrtletní písemku pro třídu 1EB
Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné
Jak pracovat s kalkulačním programem HELUZ komín
Jak pracovat s kalkulačním programem HELUZ komín Aplikace Heluz komíny je určena pro výpočet potřebných komponentů zvoleného komínového systému a pro zjištění jeho ceníkové ceny. V levém sloupci je nabídka:
Školní kolo soutěže Mladý programátor 2016, kategorie A, B
Doporučené hodnocení školního kola: Hodnotit mohou buď učitelé školy, tým rodičů nebo si žáci, kteří se zúčastní soutěže, mohou ohodnotit úlohy navzájem sami (v tomto případě doporučujeme, aby si žáci
ZAHRADNÍ DŘEVĚNÉ DOMKY
ZAHRADNÍ DŘEVĚNÉ DOMKY Jak správně vybrat dřevěný domek? "Klasický dřevěný zahradní domek zajistí souznění Vaší zahrady s přírodou." www.lanitplast.cz 1.3.2016 1 Jak správně vybrat dřevěný domek Zahradní
1.2.5 Reálná čísla I. Předpoklady: 010204
.2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý
Metodický list - Coach
Metodický list - Coach Optika POROVNÁNÍ SVITU ZÁŘIVKY A ŽÁROVKY Fyzikální princip Zářivka je nízkotlaká výbojka, která se používá jako zdroj světla. Tvoří ji zářivkové těleso, jehož základem je nejčastěji
4. ročník. Zpracovala: Mgr. Zuzana Ryzí, ZŠ Lysice, 1. stupeň
Zpracovala: Mgr. Zuzana Ryzí, ZŠ Lysice, 1. stupeň 1. Anotace Úkol je zařazen do vzdělávací oblasti Jazyk a jazyková komunikace. Žáci budou řešit úkoly společně, ve dvojicích, ale i ve skupině. Každá skupina
170/2010 Sb. VYHLÁŠKA. ze dne 21. května 2010
170/2010 Sb. VYHLÁŠKA ze dne 21. května 2010 o bateriích a akumulátorech a o změně vyhlášky č. 383/2001 Sb., o podrobnostech nakládání s odpady, ve znění pozdějších předpisů Ministerstvo životního prostředí
Ukázka knihy z internetového knihkupectví www.kosmas.cz
Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D : K O S 1 8 1 0 8 2 U k á z k a k n i h
4 Část II Základy práce v systému. 6 Část III Úvodní obrazovka. 8 Část IV Práce s přehledy. 13 Část V Kontakty. 19 Část VI Operativa
2 Dokumentace SMAN Obsah Kapitoly Část I Úvod 4 Část II Základy práce v systému 6 Část III Úvodní obrazovka 8 Část IV Práce s přehledy 13 Část V Kontakty 19 Část VI Operativa 23 Část VII Nabídky 35 Index
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jana Kalinová [ÚLOHA 01 ÚVOD DO PROSTŘEDÍ OBJEMOVÁ SOUČÁST; PŘÍKAZ SKICA A JEJÍ VAZBENÍ] 1 CÍL KAPITOLY. Cílem této kapitoly je sžití se s win prostředím
Podpůrný výukový materiál s využitím ICT* Podpůrný výukový materiál reedukační hodiny *
Podpůrný výukový materiál s využitím ICT* Podpůrný výukový materiál reedukační hodiny * Název: Pohádkové počítání,sčítání a odčítání do 20-typ příkladů 10+4, 14-4, reedukační pracovní listy Autor: Mgr.
VY_62_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen Červen 2012
VY_62_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen Červen 2012 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
Aktivity s GPS 3. Měření některých fyzikálních veličin
Aktivity s GPS 3 Měření některých fyzikálních veličin Autor: L. Dvořák Cílem materiálu je pomoci vyučujícím s přípravou a následně i s provedením terénního cvičení s využitím GPS přijímačů se žáky II.
