Příručka pro zkoušky elektrotechniků
|
|
- Zdeněk Beran
- před 9 lety
- Počet zobrazení:
Transkript
1 1_4 obal 10vyd 2012 sv 95.qxd :18 Page 1 KNIŽNICE SVAZEK 95 Ing. Michal Kříž Příručka pro zkoušky elektrotechniků požadavky na základní odbornou způsobilost (desáté aktualizované vydání) DoporuËeno Elektrotechnick m svazem Ëesk m ñ autorizovan m ûivnostensk m spoleëenstvem zaëlenïn m v Hospod skè komo e»r jako materi l pro p Ìpravu ke zkouök m odbornè zp sobilosti elektrotechnik a pro jejich celoûivotnì vzdïl v nì. Internetov InformaËnÌ SystÈm pro Elektrotechniky iisel
2 2_3 obal 10 vyd 2012 sv 95.qxd :01 Page 1
3 Ing. Michal Kříž Příručka pro zkoušky elektrotechniků požadavky na základní odbornou způsobilost (desáté aktualizované vydání) Text k inzerátu na první straně obálky Mezinárodní firma FINDER s téměř 60tiletou tradicí výroby elektrotechnických a elektronických přístrojů: pro spínání: pro instalace budov: relé do plošných spojů impulzně ovládané spínače průmyslová relé soumrakové spínače vazební členy pohybová čidla schodišt, ové automaty pro ovládání a kontrolu: spínací hodiny relé s nuceně vedenými kontakty stmívače časová relé modulární stykače elektroměry kontrolní a měřicí relé pro drážní aplikace snímače hladiny napájecí zdroje pro fotovoltaické aplikace přepět, ové ochrany polovodičová relé Kontakt: Finder CZ, s. r. o., Radiová 1567/2b, Praha 10 tel , fax: findernet.cz@findernet.com IN-EL, Praha, 2014
4 ISBN IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř
5 Příručka pro zkoušky elektrotechniků požadavky na základní odbornou způsobilost (desáté aktualizované vydání) Doporučeno Elektrotechnickým svazem českým autorizovaným živnostenským společenstvem začleněným v Hospodářské komoře ČR, jako materiál pro přípravu ke zkouškám odborné způsobilosti elektrotechniků a pro jejich celoživotní vzdělávání. 3
6 Elektrotechnika se stala tak širokým oborem, že již není možné, aby jedinec obsáhl veškerá její odvětví. V podstatě to ani není nutné. Přesto je však třeba si uvědomit, že principy elektrotechniky jsou společné a že z těchto společných principů vycházejí i zásady bezpečnosti, které se v oblasti elektrotechniky uplatňují. Právě těmto zásadám se věnuje již desáté aktualizované vydání této příručky. Je možno ji považovat za základ pro přípravu elektrotechniků ke zkouškám i přezkoušení jejich odborné způsobilosti. Rozlišujeme tak požadavky na základní odbornou způsobilost od požadavků na odbornou způsobilost vedoucích elektrotechniků a projektantů, od kterých se očekává, že navíc k těmto zásadám zvládnou i svou speciální problematiku, které jsou věnovány další příručky. Tato příručka podává výklad základních poznatků, jež jsou důležité, aby elektrotechnici uměli rozpoznat nebezpečí, která mohou při provozu elektrického zařízení vznikat. Nemusí se přitom jednat pouze o nebezpečí pro osoby, ale i ohrožení majetku a okolí. Prvá část vychází z jednoduchých a snadno představitelných základních vztahů nutných k pochopení elektrických jevů. Na nich jsou totiž založeny jak vlastní funkce elektrických zařízení, tak i působení prostředků ochrany před nebezpečími, která elektřina vyvolává. Na tento základ navazuje druhá část, která byla zpracována již s uvážením připravované ČSN EN ed. 3:2014, v níž jsou vysvětleny zásady bezpečnosti v elektrotechnice. Zásady bezpečnosti v elektrotechnice jsou založeny na způsobu provedení zařízení a také na opatřeních, která musí být dodržována při práci a obsluze zařízení. K tomu je nezbytné znát např. význam bezpečnostních barev, určitých značek i zásady péče o zařízení. Při práci na zařízeních a jejich obsluze je nutno dodržovat určité zásady, je nutno používat předepsané prostředky a pracoviště je nutno odpovídajícím způsobem zajistit. Právě zásadám práce na elektrických zařízeních a jejich obsluhy je věnována další, třetí část této publikace. Čtvrtá část se zmiňuje o potřebě provádění revizí elektrických zařízení, pátá část probírá zásady první pomoci při úrazu elektrickým proudem. Jedním ze základů, na kterém by elektrotechnik měl uplatňovat svůj přístup ke své práci, je pro něj znalost problematiky ochrany před úrazem elektrickým proudem u elektrických zařízení. I když podstata této ochrany zůstává po řadu desetiletí stejná, sjednocuje se její celkové pojetí tak, aby stejné zásady byly uplatňovány ve všech elektrotechnických oborech. Přestože jsme byli zvyklí pohlížet na ochranu před dotykem téměř výhradně jako na problematiku silové elektrotechniky, musí se s ní vyrovnávat jak výrobci zařízení informační techniky, tak i ti, kteří je montují a instalují. Proto je této problematice tradičně věnována jedna z nejobsáhlejších částí, to je část šestá. Ta je upravena již s ohledem na sjednocené pojetí ochrany před úrazem elektrickým proudem ve veškerých elektrických zařízeních, které je obsaženo v ČSN EN ed. 2:2003 i s ohledem na zásady této ochrany v elektrických instalacích podle ČSN ed. 2:2007. Aby elektrické zařízení nebylo při poruše některé své funkce ohroženo a neohrožovalo okolí, je nutné dbát na dodržení zásad jeho provedení a připojení. Zařízení musí být chráněno před zkraty a nadproudy a zároveň je třeba zajistit, aby při poruše byla odpojena jen jeho nezbytně nutná část. Zásadám správného provedení, připojení a ochrany zařízení před nadproudy, ochranným opatřením v elektrických rozvodech, elektrických stanicích a ve strojních zařízeních je věnována další, sedmá část příručky. I v té je zachycen nejnovější vývoj požadavků týkajících se zejména zajištění bezpečného provozu strojů podle ČSN EN ed. 2:2007. Tato kapi- 4
7 tola obsahuje i vysvětlení základních představ spojených s vyhodnocováním rizik spojených s provozem elektrického zařízení. V neposlední řadě je třeba zajistit nejen u elektrických, ale též u neelektrických zařízení ochranu před bleskem. Její provedení záleží na důležitosti objektu, ale též na míře jeho ohrožení a na počtu osob v objektu. Před nepřímými účinky blesku, jimiž jsou přepětí, je třeba chránit citlivá elektronická zařízení. Problematika této ochrany vystupuje stále více do popředí. Té se věnuje osmá část příručky, ve které jsou objasněny hlavní zásady komplexního pojetí ochrany před bleskem již podle nejnovější mezinárodní a evropské normy zavedené v ČR jako soubor ČSN EN ed. 2. Desáté vydání této velmi žádané příručky je aktualizováno s ustanoveními technických norem i legislativních předpisů, které nabyly platnost v posledním období. Podle posledního vydání mezinárodní terminologické normy pro elektrické instalace zavedené v ČR jako ČSN IEC : 2006 i nového vydání normy pro značení svorek a vodičů ČSN EN ed. 4 je v tomto vydání u střídavých sítí obnoveno užívání starších termínů nulový bod a nulový vodič (označení N ). Použití termínů střední vodič a střední bod (označení M ) se ponechává pro stejnosměrné obvody. V souladu s mezinárodně uplatňovanou praxí se tedy rozlišuje mezi nulovým N (bodem a vodičem) ve střídavých sítích a středním M (bodem a vodičem) ve stejnosměrných sítích. Na konci jednotlivých kapitol jsou opět kontrolní otázky včetně stručných odpovědí, případně odkazů na příslušnou pasáž v textu. V tomto desátém vydání jsou zohledněna nová vydání technických norem, jako je ČSN EN ed. 3 pro práci na elektrických zařízeních a jejich obsluhu, ČSN ed. 2 pro značení vodičů barvami anebo číslicemi, souboru ČSN ISO 3864 pro bezpečnostní barvy a značky, nová vydání částí 7 souboru ČSN , které platí pro elektrické instalace v různých prostorech a objektech (např. zdravotnických prostorech). Byly upraveny definice a třídění elektrických zařízení, aby odpovídaly novému vydání ČSN ed. 2:2014 uvádějícímu rozdělení elektrických zařízení odpovídající současnému stavu techniky. Příručka, jež obsahuje standard požadavků na základní odbornou způsobilost elektrotechniků, by měla být nejen dobrou pomůckou pro jejich přípravu ke zkouškám, případně k certifikaci, ale i užitečným dílem pro každodenní elektrotechnickou praxi. Rovněž by se měla stát základním studijním materiálem pro žáky učilišt, středních, vyšších a vysokých škol elektrotechnických oborů. IN-EL, Praha,
8
9 Obsah IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř 1. ZÁKLADY ELEKTROTECHNIKY Základní vztahy v elektrotechnice Elektrické napětí, proud, odpor a výkon Jednotky elektrických veličin Stejnosměrný (DC) a střídavý proud (AC) Efektivní hodnoty napětí, proudu a výkonu impedance Sériové a paralelní řazení odporů a impedancí Kirchhoffovy zákony Trojfázové obvody Význam a rozdělení elektrotechnických materiálů Vodiče a izolanty Kapacity a indukčnosti Účinky napětí a proudů Účinky napětí a proudů na látky a materiály Účinky proudů na lidský organismus (prahy vnímání, odpoutání, srdeční fibrilace) Odpor (impedance) lidského těla Rozdíl mezi účinky stejnosměrného a střídavého proudu 47 Literatura ke kapitole 1 48 Technické normy ke kapitole 1 48 Kontrolní otázky ke kapitole ZÁSADY BEZPEČNOSTI V ELEKTROTECHNICE Bezpečnost a podmínky jejího dodržování Bezpečnost elektrických zařízení Odborná způsobilost v elektrotechnice Rozdělení elektrických zařízení z hlediska bezpečnostních rizik Bezpečnostní značení bezpečnostní barvy Bezpečnostní značky Ochranná pásma elektrických zařízení Ochranná pásma venkovních vedení Ochranná pásma podzemních vedení Ochranná pásma elektrických stanic Ochranná pásma výroben Systém povinné péče o bezpečnost elektrických zařízení Průvodní a provozní dokumentace 71 7
