Vodík jako vedlejší produkt aceton-butanolové fermentace

Rozměr: px
Začít zobrazení ze stránky:

Download "Vodík jako vedlejší produkt aceton-butanolové fermentace"

Transkript

1 282 Vodík jako vedlejší produkt aceton-butanolové fermentace ing. Jakub Lipovský, ing. Pavel Šimáček PhD, ing. Petr Fribert, ing. Michaela Linhová, ing. Hana Čížková, Dr. ing. Petra Patáková, prof. ing. Mojmír Rychtera, CSc. a prof. ing. Karel Melzoch, CSc. VŠCHT v Praze, Ústav kvasné chemie a bioinženýrství, Technická 5, Praha 6, jakub.lipovsky@vscht.cz, tel.: , Abstrakt V dnešní době dochází díky biopalivům druhé generace k obnovení zájmu o technologie produkující butanol založené na aceton-butanol-etanolové (ABE) fermentaci. Při této fermentaci prováděné bakteriemi rodu Clostridium může za určitých podmínek vznikat poměrně velké množství vodíku, který je v posledních letech ceněným produktem používaným například v palivových článcích nebo přímo jako alternativní ekologické palivo. Obsah vodíku ve fermentačním plynu při ABE fermentaci může dosáhnout až 40%, proto by tento produkt mohl významně zlepšit ekonomiku celého procesu. Úvod Zájem o vodík byl obnoven v posledním desetiletí, především v Japonsku a Německu a do jisté míry i ve Spojených státech, za účelem nahrazení využívání fosilních paliv v energetice a chemickém průmyslu. Rozsáhlé využívání fosilních paliv začíná mít viditelné důsledky. Nadměrné používání fosilních paliv, je jednou z hlavních příčin globálního oteplování a kyselých dešťů, které začaly ovlivňovat zemské klima, vegetaci a vodní ekosystémy. Vzhledem k potřebě zabezpečení dostatku elektrické energie, stoupá tlak na vývoj zdroje čisté obnovitelné energie2. Právě vodík je takovým zdrojem energie, protože při jeho spalování vzniká jako jediný produkt voda bez skleníkových plynů3. Vodík lze vyrábět z obnovitelných surovin, například z organických odpadů. Proto je vodík možnou ekologickou náhradou fosilních paliv. Další výhodou vodíku je možnost užití odpadů závodů na zpracování potravin a zemědělských produktů k jeho výrobě. Některé z odpadních produktů jsou totiž ještě poměrně bohaté na obsah sacharidů. Mikrobiální produkce vodíku anaerobní fermentací by mohl být proces spojující smysluplné využití odpadů s výrobou energie2. Při mikrobiální produkci rozpouštědel ABE fermentací se za určitých podmínek uvolňuje vodík. Použití průmyslových odpadů k produkci vodíku a rozpouštědel by mohlo být vhodnou cestou k jejich opětovnému využití a tím i zároveň ke snížení celkového objemu odpadů. Mikroorganismy produkují vodík z organických sloučenin buď prostřednictvím využití chemické energie těchto substrátů (heterotrofní kvašení) nebo pomocí využití světelné energie (photoheterotrofní kvašení). V obou případech je výroba vodíku úzce spjata s příslušnými energetickými metabolismy. Vodík se uvolňuje jako finální produkt redukční činnosti hydrogenasy. Primární elektronový dárce pro enzym je ferredoxin, který přijímá elektrony od redukovaných produktů glykolýzy, tj. NADH nebo NADPH. 446