Kalibrace monitoru. Příručka o kalibraci, vytvoření a použití ICC profilu monitoru
Kalibrace monitoru Příručka o kalibraci, vytvoření a použití ICC profilu monitoru Obsah: Sondy PANTONE díl I.: Úvod Představení kalibračních sond... str. 03 Proč řídit barevnost monitoru?... str. 04 Sondy
Poukázky v obálkách. MOJESODEXO.CZ - Poukázky v obálkách Uživatelská příručka MOJESODEXO.CZ. Uživatelská příručka. Strana 1 / 1. Verze aplikace: 1.4.
MOJESODEXO.CZ Poukázky v obálkách Verze aplikace: 1.4.0 Aktualizováno: 22. 9. 2014 17:44 Strana 1 / 1 OBSAH DOKUMENTU 1. ÚVOD... 2 1.1. CO JSOU TO POUKÁZKY V OBÁLKÁCH?... 2 1.2. JAKÉ POUKÁZKY MOHOU BÝT
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Anemometrické metody Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl v rámci
Měření změny objemu vody při tuhnutí
Měření změny objemu vody při tuhnutí VÁCLAVA KOPECKÁ Katedra didaktiky fyziky, Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Anotace Od prosince 2012 jsou na webovém portálu Alik.cz publikovány
3.5.8 Otočení. Předpoklady: 3506
3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,
Projekt Odyssea, www.odyssea.cz
Projekt Odyssea, www.odyssea.cz Příprava na vyučování s cíli osobnostní a sociální výchovy (typ B) Téma oborové Vzdělávací obor Ročník Časový rozsah Definice matematických pojmů Matematika a její aplikace
rozlišení obrazovky 1024 x 768 pixelů operační systém Windows 2000, Windows XP, Windows Vista 1 volný sériový port (volitelný) přístup na internet
1. Úvod Tato příručka obsahuje všechny informace, které budete potřebovat k práci s programem OmegaDirect. Pomocí příkladů bude v této příručce vysvětleno: zadání objednávky, správa a evidence objednávek,
ROZCVIČKY. (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy).
ROZCVIČKY Z MATEMATIKY 8. ROČ Prezentace jsou vytvořeny v MS PowerPoint 2010 (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy). Anotace: Materiál slouží k procvičení základních
Vodafone promo kit uživatelský manuál http://promo.vodafone.cz/ Uživatelský manuál pro aplikaci. Vodafone promo kit. Verze dokumentu: 2.
Uživatelský manuál pro aplikaci Vodafone promo kit Verze dokumentu: 2.1 Vytvořeno: V Praze dne 8. 9. 2011 1 Obsah Vodafone promo kit uživatelský manuál Webové rozhraní aplikace Vodafone promo kit... 4
Pracovní listy s komponentou ICT
Téma: Dálkový průzkum Země Časová dotace: 3 hodiny Pracovní listy s komponentou ICT Cíl: Pochopení principu dálkového průzkumu Země, práce se snímkem v prostředí programu MultiSpec, zobrazování snímku
Výsledky přijímacích zkoušek
Výsledky přijímacích zkoušek V tomto modulu komise zadává výsledky přijímací zkoušky a navrhuje, zda uchazeče přijmout či nepřijmout včetně odůvodnění. 1. Spuštění modulu "Výsledky přijímacích zkoušek"
Využití interaktivní tabule ve výuce
Využití interaktivní tabule ve výuce Vzdělávání je neustále inovováno využíváním moderní didaktické techniky a učebních pomůcek, které se pro dnešní generaci vzdělávání staly téměř nepostradatelnými. V
Návod na použití kamerového systému do přívěsu
Návod na použití kamerového systému do přívěsu Obj. č: 33275 Úvod: Tento produkt pracuje v pásmu o rozsahu ISM-2,4GHz a proto může být legálně používán po celém světě bez povolení nebo schválení. Jsme
DUM 01 téma: Úvod do počítačové grafiky