10 2.2 Rozdělení elektrických zařízení Druhy elektrických zařízení Rozdělení elektrických zařízení podle napětí Jmenovitá napětí do V Druhy sítí (TN, TT, IT) 77 8 IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř Literatura ke kapitole 2 82 Technické normy ke kapitole 2 82 Právní předpisy ke kapitole 2 83 Kontrolní otázky ke kapitole PRÁCE NA ELEKTRICKÝCH ZAŘÍZENÍCH A JEJICH OBSLUHA Bezpečnost při činnostech na elektrických zařízeních Rozdíl mezi obsluhou elektrických zařízení a prací na elektrických zařízeních Kvalifikace osob určených pro obsluhu elektrických zařízení a pro práci na elektrických zařízeních Vedoucí práce Osoba odpovědná za elektrické zařízení Práce podle pokynů, práce s dohledem a pod dozorem Práce na elektrických zařízeních a jejich obsluha vykonávaná osobami seznámenými, poučenými, znalými a znalými s vyšší kvalifikací Nářadí, výstroj (osobní ochranné a pracovní prostředky) a přístroje Označení elektrických zařízení Označení na veřejně přístupných místech Označení pro zajištění bezpečnosti při práci Používání bezpečnostních sdělení Oděv při práci a obsluze elektrických zařízení Dorozumívání při činnostech na elektrickém zařízení Zajištění bezpečnosti při práci Základní technicko-organizační opatření Na které práce se příkaz B vydává Kdo příkaz B vydává a podepisuje Co znamená ukončit práce na zařízení Zapnutí zařízení Zásady pro obsluhu elektrických zařízení (pro provozní činnosti podle ČSN EN ed. 2) Způsoby práce na elektrických zařízeních Zásady pro práce na elektrických zařízeních Kdo musí být seznámen s funkcí a účelem spínačů Vypínání elektrických zařízení z bezpečnostních a požárních důvodů Zajištění pracoviště vypnutí, odpojení a další podmínky 98
11 IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř JISTÍME VÁ S... Minia Modulární přístroje Modeion Kompaktní jističe Arion Vzduchové jističe Varius Pojistkové systémy Conteo Přístroje pro spínání a ovládání Distri Rozvodnicové a rozváděčové skříně
12 3.2 Elektrotechnické provozovny Opatření pro zajištění provozu v akumulátorovnách a nabíjárnách Zajištění elektrických zařízení při požáru, zátopách a jiných ohroženích Ochranné a pracovní prostředky Používání a údržba pryžových rukavic a obuvi pro elektrotechniku Vybavení elektrických provozoven ochrannými a pracovními prostředky Vybavení elektrických zařízení bezpečnostními značkami a tabulkami 101 Literatura ke kapitole Technické normy ke kapitole Právní předpisy ke kapitole Kontrolní otázky ke kapitole REVIZE, PROHLÍDKY A ZKOUŠKY ELEKTRICKÝCH ZAŘÍZENÍ Výchozí a pravidelné revize elektrických zařízení, periodické prohlídky a zkoušky Účel revizí Lhůty revizí a postup při revizích Kontroly a revize elektrického ručního nářadí a spotřebičů držených v ruce 107 Literatura ke kapitole Technické normy ke kapitole Právní předpisy ke kapitole Kontrolní otázky ke kapitole PRVNÍ POMOC PŘI ÚRAZU ELEKTRICKOU ENERGIÍ Rozdělení úrazů elektrickou energií podle příčiny Zásady preventivních opatření Postup záchranných prací Postup při poskytování první pomoci Ošetření postiženého Umělé dýchání Nepřímá srdeční masáž Přivolání lékaře, další ošetření, oznámení úrazu Sepsání záznamu o úrazu 118 Literatura ke kapitole
13 Právní předpisy ke kapitole Kontrolní otázky ke kapitole OCHRANA PŘED ÚRAZEM ELEKTRICKÝM PROUDEM Podmínky pro zajištění ochrany před úrazem elektrickým proudem Dovolená dotyková napětí Základní pravidlo ochrany před úrazem elektrickým proudem Zajištění ochrany z hlediska podmínek provozu Normální podmínky základní ochrana (ochrana před dotykem živých částí) Podmínky jedné poruchy ochrana při poruše (ochrana před dotykem neživých částí) Zvláštní případy doplňková ochrana Prostředky k zajištění ochrany Prostředky základní ochrany (dříve též ochrany před dotykem živých částí) Základní izolace Přepážky a kryty Zábrany Ochrana polohou (umístěním mimo dosah) Omezení napětí Omezení ustáleného dotykového proudu a náboje Řízení potenciálu Prostředky ochrany při poruše (méně přesně ochrany před dotykem neživých částí) Přídavná izolace Ochranné pospojování Ochranné stínění Automatické odpojení od zdroje Jednoduché oddělení (obvodů) Nevodivé okolí Řízení potenciálu Prostředky zvýšené ochrany zajišt ující zároveň ochranu základní i při poruše Zesílená izolace Ochranné oddělení obvodů Zdroj omezeného proudu Ochranná impedance
14 6.5 Kompletní opatření pro ochranu před úrazem elektrickým proudem Automatické odpojení od zdroje Dvojitá nebo zesílená izolace Elektrické oddělení SELV, PELV a FELV SELV PELV FELV V praxi méně používaná ochranná opatření Ochranné pospojování Nevodivé okolí Omezení proudu a náboje Požadavky na prostředky základní ochrany Izolační odpor elektrických zařízení Krytí IP a IK kód Stupně ochrany krytem IP kód Stupně ochrany krytem IK kód Elektrické sítě z hlediska ochrany před úrazem elektrickým proudem Rozdíl mezi sítěmi TN-C a TN-S Rozdíl mezi sítěmi TN, TT a IT Sítě TT Sítě IT Doplňující pospojování Prostředky ochrany při poruše ochranné vodiče, zemnění a pospojování, ochranné přístroje Vedení a kladení ochranných vodičů Využití náhodných ochranných vodičů, vodičů pospojování, překlenutí vodoměrů Užití zemničů Dimenzování, uložení a spojování zemničů Ochrana zemničů před korozí Ochranné přístroje Nadproudové ochranné přístroje Proudové chrániče Napět ové chrániče Hlídače izolačního stavu
15 6.9 Koordinace ochranných opatření třídy ochrany elektrických předmětů, vnější vlivy, provozní stavy 170 Literatura ke kapitole Technické normy ke kapitole Kontrolní otázky ke kapitole PROVEDENÍ ELEKTRICKÝCH ZAŘÍZENÍ Elektrické vedení jištění a jeho volba Základní zásady pro dimenzování vedení Proudy vodičů Jisticí prvky Zásady volby jisticích prvků Všeobecné a konstrukční požadavky Označení vodičů a svorek Provedení ochranných svorek (místa připojení ochranných vodičů) Barvy světelných návěstí a ovládacích tlačítek a jejich základní označení Elektrická zařízení v prostředí normálním Elektrická zařízení v prostředí mokrém a s nebezpečím požáru hořlavých prachů a hmot Elektrická zařízení v hořlavých hmotách a na hořlavých podkladech Kladení vedení Zásady spojování vodičů Průchody (prostupy) vedení zdmi a konstrukcemi Kabelové prostory a kanály Připojování elektrických přístrojů a spotřebičů Zásuvky, vidlice, přívodky a nástrčky hlavní zásady připojení Domovní zásuvky a vidlice Průmyslové zásuvky Nástrčky a přívodky Kladení pohyblivých přívodů a šňůrových vedení Vnitřní elektrické rozvody Zajištění bezpečnosti při připojování odběrného elektrického zařízení k síti Průřezy vodičů v bytech a jejich jištění Připojování zásuvek Instalace v koupelnách, ochranné pospojování, proudový chránič Elektrické stanice Elektrické stanice podle obsluhy
16 7.6.2 Uzemnění v elektrických stanicích Zásady uzemňování Strojní zařízení Obsah technické dokumentace Základní informace Provedení řídicích obvodů Opatření pro omezení rizika v řídicích obvodech Přístroje pro nouzové vypnutí Označování vodičů doplnění ke kapitole Připojování pohyblivých nebo přestavitelných částí strojního zařízení Prozatímní elektrická zařízení Rozdělení prozatímních elektrických zařízení Zásady pro zřizování a provoz prozatímních elektrických zařízení Zřizování prozatímních elektrických zařízení v průmyslových závodech Nebezpečí, riziko, ochranná opatření Požadavky na elektrotechnické výrobky a zařízení Posuzování rizik a provedení elektrických zařízení IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř Literatura ke kapitole Technické normy ke kapitole Kontrolní otázky ke kapitole OCHRANA PŘED BLESKEM A PŘEPĚTÍM K současnému pojetí ochrany před bleskem ochrany budov i elektronických systémů Proč provádět ochranu před bleskem a jeho účinky důkladněji než dříve Nová terminologie používaná v oblasti ochrany před bleskem Vnější ochrana před bleskem a přepětím Zásady pro zřizování a provoz podle druhu a charakteru chráněného objektu Které objekty se musí chránit před bleskem Hledisko pravděpodobnosti škody při zřizování hromosvodu Základní části vnější LPS Třídy LPS provedení hromosvodu s ohledem na důležitost objektu a možné škody Použití náhodných součástí pro konstrukci LPS Jímače Prvky jímačů Ochranný prostor jímačů 228
17 8.2.3 Svody Připojování svodů k jímačům Umístění svodů Počet svodů Provedení svodů Umístění vedení jímací soustavy i svodů Uzemnění Vnitřní ochrana před bleskem a přepětím Ochrana před přepětími Svodiče bleskového proudu a svodiče přepětí 237 Literatura ke kapitole Právní předpis ke kapitole Technické normy ke kapitole Kontrolní otázky ke kapitole Příloha 1 Základní veličiny a jednotky v elektrotechnice a vztahy mezi nimi 243 Příloha 2 Používané násobky a díly jednotek v elektrotechnice
18 16 IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř
19 1. ZÁKLADY ELEKTROTECHNIKY 1.1 Základní vztahy v elektrotechnice Existují jenom výjimečné případy lidí, kteří vážněji přemýšlejí o základech a podstatě elektrotechnických jevů a zákonitostí. Tito jedinci mají svou pozici v elektrotechnické praxi na jedné straně usnadněnou, na druhé straně ztíženou. Usnadněnou ji mají tím, že z podstaty jevů a zákonitostí mohou jednodušeji odvodit všeobecně užívaná pravidla a nejsou ve větším nebezpečí, že se ve svých závěrech budou mýlit. Na druhé straně však nenalézají plné pochopení u těch, kteří si s takovými věcmi hlavu nelámou. Co je třeba si při práci na elektrickém zařízení uvědomit? Je to především to, že: na jedné straně existují síly, jevy a vlivy, které na zařízení, rozvody a instalace působí; jsou to provozní i poruchové stavy, prostředí neboli vnější vlivy apod., na druhé straně pak jsou přístroje, zařízení a opatření, jež elektrická zařízení, rozvody a instalace před neúměrným nebo přílišným působením těchto sil, jevů a vlivů, které je možno předpokládat, chrání. Příklady jsou uvedeny v tab. 1. IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř Tab. 1 Příklady stavů zařízení a ochranných opatření proti působení různých vlivů Normální provozní stav Poruchový stav Ochranné přístroje, charakterizován způsobovaný opatření napětím v normálních přepětím přepět ové ochrany mezích a podpětím proudy až do jmenovité nadproudy ochrana před nadproudy (stanovené) hodnoty vnější vlivy vniknutím prachu do utěsnění nebo zpevnění v předpokládaných mezích zařízení, narušením krytu krytu Ochranná opatření je přitom možno volit podle toho, v jakém stavu elektrické zařízení je. Zda je ve stavu normálním, mimo normál, zda zatím nebezpečí poruchy nebo ohrožení pouze hrozí, případně zda porucha nebo ohrožení již nastaly. Proti výše uvedeným stavům se provádějí opatření k odvrácení nebezpečí, k odstranění poruchy. Proti vnějším vlivům se působí vyjmutím z dosahu ohrožení apod. Stavy elektrického zařízení, at už normální provozní, nebo mimo normál včetně nebezpečných stavů, jsou spojené i s působením elektřiny. Abychom působení elektřiny mohli vyhodnotit, musíme je přesně popsat. K popisu se používají příslušné veličiny. K vyhodnocení působících elektrických jevů se používají příslušné jednotky, s jejichž pomocí se elektrické veličiny měří Elektrické napětí, proud, odpor a výkon Základními elektrickými veličinami, s nimiž se musí každý elektrotechnik ve své praxi potýkat, jsou elektrické napětí, elektrický proud a elektrický odpor. (Dále, pokud to bude z kontextu zřejmé, že se jedná o elektrické veličiny, budeme hovořit pouze o napětí, proudu a odporu.) 17
20 Funkci těchto tří veličin si můžeme zjednodušeně popsat takto: Napětí, které je mezi dvěma místy (obvykle jsou to plochy, které, když jsou malé, považujeme za body), způsobuje, že mezi nimi prochází (protéká nebo je protlačován) elektrický proud. Elektrický proud je tím větší, čím větší je napětí mezi těmito místy. Říkáme, že proud je přímo úměrný napětí mezi nimi. K tomu, aby elektrický proud mohl mezi dvěma místy procházet, potřebuje prostředí, kterým může být veden. Toto prostředí bývá tvořeno různými látkami. Vlastnosti těchto látek umožňují, aby, at už celým jejich objemem, nebo po jejich povrchu, protékal elektrický proud. Přitom nejen na velikosti napětí, ale i na vlastnostech těchto látek záleží, jak bude jimi procházející nebo protékající elektrický proud velký. Vlastnost, která označuje schopnost vést elektrický proud, se nazývá elektrická vodivost. Opačná vlastnost, která se projevuje tím, že látka průchodu proudu brání, se nazývá elektrický odpor. Čím větší je odpor mezi dvěma místy, mezi nimiž je napětí, tím menší je mezi těmito místy elektrický proud. Uvedené veličiny označujeme takto: Napětí označujeme U, elektrický proud označujeme I a elektrický odpor označujeme R. Pomocí tohoto písmenového označení můžeme (při správně zvolených jednotkách) matematicky popsat vztah mezi uvedenými veličinami, který jsme si zatím vyjádřili pouze slovně: tj. proud I je přímo úměrný napětí U a nepřímo úměrný odporu R. Odtud také dostaneme (pravou i levou stranu rovnice násobíme R) další užívaný vztah: U = I. R. (2) Ten vyjadřuje, že protéká-li mezi dvěma místy, mezi nimiž je elektrický odpor R, elektrický proud o velikosti I, je mezi těmito místy napětí U. Jinými slovy, čím větší je mezi dvěma místy elektrický proud a elektrický odpor, tím větší je také mezi těmito místy elektrické napětí. Samotnou vlastnost, kterou jsme nazvali elektrický odpor, je možno popsat následujícím vztahem (obě strany předchozí rovnice podělíme proudem I): U R =. (3) I Uvedený vztah byl po svém objeviteli nazván Ohmův zákon. Vyjadřuje, že elektrický odpor mezi dvěma místy je tím větší, čím větší je napětí mezi těmito místy a čím menší je elektrický proud, který mezi těmito místy prochází Jednotky elektrických veličin Abychom však nehovořili jenom řečí abstraktních pojmů, řekneme si, co uvedené veličiny představují v praxi. Abychom mohli hovořit o velikosti napětí, proudu nebo odporu, musíme uvést, jak velké to napětí je, jak velký proud protéká vodičem nebo uniká izolací, jak velký je odpor izolace vedení nebo odpor vodiče, např. od tlačítka ke zvonku. Musíme mít možnost vyjádřit, jak velké je napětí, které stačí k rozsvícení žárovky v baterce nebo k pohonu elektromotoru. 18 U I =, R IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř (1)
21 Proto uvedené veličiny vyjadřujeme v jednotkách. Zjednodušeně řečeno, čím více jednotek daná veličina má, tím je větší, vyšší nebo silnější. V dalších příkladech se nebudeme zatěžovat přesným definováním jednotek, jimiž jsou poměřovány výše uvedené veličiny. Velikosti jednotek uvedených veličin si uvedeme na příkladech. Jednotkou napětí je jeden volt. Značka této jednotky je V. Napětí 4,5 V je napětí, které stačí k rozsvícení žárovky v bateriové svítilně s baterií 4,5 V V, tedy napětí více než třistakrát vyšší, se používá ve stejnosměrné železniční trakci. Podobným způsobem se můžeme podívat na jednotku elektrického proudu. Jednotkou elektrického proudu je jeden ampér a značkou této jednotky je A. O velikosti této jednotky si můžeme udělat představu z toho, že např. jmenovitá velikost jističů pro ochranu vedení v elektrické instalaci bytů je 6 až 16 A. Pro napájení osvětlení místností bytu běžně postačuje proud do 6 A, pro napájení těch největších bytových spotřebičů je to proud až 16 A. Zde se ale nesmíme nechat zmýlit tím, že pro napájení šedesátiwattové žárovky na 230 V je zapotřebí proud asi 0,26 A, zatímco pro napájení halogenových žárovek na malé napětí 12 V je třeba proudu téměř dvacetkrát většího, tj. 5 A. Tady je zapotřebí si všímat další veličiny, o které si řekneme dále, totiž výkonu. Vrat me se však k elektrickému odporu. Jednotkou elektrického odporu je jeden ohm, který má značku Ω. Jak již z předchozího textu vyplynulo, čím větší je elektrický odpor mezi místy, mezi nimiž je elektrické napětí, tím menší je proud procházející mezi těmito místy. V praxi se sleduje, aby elektrický odpor elektrického vedení byl co nejmenší záleží totiž na tom, aby průchodem elektrického proudu tímto vedením byl způsoben co nejmenší úbytek napětí. Jeho velikost se může pohybovat maximálně v hodnotách jednotek ohmů, v běžných rozvodech a instalacích se však spíše jedná o desetiny ohmu. Rovněž vypočítat odpor vodiče a odpor elektrického vedení by pro každého elektrotechnika mělo být hračkou. Odpor vodiče je tím větší, čím má větší délku L a tím menší, čím má větší průřez S. Pro velikost odporu vodiče R v ohmech proto platí známý vzorec: ρ. L R =, (4) S kde: ρ je tzv. rezistivita, dříve měrný odpor vodiče, což je odpor vodiče jednotkové délky a jednotkového průřezu; v technické praxi (a tedy i ve výše uvedeném vzorci) je rezistivita rovna odporu vodiče délky 1 m a průřezu 1 mm 2, takže se udává v Ω.mm 2 /m, L je délka vodiče, která se udává v m, S je průřez vodiče, který se udává v mm 2. Pro ilustraci se můžeme zeptat, jak velký je úbytek napětí na elektrickém vedení 2,5 mm 2 Cu od bytové rozvodnice k domovní jednofázové zásuvce, na níž je připojen spotřebič odebírající proud 10 A, je-li délka vedení k zásuvce rovna 25 m. Nejprve si vypočítáme odpor jednoho vodiče vedení. Rezistivita mědi při teplotě 20 C se udává 0,018 Ω.mm 2 /m, takže odpor tohoto vodiče při teplotě 20 C je R = 0,018 25/2,5 = 0,18 Ω. Odpor celého vedení, na němž průchodem proudu vzniká úbytek napětí, je dvojnásobný (jeden vodič tam a druhý zpět), takže je roven 0,36 Ω. Úbytek napětí, který na tomto vedení vzniká, se určí podle základního vzorce (2), v němž namísto napětí U uvedeme úbytek napětí U = R I = 0,36 10 = 3,6 V, což je 100 3,6/230 1,6 %. 19
22 Jestliže však úbytek napětí počítáme, jak to má správně být, při maximální provozní teplotě vedení, zjistíme, že se zvětší. Je to tím, že se zvětší odpor vedení. S teplotou se totiž odpor vodičů a tedy i vedení zvětšuje. S každým stupněm Celsia (nebo, což je pro tento účel shodné, s každým Kelvinem K) vzroste odpor vodiče (at už jeho materiál je měď nebo hliník) o 0,4 %. Proto, uvažujeme-li s provozní teplotou vedení, která může být až 70 C, zjistíme, že odpor vedení může vzrůst až o (70 20) 0,4 = 20 %. To znamená, že v nejnepříznivějším případě vzroste odpor na 0,36 1,2 = 0,432 Ω a stejným způsobem vzroste úbytek napětí na 4,32 V, což je již téměř 1,9 % jmenovitého napětí 230 V. Naopak odpor izolace takového vedení musí být co největší. Je to proto, aby z elektrického vedení do jeho okolí pokud možno neunikal žádný proud. Kdybychom však chtěli uvedeného cíle dosáhnout, musela by se hodnota odporu izolace blížit k nekonečnu. Znamenalo by to vytvořit dokonalou izolaci. To však není prakticky možné. Při použití izolačních materiálů na bázi plastů se dosahuje hodnot izolačních odporů řádově v megaohmech až desítkách megaohmů. Můžeme se tedy například zeptat: jak velký je proud unikající izolací elektrického vedení (ale může to být i izolací jakéhokoliv elektrického předmětu), jestliže jeho izolační odpor je 10 MΩ a napětí jádra vodiče daného vedení (resp. živé části elektrického předmětu) je 230 V? Jednoduše (podle vzorce 3) je to: Jenom pro informaci si uvedeme, že izolační odpor vedení, na rozdíl od odporu vodičů, s teplotou klesá. Za normálních provozních stavů to nedělá celkem žádné potíže. Izolační stav se z tohoto důvodu ani za maximální dovolené provozní teploty nesnižuje pod předepsané hodnoty. Podstatně by se však zhoršil, pokud by teplota vedení dosáhla hodnoty dovolené při zkratu. To však již nejsou normální provozní podmínky a není nutné se jimi z hlediska izolačního odporu zabývat. A nyní k elektrickému výkonu. Přívlastek elektrický používáme pouze proto, že se jedná o výkon v souvislosti s elektrickým zařízením. Jinak je výkon obecná fyzikální veličina a nezáleží na tom, zda se jedná o výkon elektromotoru nebo automobilového motoru, či jiného pohonu. Pokud se jedná o výkon odevzdávaný na hřídeli motoru, je jedno, zda byl tento výkon získán ve spalovacím motoru nebo v elektromotoru. Na hřídeli motoru je třeba jej také měřit. Výkon jako fyzikální veličina se značí obvykle P. Při vyjádření pomocí elektrických veličin, tj. stejnosměrného napětí a stejnosměrného proudu (a správné volbě jednotek), se výkon přenášený elektrickým vedením rovná součinu těchto veličin: Z hlediska střídavých elektrických veličin hovoříme obdobně o tom, že činný výkon se rovná součinu efektivních hodnot napětí a proudu a cos ϕ. Přitom ϕ je úhel, o který se sinusový průběh napětí předbíhá před nebo zpožďuje za sinusovým průběhem proudu. Z praktického hlediska můžeme pro hrubý odhad pro výpočet činného výkonu ve střídavých sítích použít stejného vzorce, pro elektrotepelné spotřebiče platí výše uvedený vztah přesně. Je to proto, že v normálním elektrickém rozvodu a elektrických sítích, které jsou kompenzované, se průběh proudu za průběhem napětí zpožďuje pouze minimálně (cos ϕ se pohybuje v mezích 0,98 až 1), při napájení elektrotepelných spotřebičů není průběh napětí a proudu vzájemně posunutý vůbec. 20 IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř U 230 V I = = = 2, A = 0,023 ma. R ( Ω) P = U. I. (5)
23 Jednotkou výkonu je jeden watt. Jeho značka je W. Vyjádřeno v elektrických veličinách je to výkon, který je přenášen vedením stejnosměrného proudu 1 A při napětí 1 V. Při vedení střídavého proudu, jak jsme si ukázali, je situace trochu složitější. Ale i v tomto případě je možno hovořit o tom, že jeden watt je výkon přenášený vedením střídavého proudu, jehož efektivní hodnota je 1 A, při napětí, které není vůči proudu fázově posunuto, jehož efektivní hodnota je 1 V. Z uvedeného vidíme, že výkon jakéhokoliv spotřebiče je sice úměrný proudu, který odebírá, ale že zároveň závisí na napětí. Stowattová žárovka na napětí 230 V sice odebírá proud čtyřikrát větší než pětadvacetiwattová žárovka na totéž napětí (konkrétně je to 0,434 A vůči 0,109 A), avšak proud šedesátiwattové žárovky na 230 V je skoro dvacetkrát menší než proud žárovky téhož výkonu na 12 V (konkrétně 0,26 A vůči 5 A). Účelem této kapitoly nebylo podat exaktní definice veličin a jednotek, ale upozornit na vztahy mezi veličinami, které se v elektrotechnice používají. Proto tuto kapitolu uzavřeme ještě jedním příkladem, který navazuje na příklad předchozí. Položme si otázku kolikrát větší musí být průřez vodiče napájejícího 10 šedesátiwattových žárovek na napětí 12 V než průřez vodiče napájejícího 10 šedesátiwattových žárovek na napětí 230 V? Ten, kdo nehledá zbytečné komplikace, vyjde z úvahy, že proud pro napájení žárovek na 12 V musí být podle předchozího téměř dvacetkrát větší než proud napájející žárovky na napětí 230 V, takže i průřez vodičů musí být dvacetkrát větší. Zvětšení průřezu podle této úvahy se zdá více než značné, leč skutečnost je ještě daleko horší. Průřez by měl být pro žárovky na 12 V asi stopadesát až dvěstěkrát větší než pro žárovky na 230 V. Proč tomu tak je, se dozvíme v kapitole 7. Zatím si jenom řekneme, že teplo z vodiče, které je úměrné druhé mocnině procházejícího proudu, je odváděno povrchem vodiče, který je úměrný jeho průměru a nikoliv jeho průřezu Stejnosměrný (DC) *) a střídavý proud (AC) *) V předchozí kapitole jsme si ukázali vlastnosti stejnosměrného proudu, přenosu výkonu za jeho pomoci a vztahy, které pro něj platí. Zatím jsme pro střídavý proud pouze uvedli, že vztahy, které platí pro něj, jsou obdobou vztahů pro stejnosměrné proudy a napětí. Nyní se otázkou střídavého proudu budeme zabývat trochu podrobněji, i když ne za pomoci exaktních definic a vztahů, ale spíše příkladů a ukázek. Střídavý proud má název jednoduše od své vlastnosti, že protéká vodičem střídavě na jednu a na druhou stranu. Změny směru proudu jsou velmi rychlé. Střídavý proud průmyslového kmitočtu mění svůj směr stokrát za sekundu. To znamená, že v padesáti pulzech za sekundu prochází proud jedním směrem a těchto padesát pulzů je prostřídáno rovněž padesáti pulzy za vteřinu, kdy proud prochází opačným směrem. Proud se však nemění okamžitě ze své maximální hodnoty v jednom směru do maximální hodnoty v opačném směru. O ideálním průběhu střídavého proudu se říká, že je sinusový. Nebudeme se zde zabývat matematickým popisem sinusové funkce. Řekneme si o ní jen, že elektrický proud, jehož velikost se s časem mění podle této funkce, nejprve strmě roste od nuly a jak se blíží ke své maximální hodnotě, jeho růst se zpomaluje. Zjednodušeně je možno říci, že okolo svého maxima *) Viz kapitola (str. 73). 21
24 se proud s časem téměř nemění. Po průchodu tímto maximem hodnota proudu klesá nejprve velmi pomalu, až v okolí průchodu proudu nulou je rychlost poklesu jeho velikosti největší a po průchodu nulou roste okamžitá hodnota proudu na opačnou stranu stále větší proud prochází opačným směrem. Dále pak platí jenže s opačným znaménkem totéž, co jsme si již řekli o průběhu proudu v opačném směru (viz též obr. 1 až 3). Takže průběh střídavého proudu si můžeme rozložit na velkou řadu okamžiků, v nichž proud určité velikosti probíhá jedním směrem. Opět, zjednodušeně řečeno, se tedy jedná o řadu po sobě následujících okamžitých hodnot stejnosměrného proudu. Zřejmě všichni víme, že ve střídavých sítích, obvodech a instalacích není elektrický proud jedinou veličinou, která mění svou hodnotu střídavě z kladné na zápornou a naopak. Stejný, nebo lépe řečeno, obdobný průběh má ve střídavých obvodech elektrické napětí. Jeho hodnota také nejprve rychle od nulové hodnoty narůstá, prochází pomalu maximem a pak se rychle mění z kladné na zápornou hodnotu a opakuje svůj průběh k maximu, jenže s opačným znaménkem. Na tomto místě bychom si měli položit několik otázek. Je průběh napětí časově shodný s průběhem proudu? A jak je to s výkonem? Není to náhodou tak, že kladný proud (rozumí se proud probíhající v kladné půlvlně, tj. nad časovou osou na obr. 1) výkon do napájeného zařízení přináší a záporný proud tento výkon zase odnáší zpět ke zdroji? Tak především: pokud hovoříme o střídavých sítích, obvodech a zařízeních, je v nich rychlost střídání proudu i rychlost střídání napětí ze záporných do kladných hodnot stejná. Jinými slovy je možno říci, že proud i napětí mají stejnou frekvenci. 22 Poznámka: IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř Výše uvedená skutečnost se považuje za tak samozřejmou, že se nikde ani zvlášt neuvádí. Nicméně v obecném případě tomu tak vždy být nemusí. Například v elektrických sítích se navíc k proudům a napětím průmyslového kmitočtu mohou objevovat i proudy a napětí jiných, obvykle vyšších kmitočtů. V některých případech se ve střídavých sítích mohou vyskytovat značné pulzující proudy, tj. proudy stejnosměrné, které pouze mění svou velikost, nikoliv však směr. V některých obvodech, které napájejí převážně měniče, může stejnosměrná složka proudu i převažovat nad složkou střídavou. Taková sít se však přesto nazývá střídavou, protože napětí v ní zachovává svůj střídavý charakter a střídavý spotřebič připojený do této sítě pracuje obvyklým způsobem, tj. jako spotřebič určený pro střídavou sít. Jak je tomu však se samotným průběhem napětí a proudu ve střídavých obvodech a sítích? Napětí a proud totiž nemusejí ve stejném okamžiku nabývat své maximální, resp. nulové hodnoty, ale, jak jsme se již zmínili, jejich průběh může být časově posunut. Tento časový posun záleží na charakteru zátěže, která je z obvodu nebo sítě napájena. Na tomto místě se nebudeme touto otázkou podrobněji zabývat. Jenom si řekneme, že v síti, která napájí elektrotepelná zařízení, tj. zařízení, jejichž spotřeba je charakterizovaná činným odporem, se proud za napětím ani nezpožďuje, ani ho nepředbíhá. Říká se, že proud a napětí jsou ve fázi. Pokud sít napájí elektromotory, které představují tzv. indukční zátěž, proud se za napětím zpožďuje. Jestliže v napájené síti převažují kapacity, které nejsou vyváženy indukčnostmi napájených elektromotorů, může se stát i to, že proud předbíhá napětí to je však spíše výjimečný stav, kterému je radno se z důvodu nestability takové sítě vyhnout. Snahou dodavatele elektrické energie je, aby proud, pokud nemůže být s napětím ve fázi, se za napětím příliš nezpožďoval. A nyní k tomu, jak je to s přenosem výkonu ve střídavých sítích, obvodech a instalacích. Již jsme si uvedli, že výkon stejnosměrného proudu je rovný P = U. I.