DUM 01 téma: Úvod do počítačové grafiky ze sady: 02 tematický okruh sady: Bitmapová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu: anotace:
Difrakce na mřížce. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 7
Úloha č. 7 Difrakce na mřížce Úkoly měření: 1. Prostudujte difrakci na mřížce, štěrbině a dvojštěrbině. 2. Na základě měření určete: a) Vzdálenost štěrbin u zvolených mřížek. b) Změřte a vypočítejte úhlovou
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Určeno pro Sekce Předmět Téma / kapitola 6. ročník Základní EVVO Fotosyntéza
SCHÉMA PROCESU MTM ÚPRAV V SYSTÉMU INVESMARK FUTURA
SCHÉMA PROCESU MTM ÚPRAV V SYSTÉMU INVESMARK FUTURA PŘÍPRAVA V PROGRAMU PGS Zadání názvů úprav: Při práci v programu PGS se díly ukládají pod odlišnými názvy, čím se zabrání přepsání původních dílů. Také
21 SROVNÁVACÍ LCA ANALÝZA KLASICKÝCH ŽÁROVEK A KOMPAKTNÍCH ZÁŘIVEK
21 SROVNÁVACÍ LCA ANALÝZA KLASICKÝCH ŽÁROVEK A KOMPAKTNÍCH ZÁŘIVEK Pavel Rokos ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra elektrotechnologie Úvod Světelné zdroje jsou jedním
Výsledky osvětové kampaně Bezpečnost za volantem péče o zrak
Výsledky osvětové kampaně Bezpečnost za volantem péče o zrak Screening zraku řidičů aneb jak dobře na českých silnicích vidíme Od druhé poloviny dubna do začátku června tohoto roku probíhala na našich
Autodesk Inventor 8 vysunutí
Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt
2.1.7 Zrcadlo I. Předpoklady: 020106. Pomůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr
2.1.7 Zrcadlo I ředpoklady: 020106 omůcky: zrcadla, laser, rozprašovač, bílý a černý papír, velký úhloměr ř. 1: Nakresli dva obrázky. Na prvním zachyť, jak vidíme vzdálené předměty, na druhém jak vidíme
Kreativní malování. s dětmi. Dana Cejpková
Kreativní malování s dětmi Dana Cejpková Ukázka knihy z internetového knihkupectví www.kosmas.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w. k o s m a s. c z, U I D
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ
ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)
Pracovní list SVĚTELNÉ JEVY Jméno:
Zadání projektu Optické jevy Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 9. 5. Vlastní práce 4 vyučovací hodiny do 22. 5. Prezentace 24.5. Test a odevzdání portfólií ke kontrole
Příručka pro zadavatele E-ZAK krok za krokem
Příručka pro zadavatele E-ZAK krok za krokem Vyrobeno pro příspěvkové organizace Jihomoravského kraje pro administrace zakázek s předpokládanou hodnotou vyšší než 500 tis. Kč bez DPH Tento dokument slouží
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055. Nástrahy virtuální reality (pracovní list)
Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055 Označení: EU-Inovace-Inf-6-03 Předmět: Informatika Cílová skupina: 6. třída Autor: Jana Čejková Časová dotace: 1 vyučovací
Vizualizace v ArConu (1.část) světla a stíny
Vizualizace v ArConu (1.část) světla a stíny Při vytváření návrhu v ArConu chcete určitě docílit co nejvíce reálnou (nebo někdy stylizovanou) vizualizaci. Na výsledek vizualizace mají kromě samotného architektonického
Digitální album návod k použití
Digitální album návod k použití ALBUM je schopné stahovat (nahrávat) fotografie přímo z digitálního fotoaparátu bez použití počítače. Pojme více než 20 tisíc fotografií ve formátu JPG, optimalizovaných