25 Jak jsme si řekli, střídavé napětí a střídavý proud je možno rozložit na řadu po sobě následujících, krátce trvajících stejnosměrných hodnot. Tyto hodnoty nazveme okamžité hodnoty a budeme je značit malými písmeny. Okamžitý výkon, což je výkon v kterémkoliv okamžiku průběhu křivky napětí a proudu, se pak rovná: p = u. i. (6) Z uvedeného vztahu je vidět, že okamžité hodnoty výkonu se mění v závislosti na tom, jak se mění napětí a proud. První dojem nás může svádět k myšlence, že okamžité hodnoty výkonu mají obdobný časový průběh jako okamžité hodnoty proudu a napětí. To by znamenalo, že v první půlperiodě je výkon kladný, ve druhé záporný. Není tomu tak. Již na základní škole jsme se dozvěděli, že součin záporných čísel je kladný. Jsou-li tedy napětí a proud ve fázi, je výkon kladný jak v případě, že jsou obě uvedené veličiny kladné (v prvé půlperiodě), tak i tehdy, jsou-li tyto veličiny záporné (ve druhé půlperiodě). Vulgárně řečeno, výkon prochází elektroměrem do domu, bytu, objektu atd., at již jde proud tam nebo zpět. Rovněž průběh výkonu je znázorněn na obr. 1. Poznámka pro zvlášt zatvrzelé jedince, kteří matematické zdůvodnění odmítají svým vnitřním nejniternějším rozumem přijmout: Jedná se o obdobný případ, jako u dvojčinného parního stroje pohánějícího pístem kolo lokomotivy. V první fázi odpovídající první půlperiodě jde píst dopředu a tlačí, ve druhé fázi jde píst zpět a táhne v obou fázích pohybu se však výkon přenáší na poháněné kolo a žene lokomotivu a celý vlak dopředu. To je tedy případ, kdy jsou ve střídavých sítích a obvodech napětí a proudy ve fázi. Výše jsme však uvedli, že tomu také tak být nemusí. Skutečně velmi často, možno říci většinou, se proud Poměrné hodnoty okamžitého napětí, proudu a výkonu Časové průběhy napětí, proudu a výkonu střídavého proudu, jestliže napětí a proud jsou ve fázi Čas Obr. 1 Časové průběhy napětí, proudu a výkonu střídavého proudu, jestliže napětí a proud jsou ve fázi 23
26 za napětím, i když nepatrně, opožďuje. V některých případech může proud napětí i předbíhat. V těchto případech ovšem dochází na kratší nebo delší dobu k tomu, že se okamžité hodnoty proudu a napětí ve svém znaménku liší. Po tuto dobu, kdy jsou znaménka proudu a napětí opačná, se skutečně výkon vrací z místa spotřeby ke zdroji. Takový případ je znázorněn na obr. 2. Zde se nebudeme zabývat fyzikálními příčinami tohoto jevu, zatím přijměme pouze, že tomu tak je. Poměrné hodnoty okamžitého napětí, proudu a výkonu Časové průběhy napětí, proudu a výkonu střídavého proudu, jestliže napětí a proud nejsou ve fázi Čas Obr. 2 Časové průběhy napětí, proudu a výkonu střídavého proudu, jestliže napětí a proud nejsou ve fázi 24 Poznámka: Někdo může jít ve své úvaze ještě dále a říci si: Co když jsou okamžité hodnoty napětí a proudu opačného znaménka v celém časovém průběhu? Odpověď je jednoduchá. Výkon je pak skutečně záporný a možno říci, že teče od spotřeby ke zdroji. Je něco takového možné? Samozřejmě. Příkladem mohou být závodní elektrárny paralelně spolupracující s rozvodnou sítí. Ty mohou v době, kdy klesne odběr v závodě, dodávat energii (výkon) do sítě. Jak je to však ve střídavé síti s Ohmovým zákonem? Každý z nás máme určité povědomí, že ve střídavé síti používáme namísto odporu impedanci a že to s tím podílem napětí a proudu není tak jednoduché jako u stejnosměrného proudu a napětí. Pro začátek si však řekněme o tom nejjednodušším případě. Ten je představován obvodem, na jehož jedné straně je zdroj napětí U na druhé straně pak odporová zátěž. V takovém případě, počítáme-li hodnoty okamžitých proudů, dostaneme z Ohmova zákona pro okamžitou hodnotu proudu: u i =. (7) R Z toho vidíme, že proud při odporové, jinak říkáme též činné, zátěži je ve fázi s napětím, jak je znázorněno na obr. 1 (str. 23).
27 Když jsme uvedli, že odporová zátěž je činná zátěž, okamžitě se nabízí otázka, zda může existovat ještě nějaká jiná zátěž, například zátěž nečinná? Bohužel jsme takoví, že nikoho a nic nenecháme zahálet, takže nečinná zátěž neexistuje. Jako opak k výrazu činná zátěž však existuje jiný hezký termín, a to jalová zátěž. Je to zátěž, která, alespoň z hlediska elektrotechniků, kteří tento termín zavedli, nic užitečného neprovádí. Ta je v obvodu na nic, výkon ani nespotřebovává, ani nevyrábí, je tedy jalová. Co však vlastně taková jalová zátěž v obvodu dělá? Protéká jí vůbec nějaký proud, když nespotřebovává žádný výkon? Charakter takové zátěže z hlediska průběhu napětí, proudu a výkonu vidíme na obr. 3. Vidíme, že tato zátěž proud zpožďuje za napětím takovým způsobem, že v okamžiku, kdy napětí prochází maximem, prochází proud nulou, v době, kdy velikost napětí klesá, proud roste a v okamžiku, kdy proud prochází maximem, napětí prochází nulou a dále se pak zvětšuje směrem k záporným hodnotám. Zbytek můžete z obr. 3 vyčíst sami. Na obr. 3 je také znázorněn průběh výkonu. Vidíme, že určitý výkon zátěž zpočátku odebere, stejný výkon však v dalším průběhu vrací. Taková jalová zátěž je charakterizována tím, že v konečném souhrnu ze sítě nic ani neodebírá ani do ní nic nedodává. Je tedy skutečně jalová. Přesto však se taková jalová zátěž v síti projevuje. I když ze sítě žádný skutečný výkon neodebírá, vyžaduje, aby do ní byl přiváděn elektrický proud. Tím je sít zatěžována. Přitom náklady na přenos tohoto jalového výkonu jsou stejné jako náklady na přenos činného výkonu. To je také důvod, proč energetické společnosti odběr jalového výkonu penalizují a proč také jalovou energii v síti různými zařízeními (kondenzátory, synchronními kompenzátory apod.) kompenzujeme, abychom její hodnotu snížili na minimum. Poměrné hodnoty okamžitého napětí, proudu a výkonu Časové průběhy napětí, proudu a výkonu střídavého proudu v obvodu s jalovou zátěží Čas Obr. 3 Časové průběhy napětí, proudu a výkonu střídavého proudu v obvodu s jalovou zátěží 25
28 1.1.3 Efektivní hodnoty napětí, proudu a výkonu impedance Vrat me se k obecné zátěži ve střídavé síti. Ta by měla být charakterizována obdobně jako činný odpor, pomocí něhož je určen vztah mezi napětím a proudem ve stejnosměrném obvodu. Nebudeme se zde však zabývat podrobným odvozením závislostí, které vyžaduje použití byt nenáročného, přesto však matematického aparátu. Především z praktického hlediska není vhodné uvažovat nebo počítat s okamžitými hodnotami napětí, proudu a výkonu. Většinou nás nezajímá, jaké je napětí, proud nebo výkon v jednom určitém okamžiku. Obvykle potřebujeme vědět, jaký je dlouhodobější účinek těchto veličin. Pokud nepotřebujeme znát průběh těchto veličin během velice rychlých změn v elektrických sítích (například při zkratech, náhlých výpadcích zatížení nebo zdrojů apod.), vystačíme s hodnotami, které lépe charakterizují pomalejší změny průběhů napětí, proudů a výkonů. Jak je však zvolit? U výkonu se to zdá snadné. Podíváme-li se na jeho časový průběh (viz obr. 4), vidíme, že průměrný přenášený výkon P za delší období je rovný průměru mezi okamžitými výkony maximálním a minimálním. Průběh činného výkonu přenášený střídavou sítí během několika period Okamžitý výkon v poměrných hodnotách Čas Obr. 4 Průběh činného výkonu přenášený střídavou sítí během několika period Podobně jednoduché odvození bychom rádi objevili i pro proudy a napětí. Co tedy budeme od těchto nových hodnot veličin vyžadovat? Především aby: vztahy mezi nimi byly obdobné vztahům ve stejnosměrných obvodech a jejich fyzikální působení (možno říci též fyzikální účinek), aby bylo rovněž stejné nebo alespoň obdobné jako pro stejnosměrné veličiny. Z tohoto důvodu byly zavedeny tzv. efektivní (česky by snad bylo možno říci účinné) hodnoty proudů, napětí i výkonů. 26
29 Jak jsou tyto efektivní hodnoty vyjádřeny a jaký mají vztah k okamžitým hodnotám? Vezmeme-li ze všech okamžitých hodnot napětí u a proudů i pravidelně se opakující hodnoty maximální U max a I max, jsou efektivní hodnoty napětí U ef a proudů I ef rovné: U max U ef = 2 (8) I max I ef =. (9) 2 V běžné praxi se u těchto veličin index označující, že se jedná o jejich efektivní hodnoty neuvádí. Tyto veličiny jsou označeny již tím, že se píší pouze velkými písmeny. Jejich jednotkami jsou volty a ampéry, stejně jako u veličin stejnosměrných. (Hrubou chybou by bylo k jednotkám V a A přidávat jakýkoliv index. Je tedy nepřípustné psát např. V eff, leč často se takový zápis ve starší literatuře vyskytuje.) Přitom to, že se jedná o střídavý a nikoliv o stejnosměrný proud, je zřejmé buď z kontextu, nebo je veličina (nikoliv jednotka) jako střídavá popsána. Můžeme tedy u čistě odporových zátěží obdobně jako pro stejnosměrný proud psát i pro veličiny střídavého proudu vztahy vyplývající z Ohmova zákona: U I =, (10) R U = I. R, (11) U R =, (12) I Poznámka: Jestliže chceme vyjádřit, jaký je výkon dodávaný střídavým proudem do odporové zátěže, je třeba si uvědomit, že průměrný (nikoliv okamžitý) výkon je roven průměru z jeho maximální a minimální hodnoty. Minimální okamžitá hodnota výkonu dodávaného do činné (odporové) zátěže je rovna nule P min = 0, okamžitá maximální hodnota výkonu z maximálního napětí a proudu, je rovna: U 2 max P max = U max. I max = R. I 2 max =. (13) R Průměr z obou hodnot, tj. průměrný výkon během řady period, jak vyplývá z předchozího (viz obr. 1), je: U 2 2 max U ( max (P max + P min) I ) 2 max R I 2 P = = R. = = R. max 2 ( ) =. (14) R U max I max Odtud, při dosazení U = a I = 2 2 pro průměrný výkon platí vztahy obdobné jako pro stejnosměrný proud. 27
30 28 IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř Pro výkon střídavého proudu a napětí dodávaného do odporové (tedy činné) zátěže platí: U 2 P = U. I = R. I 2 =, (15) R což jsou vztahy obdobné vztahům pro výkon stejnosměrného proudu a napětí. A jak je to s jinou než činnou zátěží? V takovémto případě platí vztahy obdobné vztahům (1) až (3), tj. Ohmovu zákonu, a to: U U I = ; U = I. Z; Z =. (16) Z I V prvém vztahu vidíme, že k tomu, abychom z napětí vypočítali proud, nedělíme toto napětí odporem R, ale impedancí Z. Impedance Z omezuje ve střídavém obvodu (síti nebo systému) velikost proudu stejným způsobem, jako odpor v obvodu (síti nebo systému) stejnosměrném. Přitom je třeba si všimnout, že veškeré veličiny v uvedených vztazích jsou podtržené. Tím se vyjadřuje, že se nejedná o veličiny reálné jako v předchozích vztazích, ale o veličiny komplexní. (Efektivní napětí a proudy vyjádřené v komplexním tvaru se nazývají fázory dříve se jim říkalo též vektory.) Význam tohoto komplexního vyjádření veličin spočívá v tom, že v rovnicích obdobných rovnicím pro stejnosměrný proud vyjadřují nejen vzájemný poměr své velikosti, ale i to, jak je jedna vůči druhé fázově posunuta, tj. jestli a o kolik např. napětí předbíhá proud a naopak (viz obr. 2 na str. 24). Dále si tento význam trochu osvětlíme. (Podrobnější výklad by vyžadoval uvedení základů počítání s komplexními čísly.) Na předchozím příkladě jsme viděli, že pokud jde o obvod, v němž se vyskytuje pouze činný odpor, můžeme za impedanci Z dosadit přímo odpor R. Protože odpor R je reálná veličina, je i poměr napětí a proudu reálný. To znamená, že napětí a proud jsou ve fázi jejich sinusový průběh je podobný (napětí i proud mají ve stejném okamžiku maximum a ve stejném okamžiku procházejí nulou). Vyskytují-li se však v obvodu kromě činných odporů i indukčnosti (např. motory nebo transformátory) nebo kapacity (kondenzátory nebo dlouhá kabelová vedení), nelze již Z a R tak jednoduše zaměnit. Jak jsme již uvedli, proud již není ve fázi s napětím a výkon nemůžeme vyjádřit jednoduše jako součin napětí a proudu, ale musíme v tomto vyjádření uplatnit i posun proudu vůči napětí. Na obr. 2 vidíme, jak je proud zpožděný za napětím. Toto zpoždění se vyjadřuje úhlem zpoždění ϕ. (Úhel ϕ je poměr doby, o kterou se zpožďuje proud za napětím k době trvání celé periody průběhu napětí nebo proudu. Chceme-li úhel ϕ vyjádřit v normální úhlové míře, jak je to obvyklé, musíme uvedený poměr doby zpoždění k době periody násobit 360, protože celá perioda představuje 360 stupňů.) Pro činný výkon P odevzdávaný do obvodu napájeného uvedeným napětím, jehož efektivní hodnota je U, a proudem, jehož efektivní hodnota je I, kdy proud je zpožděný za napětím o úhel ϕ, přitom platí: P = U. I. cos ϕ. (17) Poznámka: K uvedené hodnotě výkonu P dojdeme pomocí goniometrických funkcí uplatněných na okamžité hodnoty průběhu napětí a proudu. Vyjádříme-li okamžité hodnoty napětí jako: u = (U. 2). cos(ω t + ϕ) (18)
Napájení elektrifikovaných tratí
Napájení elektrifikovaných tratí Elektrická trakce je pohon hnacího vozidla pomocí metrického točivého stroje elektromotoru kterému říkáme trakční motor. Přívod proudu do elektrických vozidel je realizovaný
BEZPEČNOST V ELEKTROTECHNICE 1
BEZPEČNOST V ELEKTROTECHNICE 1 2. PŘEDNÁŠKA LS 2015/16 http://bezpecnost.feld.cvut.cz Osnova 2. přednášky Ochrana před úrazem elektrickým proudem Ochrana před nebezpečným dotykem živých a neživých částí
Označování dle 11/2002 označování dle ADR, označování dle CLP
Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava
12. DIMENZOVÁNÍ A JIŠTĚNÍ EL. VEDENÍ Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Úvod Dimenzování vedení podle jednotlivých kritérií Jištění elektrických
IN-EL, spol. s r. o., Lohenická 111/607, Praha 9 - Vinoř. Obsah
Obsah IN-EL, spol. s r. o., Lohenická 111/607, 190 17 Praha 9 - Vinoř 1. ZÁKLADY ELEKTROTECHNIKY 17 1.1 Základní vztahy v elektrotechnice 17 1.1.1 Elektrické napětí, proud, odpor a výkon 17 1.1.1.1 Jednotky
TECHNICKÁ ZPRÁVA ÚPRAVA STÁVAJÍCÍCH PROSTOR PRO POTŘEBY STŘEDISKA PMS. D.1.4.g ELEKTROINSTALACE SILNOPROUD
TECHNICKÁ ZPRÁVA ÚPRAVA STÁVAJÍCÍCH PROSTOR PRO POTŘEBY STŘEDISKA PMS D.1.4.g ELEKTROINSTALACE SILNOPROUD Identifikace stavby Název akce : ÚPRAVA STÁVAJÍCÍCH PROSTOR PRO POTŘEBY STŘEDISKA PMS Místo akce
1. Stejnosměrný proud základní pojmy
1. Stejnosměrný proud základní pojmy Stejnosměrný elektrický proud je takový proud, který v čase nemění svoji velikost a smysl. 1.1. Mezinárodní soustava jednotek Fyzikální veličina je stanovena s fyzikálního
IN-EL, spol. s r. o., Gorkého 2573, Pardubice. Obsah
Obsah IN-EL, spol. s r. o., Gorkého 2573, 530 02 Pardubice 1. ZÁKLADY ELEKTROTECHNIKY 17 1.1 Základní vztahy v elektrotechnice 17 1.1.1 Elektrické napětí, proud, odpor a výkon 17 1.1.1.1 Jednotky elektrických
Zvlhčovače vzduchu řady UX
Návod k používání a obsluze Zvlhčovače vzduchu řady UX Výrobek název: Zvlhčovač vzduchu FRANCO typ: UX56-M, UX56-T, UX71-TT, UX71-TS Dodavatel název: AGRICO s.r.o. adresa: Rybářská 671, 379 01 Třeboň IČO:
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Strana 15-2. Strana 15-2. DVOUPÓLOVÉ IEC jmenovitý proud Ith: 20 A (AC1) IEC spínaný výkon: 1,3 kw (AC3 230 V) Ideální pro domovní aplikace
Strana -2 DVOUPÓLOVÉ IEC jmenovitý proud Ith: 20 A (AC1) IEC spínaný výkon: 1,3 kw (AC3 230 V) Ideální pro domovní aplikace Strana -2 TŘÍPÓLOVÉ A ČTYŘPÓLOVÉ IEC jmenovitý proud: 25 A, 40 A a 63 A (AC1)
4.2.7 Voltampérová charakteristika rezistoru a žárovky
4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová
EATON TOUR 2014. Pojistkové systémy Eaton. Eaton Elektrotechnika. 2010 Eaton Corporation. All rights reserved.
EATON TOUR 2014 Pojistkové systémy Eaton Eaton Elektrotechnika Historie pojistek Patent z roku 1881 (T.A. Edison) k ochraně žárovek Patent z roku 1883 (C.V. Boys a H.H. Cunningham) Patent z roku 1890 (W.M.
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická oblast Základní aranžérské nářadí a pomůcky,
1.3.1 Kruhový pohyb. Předpoklady: 1105
.. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň
Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/34.0304. Elektroinstalace 2 VODIČE (KABELÁŽ)
VY_32_INOVACE_EL_02 Projekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/34.0304 Elektroinstalace 2 VODIČE (KABELÁŽ) 2.1. Silové vodiče Pro elektrickou instalaci se na motorových vozidlech používají téměř výhradně
Použití: Sled fází Přístroj indikuje sled fází a dále chybové stavy (např. nepřítomnost některého fázového napětí).
Použití: Měření přechodových odporů a vodivé spojení Zkratový proud při měření přechodových odporů je minimálně 200 ma. Měření probíhá s automatickým přepólováním zkušebního proudu. Je možné vykompenzovat
VY_52_INOVACE_2NOV37. Autor: Mgr. Jakub Novák. Datum: 5. 9. 2012 Ročník: 8. a 9.
VY_52_INOVACE_2NOV37 Autor: Mgr. Jakub Novák Datum: 5. 9. 2012 Ročník: 8. a 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Měření
Skupina oborů: Elektrotechnika, telekomunikační a výpočetní technika (kód: 26) Aplikování základních pojmů a vztahů v elektrotechnice 3
Montér slaboproudých zařízení (kód: 26-020-H) Autorizující orgán: Ministerstvo průmyslu a obchodu Skupina oborů: Elektrotechnika, telekomunikační a výpočetní technika (kód: 26) Týká se povolání: Elektromechanik
Řada CD3000S. Stručný přehled. Technické parametry. Tyristorové spínací jednotky
Řada CD3S Řada CD3S CD3S je řada jednoduchých, jedno, dvou a třífázových tyristorových jednotek se spínáním v nule, určené pro odporovou zátěž. Ovládací vstup CD3S je standardně dvoupolohový. Některé typy
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Návody na montáž, obsluhu a údržbu
VENTILÁTORY AW SILEO EC NÁVODY NA MONTÁŽ, OBSLUHU A ÚDRŽBU 1. Popis Axiální ventilátory AW sileo EC jsou vybaveny axiálními oběžnými koly a motory s vnějším rotorem. Plášť je vyroben z pozinkovaného ocelového
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
Matériels et outillages isolés de protection et de sécurité du domaine technique électricité.