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
10 je 0,1; nebo taky, že 256
LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání
Algoritmizace a programování
Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů. Naučí nás rozdělit
Instalační příručka. Barevný monitor LCD
Instalační příručka Barevný monitor LCD Symboly týkající se bezpečnosti V této příručce se používají následující symboly. Označují důležité informace. Pečlivě si je přečtěte. VAROVÁNÍ Pokud se informacemi
Co najdete v ASPI? (pro uživatele SVI FSE UJEP)
Co najdete v ASPI? (pro uživatele SVI FSE UJEP) ASPI = komplexní pokrytí všech předpisů publikovaných na území ČR včetně předpisů měst a obcí a předpisů ES / EU Manuál ASPI: http://www.systemaspi.cz/co_je_system_aspi/co_je_system_aspi.html
ABSOLVENTSKÉ PRÁCE ŽÁKŮ DEVÁTÉHO ROČNÍKU
ABSOLVENTSKÉ PRÁCE ŽÁKŮ DEVÁTÉHO ROČNÍKU školní rok 2015/2016 Základní škola Chrudim, Dr. J. Malíka ABSOLVENTSKÉ PRÁCE ŽÁKŮ DEVÁTÉHO ROČNÍKU Absolventské práce jsou pro žáky příležitostí nalézt propojení
Organismy. Látky. Bakterie drobné, okem neviditelné, některé jsou původci nemocí, většina z nich je však velmi užitečná a v přírodě potřebná
Organismy Všechny živé tvory dohromady nazýváme živé organismy (zkráceně "organismy") Živé organismy můžeme roztřídit na čtyři hlavní skupiny: Bakterie drobné, okem neviditelné, některé jsou původci nemocí,
Demonstrační experiment pro výuku využívající Crookesův radiometr
David Černý TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován Evropským
Vyplňte API klíč, který si vygenerujete v Nastavení obchodu v profilu Uloženky v části Nastavit klíč pro API.
Obsah Aktivace modulu... 2 Nastavení poboček a cen... 3 Cena... 5 Zdarma od... 5 Mapování stavů zásilek... 6 Zobrazení dopravy na eshopu... 6 Práce s objednávkami... 9 Vytvoření zásilky... 10 Stornování
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,
Znalectví středověké hmotné kultury referát Koňský postroj ve středověku. Alžběta Čerevková učo: 330952
Znalectví středověké hmotné kultury referát Koňský postroj ve středověku Alžběta Čerevková učo: 330952 Úvod Středověk je považován za zlatý věk koně, neboť využití tohoto všestranného zvířete můžeme pozorovat
ZAŘÍZENÍ PRO ODBĚR VZORKŮ VZ
Technické podmínky 1 RK 12 1075 R A Y M A N spol. s r. o. KLADNO ZAŘÍZENÍ PRO ODBĚR VZORKŮ VZ RK 12 1075 Obr. 1 Zařízení pro odběr vzorků LEGENDA: 1. Pneumatický válec 2. Těleso vzorkovacího zařízení 3.
Přílohy Příloha 1 seznam grafů a grafy Přílohy 2 seznam tabulek a tabulky Přílohy 3 seznam obrázků a obrázky Přílohy 4 seznam nákresů a nákresy
Přílohy Příloha 1 seznam grafů a grafy Přílohy 2 seznam tabulek a tabulky Přílohy 3 seznam obrázků a obrázky Přílohy 4 seznam nákresů a nákresy Příloha 5 seznam použitých norem Příloha 6 - seznam použité
MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů
MSSF Benefit praktický průvodce pro žadatele v rámci Operačního programu Rozvoj lidských zdrojů MSSF Benefit dostupnost a instalace MSSF Benefit bude dostupný ke stažení na stránkách www.kr-olomoucky.cz
Průzkum veřejného mínění věcné hodnocení
Příloha č. 2 ke Zprávě o posouzení a hodnocení nabídek Průzkum veřejného mínění věcné hodnocení 1. FACTUM INVENIO ad 2. Popis metodiky průzkumu 80 bodů Hodnotící komise posoudila nabídku uchazeče v tomto