ČESKÁ NORMA MDT 621.3.002.5:614.825 Březen 1995 DIELEKTRICKÉ OCHRANNÉ A PRACOVNÍ POMŮCKY PRO ELEKTROTECHNIKU ČSN 35 9700 Dielectric protective and working facilities for electrotechnics Matériels et outillages
FEROMAGNETICKÉ ANALOGOVÉ MĚŘICÍ PŘÍSTROJE TYP EA16, EB16, EA17, EA19, EA12
FEROMAGNETICKÉ ANALOGOVÉ MĚŘICÍ PŘÍSTROJE TYP EA16, EB16, EA17, EA19, EA12 AMPÉRMETRY a VOLTMETRY EA12 144x144 EA19 96x96 EA17 72x72 EA16 48x48 EB16 DIN 35 EA16, EB16, EA17, EA19 a EA12 feromagnetické
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06
Laboratorní práce č. 3: Měření indukčnosti cívky pomocí střídavého proudu
Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia aboratorní práce č. 3: Měření indukčnosti cívky pomocí střídavého proudu ymnázium Přírodní vědy moderně
Skupina oborů: Elektrotechnika, telekomunikační a výpočetní technika (kód: 26) Aplikování základních pojmů a vztahů v elektrotechnice 3
Montér elektrických instalací (kód: 26-017-H) Autorizující orgán: Ministerstvo průmyslu a obchodu Skupina oborů: Elektrotechnika, telekomunikační a výpočetní technika (kód: 26) Týká se povolání: Elektromechanik
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].
Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,
S6500 (24L) 230 V 50 Hz #CONN #DPP
KOMPAKTNÍ, PLNĚ VYBAVENÁ VZNĚTOVÁ ELEKTROCENTRÁLA Tato elektrocentrála ztělesňuje to nejlepší co profesionální zařízení Pramac nabízejí, včetně robustní konstrukce a moderního, úsporného vznětového motoru.
Skupina oborů: Elektrotechnika, telekomunikační a výpočetní technika (kód: 26) Aplikování základních pojmů a vztahů v elektrotechnice 3
Montér elektrických rozvaděčů (kód: 26-019-H) Autorizující orgán: Ministerstvo průmyslu a obchodu Skupina oborů: Elektrotechnika, telekomunikační a výpočetní technika (kód: 26) Týká se povolání: Elektromechanik
S O U P I S P Ř Í L O H :
S O U P I S P Ř Í L O H : Akce: Investor: Výměna zdroje tepla objektu ZŠ a MŠ Obec E1 - Technická zpráva E2 - Půdorys 1.NP E3 - Doplnění st. rozváděče R Zpracovatel: HMS - elektro s.r.o. Vorlech 256 Tel./Fax
První hanácká BOW. Návod k obsluze. Hydraulická zakružovačka. profilů a trubek PRM 80 FH PRM 100 FH PRM FH PRM 80 FH
Návod k obsluze Hydraulická zakružovačka profilů a trubek PRM 80 FH PRM 100 FH PRM 80 FH PRM FH Obsah 1 Úvod... 5 1.1 Autorská práva...5 1.2 Zákaznický servis...5 1.3 Omezení odpovědnosti...5 2 Bezpečnost...
( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715
.7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme
Popis připojení elektroměru k modulům SDS Micro, Macro a TTC.
Popis připojení elektroměru k modulům SDS Micro, Macro a TTC. V tomhle případě předpokládáme, že modul SDS je již zapojen do sítě a zprovozněn. První zapojení a nastavení modulů SDS najdete v návodech
Přístupový systém VX800N. Vid-9200-2
Přístupový systém VX800N Vid-9200-2 Základní vlastnosti Jedná se o kódový zámek Obsahuje 2 nebo 3 vestavěné relé (závisí na verzi) Lze každé relé má jeden kód, kterým se aktivuje relé na nastavený čas
rozvaděče BTS - skříně
rozvaděče BTS - skříně Společné znaky: skříně jsou vyrobeny z moderního materiálu ALUZINKU, což je speciální legovaný, proti korozi velmi odolný plech. Skříně jsou opatřeny nátěrem fasádní strukturní barvou
a. vymezení obchodních podmínek veřejné zakázky ve vztahu k potřebám zadavatele,
Doporučení MMR k postupu zadavatelů při zpracování odůvodnění účelnosti veřejné zakázky, při stanovení obchodních podmínek pro veřejné zakázky na stavební práce a při vymezení podrobností předmětu veřejné
Zkušební testy. podle vyhlášky č. 50/1978 Sb. o odborné způsobilosti v elektrotechnice
Zkušební testy podle vyhlášky č. 50/1978 Sb. o odborné způsobilosti v elektrotechnice PŠIS 2016 1 Úvod Hlavním cílem při zpracování těchto zkušebních otázek bylo sestavení dostatečného počtu testových
1. Ovládání a řízení rolety
1. Ovládání a řízení rolety 1.1 Ovládání Ovládání pro navíjecí mechanizmus látky je nutné volit s ohledem na její váhu tak, aby byly dodrženy normové hodnoty dle ČSN EN 13561+A1. Ovládání je možno volit
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
Prostorový termostat. Nastavení žádané teploty pod krytem, pouze pro vytápění nebo pouze pro chlazení. 2-bodová regulace Spínané napětí AC 24...
3 561 RAA11 Nastavení žádané teploty pod krytem, pouze pro vytápění nebo pouze pro chlazení 2-bodová regulace Spínané napětí AC 24250 V Použití Termostat RAA11 se používá pro regulaci prostorové teploty
Energetický regulační
Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva
Sada 1 - Elektrotechnika
S třední škola stavební Jihlava Sada 1 - Elektrotechnika 02. Elektrické přístroje spínače nízkého napětí Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284
Montér elektrických rozvaděčů (26-019-H)
STŘEDNÍ ŠKOLA - CENTRUM ODBORNÉ PŘÍPRAVY TECHNICKÉ KROMĚŘÍŽ Nábělkova 539, 767 01 Kroměříž REKVALIFIKAČNÍ PROGRAM Montér elektrických rozvaděčů (26-019-H) SŠ - COPT Kroměříž 2014 Obsah 1. IDENTIFIKAČNÍ
Elektrické instalace v bytové a občanské výstavbě
Ing. Karel Dvořáček knižnice e elektro edice dílenská příručka svazek 22 Elektrické instalace v bytové a občanské výstavbě (šesté aktualizované vydání) www.iisel.com Internetov InformaËnÌ SystÈm pro Elektrotechniky
Vyjádření k oznámení k záměru přeložka silnice II/240 ( R7-D8) úsek mezi rychlostní silnicí R7, dálnice D8 a silnicí II. třídy č.
Krajský úřad Středočeského kraje Odbor životního prostředí a zemědělství Středočeského kraje Zborovská 11 150 21 Praha 5 OBECNÍ ÚŘAD obce Velké Přílepy Pražská 162 252 64 Velké Přílepy Vyjádření k oznámení
Kontrolní seznam před instalací
Revision Date: 08/2012 Kontrolní seznam před instalací Prosím proveďte všechny body tohoto seznamu a odešlete ho podepsaný na adresu: 1 Úvod Vaše společnost by měla splnit
JIŠTĚNÍ OBVODŮ POJISTKY 1
JIŠTĚNÍ OBVODŮ POJISTKY 1 Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ELEKTROINSTALACE,
Napájecí soustava automobilu. 2) Odsimulujte a diskutujte stavy které mohou v napájecí soustavě vzniknout.
VŠB-TU Ostrava Datum měření: 3. KATEDRA ELEKTRONIKY Napájecí soustava automobilu Fakulta elektrotechniky a informatiky Jména, studijní skupiny: Zadání: 1) Zapojte úlohu podle návodu. 2) Odsimulujte a diskutujte
Následuje legislativa používaných strojů
Následuje legislativa používaných strojů Provozované výrobky Bezpečnost strojů, technických zařízení, přístrojů a nářadí nařízení vlády NV č. 378/2001 Sb minimální požadavky na bezpečný provoz a používání
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
českém Úvod Obsah balení WWW.SWEEX.COM LC100040 USB adaptér Sweex pro bezdrátovou síť LAN
LC100040 USB adaptér Sweex pro bezdrátovou síť LAN Úvod Nejprve bychom vám rádi poděkovali za zakoupení USB adaptéru Sweex pro bezdrátovou síť LAN. USB adaptér umožňuje snadno a bleskově nastavit bezdrátovou
6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
Proudové chrániče. PROUDOVÉ CHRÁNIČE S NADPROUDOVOU OCHRANOU OLE (6 ka)
PROUDOVÉ CHRÁNIČE S NADPROUDOVOU OCHRANOU (6 ka) Přístroj je kombinací proudového chrániče a jističe. Pro domovní, bytové a podobné elektrické rozvody do 6 A, 230 V a.c. Pro ochranu: před nebezpečným dotykem
Tab.1 Základní znaky zařízení jednotlivých tříd a opatření pro zajištění bezpečnosti
Všeobecně V České republice byly v platnosti téměř 30 let normy týkající se bezpečnosti při práci na elektrických zařízeních. Od té doby došlo k závažným změnám v oblasti ochrany před úrazem elektrickým
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.1.05 Integrovaná střední škola technická Mělník, K učilišti 2566,
Praktikum II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:
Parkovací automat. Identifikace systému. Popis objektu
Parkovací automat Identifikace systému Popis objektu Pohled: Systém analyzujeme z funkčního hlediska, tedy technické interakce mezi jednotlivými (funkčními) subsystémy umístěnými v lokalitě vjezdu na automatizované
Nabíječ KE R5-24V 20A
Kumer - Prag spol. s r.o. Komplexní řešení v oblasti nouzového napájení, měřící a regulační techniky 190 00 Praha 9 ( Kyje ) Tel.: 284 688 615, 284 688 458, Fax.: 284 690 529 e mail.: kumer@kumer.cz Nabíječ
Svorkový měřič o průměru 36 mm měří střídavý a stejnosměrný proud, stejnosměrné a střídavé napětí, odpor, teplotu a frekvenci.
dodavatel vybavení provozoven firem www.abetec.cz Svorkový měřič CMP-1006 Obj. číslo: 106001350 Výrobce: SONEL S. A. Popis Svorkový měřič o průměru 36 mm měří střídavý a stejnosměrný proud, stejnosměrné
CZ PŮVODNÍ NÁVOD K POUŽITÍ XT106130 PŘÍKLEPOVÁ VRTAČKA, Z1J-td-13B, 900W
CZ PŮVODNÍ NÁVOD K POUŽITÍ XT106130 PŘÍKLEPOVÁ VRTAČKA, Z1J-td-13B, 900W Napětí: 230V, 50Hz Příkon: 900W Otáčky (bez zatížení): 0-2800(min-1) Hladina akustického výkonu LwA: 98dB Hladina akustického tlaku
Finanční matematika Vypracovala: Mgr. Zuzana Kopečková
Finanční matematika Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických
Operativní plán. Operativní řízení stavby
Operativní plán Operativní řízení stavby OPERATIVNÍ PLÁN - celkový časový plán je pro potřeby řízení stavby málo podrobný Operativní plán - zpracovávají se podrobnější časové plány operativní plány (OP)
UZEMNĚNÍ. VŠB TU Ostrava Fakulta elektrotechniky a informatiky Katedra obecné elektrotechniky
VŠB TU Ostrava Fakulta elektrotechniky a informatiky Katedra obecné elektrotechniky UZEMNĚNÍ 1. Zemniče a hodnoty jejich zemních odporů 2. Uzemnění objektů 3. Výpočty uzemnění 4. Měření rezistivity půdy
PŘEJÍMACÍ A PERIODICKÉ ZKOUŠKY SOUŘADNICOVÝCH MĚŘICÍCH STROJŮ
ČVUT - Fakulta strojní Ústav technologie obrábění, projektování a metrologie Měrové a školicí středisko Carl Zeiss PŘEJÍMACÍ A PERIODICKÉ ZKOUŠKY SOUŘADNICOVÝCH MĚŘICÍCH STROJŮ Ing. Libor Beránek Aktivity
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky
Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Bc. Miloslav Holub Název materiálu: Omezení osobní svobody I. Označení materiálu: Datum vytvoření: 16.10.2013
2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B
.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B V řadě případů je užitečné znát polarizaci vlny a poměry mezi jednotlivými složkami vektoru elektrické intenzity E takzvané polarizační koeficienty,
Oceloplechové rozvaděče, IP 65 Serie Orion + Rozváděčové skříně s dveřmi a volitelnou výzbrojí
Oceloplechové rozvaděče, IP 65 Serie Orion + Rozváděčové skříně s dveřmi a volitelnou výzbrojí Prázdné kovové skříně v nástěnném provedení s třídou ochrany I jsou určeny pro rozvaděče s vysokým stupněm
Sada: VY_32_INOVACE_4IS
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 12 Ověření ve výuce Třída: 8.A Datum: 20. 3. 2013 1 Elektrické pole Předmět: Ročník: Fyzika 8.
Učební osnova vyučovacího předmětu Silnoproudá zařízení. 3. ročník (2 hodiny týdně, celkem 52 hodin)
Učební osnova vyučovacího předmětu Silnoproudá zařízení 3. ročník (2 hodiny týdně, celkem 52 hodin) Obor vzdělání: Forma vzdělávání: 26-41-M/01 Elektrotechnika denní studium Celkový počet týdenních vyuč.
E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.
E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4
Fyzika - Tercie. vyjádří práci a výkon pomocí vztahů W=F.s a P=W/t. kladky a kladkostroje charakterizuje pohybovou a polohovou energii
- Tercie Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo Mechanická
Manželé Stuchlíkovi, Kojetická 301, Praha 9, 190 00. STAVEBNÍ ÚPRAVY A PŘÍSTAVBA VILLY U OBORY V SATALICÍCH, U Obory 130, Praha 9- Satalice
stupeň +420 605 453 312 pavel@epzdenek.cz www.epzdenek.cz investor název stavby část Manželé Stuchlíkovi, Kojetická 301, Praha 9, 190 00 název dokumentu STAVEBNÍ ÚPRAVY A PŘÍSTAVBA VILLY U OBORY V SATALICÍCH,
Identifikátor materiálu: ICT-1-06
Identifikátor materiálu: ICT-1-06 Předmět Informační a komunikační technologie Téma materiálu Základní pojmy Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní pojmy jako hardware,
Instalační stykače VS120, VS220, VS420, VS425, VS440, VS463
Instalační stykače VS0, VS0, VS0, VS, VS0, VS viz. strana Technické parametry Jmenovité izolační napětí (Ui): Jmenovitý tepelný proud lth (v AC): Spínaný výkon AC pro 00 V, fáze: AC pro 0 V: AC pro 00
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH] 1 ÚVOD V této kapitole je probírána tématika tvorby ploch pomocí funkcí vysunutí, rotace a tažení. V moderním světě,
Drážní úřad Rail Authority
Povolování staveb v souvislosti s evropskou legislativou 2. část Praha - 13.3.2012 RNDr. Jan Karnolt ČVTSS, Praha 13.3.2012 1 Dokumenty upravující problematiku 1. Evropské: Směrnice Evropského parlamentu
4.5.2 Magnetické pole vodiče s proudem
4.5.2 Magnetické pole vodiče s proudem Předpoklady: 4501 1820 H. Ch. Oersted objevil, že vodič s proudem působí na magnetku elektrický proud vytváří ve svém okolí magnetické pole (dříve nebyly k dispozici
Určen pro přímé měření izolačního odporu v síťových kabelech, transformátorech, elektromotorech aj.
dodavatel vybavení provozoven firem www.abetec.cz Měřič izolačního odporu MIC-2510 Obj. číslo: 106001377 Výrobce: SONEL S. A. Popis Digitální měřič izolačního odporu. Určen pro přímé měření izolačního
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana
Podpěrné transformátory proudu pro vnitřní prostředí
Podpěrné transformátory proudu pro vnitřní prostředí TPU 6x.xx Nejvyšší napětí soustavy [kv] 24 až do 25 Zkušební napětí střídavé, 1 min. [kv] 50 až do 55 Zkušební napětí impulsní [kv] až do 125 Jmenovitý
PC, POWER POINT, dataprojektor
Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Střední škola hotelová a služeb Kroměříž CZ.1.07/1.5.00/34.0911 Ing. Anna Grussová VY_32_INOVACE 29_MAR
El.náboj,napětí,proud,odpor.notebook. October 23, 2012
1 JAKÝ ELEKTRICKÝ NÁBOJ PROJDE PRŮŘEZEM VODIČE ZA 5 MINUT,PROCHÁZÍ LI JÍM PROUD 800mA? ( sestav z nabídky správné řešení a zkontroluj na následující stránce ) Q = 800. 300 t = 5 min Q = 0,8. 300 Q = 240
Kombinované chrániče Ex9CBL-N, 6 ka
Kombinované chrániče Ex9CBL-, 6 ka Proudové chrániče s nadproudovou ochranou dle IEC / ČS E 6009 Jmenovitá vypínací schopnost I cn 6 ka +pólové provedení Jmenovitý reziduální proud 30, 00, 300 ma Jmenovité
9xx-020320 Výdejní terminál Nero TC10
9xx-020320 Výdejní terminál Nero TC10 Popis Výdejní terminál Nero TC10 slouží ve stravovacích systémech jako terminál pro výdejní místo, které je schopno zobrazit více informací. Umožňuje výdej více druhů
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.17 Integrovaná střední škola technická Mělník,
PŘEJÍMACÍ A PERIODICKÉ ZKOUŠKY SOUŘADNICOVÝCH MĚŘICÍCH STROJŮ
ČVUT - Fakulta strojní Ústav technologie obrábění, projektování a metrologie Ing. Libor Beránek Průmyslová metrologie PŘEJÍMACÍ A PERIODICKÉ ZKOUŠKY SOUŘADNICOVÝCH MĚŘICÍCH STROJŮ Aktivity mezinárodní
Haga clic para modificar el estilo de título del patrón
de PAS SYSTÉM subtítulo VÝSTRAHY del patrón CHODCŮ ŘEŠENÍ PRO SNÍŽENÍ RIZIKA KOLIZÍ VYSOKOZDVIŽNÝCH VOZÍKŮ A CHODCŮ ZÁKAZNÍCI de 2 de 3 PAS - HISTORIE ICNITA je jednou z největších španělských společností
IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE
Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento
L L H L H H H L H H H L
POPLAŠNÉ ZAŘÍZENÍ Tématický celek: Číslicová technika, třída SE4 Výukový cíl: Naučit žáky praktické zapojení poplašného zařízení a pochopit jeho funkci. Pomůcky: Logická sonda, multimetr, stopky, součástky
Plánované investice v distribučních sítích E.ON Distribuce, a.s. Lukáš Svoboda, Miroslav Točín E.ON Česká republika, s.r.o.
Plánované investice v distribučních sítích E.ON Distribuce, a.s. Lukáš Svoboda, Miroslav Točín E.ON Česká republika, s.r.o. Legislativa upravující provozování distribuční sítě Distribuční síť dále jen
TEST ke zkouškám podle Vyhlášky č. 50/1978 Sb. pro činnost na elektrickém zařízení do 1000 V
1. Jako prostředek základní ochrany v instalacích za normálních podmínek je možné použít: (ČSN 33 2000-4-41, příloha A) A ochrana polohou a izolací B izolací živých částí a přepážky nebo kryty C ochrana
Odbor dopravy ŽÁDOST O STAVEBNÍ POVOLENÍ. Příloha č. 2 k vyhlášce č. 526/2006 Sb. Adresa příslušného úřadu
Příloha č. 2 k vyhlášce č. 526/2006 Sb. Adresa příslušného úřadu MĚSTSKÝ ÚŘAD TÁBOR Odbor dopravy Žižkovo náměstí 2 390 15 Tábor Telefon: +420 381 486 111 Fax: +420 381 486 100 E-mail: posta@mu.tabor.cz
Adresa příslušného úřadu
Příloha č. 9 k vyhlášce č. 503/2006 Sb. Adresa příslušného úřadu Úřad: Obecní úřad Výprachtice Stavební úřad PSČ, obec: Výprachtice č.p.3, 561 34 Výprachtice Věc: ŽÁDOST O STAVEBNÍ POVOLENÍ podle ustvení