2 Vodík je představován jako potenciální řešení problémů spojených s energií a životním prostředím pro jeho výhodné vlastnosti například ekologičnost spalování a vysoká výhřevnost 2 kj / g která je 2,75 krát vyšší než u uhlovodíkových paliv. Vodík lze také přímo použít k výrobě elektřiny pomocí palivových článků2,3. Obecně se má za to, že použití vodíku může přispět k uspokojení rostoucí světové poptávky po energii. Tradičně, je vodík vyráběn hlavně konverzí uhlovodíků parou za vysokých teplot nebo elektrolýzou vody. Tyto metody jsou velmi energeticky náročné a neekologické4. Výroba vodíku pomocí mikroorganismů je méně energeticky náročná a ekologičtější ve srovnání s výrobou termochemickými a elektrochemickými procesy. Mezi fermentativní producenty vodíku patří zástupci rodu Clostridium jako Clostridium butyricum, C. acetobutylicum, C.saccharoperbutylacetonicum, C. pasteurianum, které se také používají pro ABE fermentaci3. Klostridia jsou nejúčinnějšími producenty vodíku. Clostridium saccharoperbutylacetonicum je znám jako solventogenní mikroorganismus používaný pro ABE fermentace na definovaných médiích. Jeho potenciál pro výrobu vodíku nebyl zatím podrobně studován5. Při vsádkové kultivaci tvoří rozpouštědla produkující druhy rodu Clostridium vodík, oxid uhličitý, acetát a butyrát během fáze exponenciálního růstu, která se zároveň často označuje jako acidogenní fáze. Při přechodu kultury do stacionární fáze růstu dochází ke změně metabolismu, kdy se koncovými produkty stávají rozpouštědla a nastává tak solventogenní fáze. Během této fáze dochází k reasimilaci kyselin za stálé spotřeby uhlíkatého zdroje6. Rovnováha mezi koncovými množstvími redukovaných, neutrálních a oxidovaných produktů v průběhu celé fermentace je vyvažována regulací produkce vodíku a ATP. Celkový zisk těchto látek je závislý na kultivačních podmínkách a použitém klostridiálním kmenu7. Butanol může být také tvořen přímo ze sacharidického zdroje bez zpětného využití již vytvořených kyselin, přičemž se netvoří vodík a nedochází k tvorbě ATP6. Alespoň částečná reutilizace kyselin je typická pro druhy C. acetobutylicum a C.beijerinckii, ale v případě C. tetanomorphum se tvoří simultánně butyrát s butanolem, aceton se netvoří a k reutilizaci butyrátu nedochází vůbec7. Zjednodušené schéma konverze rostlinné biomasy na rozpouštědla u bakterií rodu Clostridium je ukázáno na obrázku. Glukósa je preferovaný zdroj uhlíku pro fermentační procesy, které produkují acetát, butyrát a vodík a to podle následujících reakcí: C6H2O6 + 2H2O 2CH3COOH + 2CO2 + 4H2 C6H2O6 CH3CH2CH2COOH + 2CO2 + 2H2 Z výše uvedených reakcí je zřejmé, že nejvyšší teoretický výtěžek na glukose je 4 mol H2/mol glukósy5. 447

3 biomasa škrob lignocelulosa celulosa 2 hemicelulosa 3 4 extracelulární prostor glukosa xylosa, arabinosa intracelulární prostor laktát pyruvát,2,3 7 H2 CO2 acetát 4 acetyl-coa 8 acetoacetyl-coa butyrát 7 9 butyryl-coa etanol aceton butanol Obr.. Zjednodušená konverze rostlinné biomasy na rozpouštědla u bakterií rodu Clostridium:. předúprava zrna / lignocelulosy; 2. hydrolýza škrobu (α-amylasa, β-amylasa, pullulanasa, glukoamylasa, α-glukosidasa); 3. hydrolýza celulosy (celulasa, β-glukosidasa); 4. hydrolýza hemicelulosy; 5. absorbce xylosy/arabinosy a následná transformace transketolasovou- transaldolasovou sekvencí na fruktosa 6-fosfát a glyceraldehyd 3-fosfát postupnou metabolizací Embden-Meyerhof-Parnas (EMP) drahou; 6. přenos glukosy fosfotransferasovým systémem a konverze na pyruvát EMP drahou; 7. pyruvát-ferredoxin oxidoreduktasa; 8. thiolasa; 9. 3-hydroxybutyl-CoA dehydrogenasa, krotonasa a butyryl-coa dehydrogenasa; 0. laktát dehydrogenasa;. NADH- ferredoxin oxidoreduktasa; 2. NADPH- ferredoxin oxidoreduktasa; 3. hydrogenasa; 4. fosfát acetyltransferasa, acetát kinasa; 5.acetaldehyd dehydrogenasa, etanol dehydrogenasa; 6. acetoacetylcoa:acetát/butyrát:coa transferasa, acetoacetát decarboxylasa; 7. fosfát butyltransferasa, butyrát kinasa; 8. butyraldehyd dehydrogenasa, butanol dehydrogenasa8,9. 448

4 Vliv počátečního ph na výrobu vodíku byl zkoumán na C. butyricum při použití hemicelulosového hydrolyzátu s počáteční koncentraci cukrů 20 g.l-. Počáteční ph se pohybovalo od 5,5 do 8,0 s nárůstem o 0,5. Teplota byla použitaºc. 37 Nejvyšší produkce vodíku je u C. butyricum dosahováno mezi hodnotami ph 5,5-5,7. Tyto hodnoty se v podstatě schodují s dříve publikovanými údaji pro C. butyricum na glukosovém médiu. Obecně lze říci, že nadměrné zvýšení počátečního ph vede k poklesu produkce vodíku2,3. Experimentální data Při ABE fermentacích provedených v naší laboratoři byla zaznamenána tvorba fermentačního plynu obsahujícího jako hlavní složky oxid uhličitý a vodík. Plyn vznikající při kultivaci byl vzorkován a koncentrace vodíku určována pomocí plynové chromatografie. Celková tvorba plynu byla stanovena pomocí speciálních plynotěsných vaků, kde byla koncentrace vodíku také změřena. Například při batch kultivaci s počáteční koncentrací glukosy 37 g.l- (na konci kultivace byla zbytková koncentrace glukosy v médiu 0,9 g.l-) a pracovním objemu reaktoru 2 l, bylo celkem odebráno 38,8 l plynu s objemovou koncentrací obsaženého vodíku 45,2 %obj. tj. 7,5 l vodíku. Toto množství plynu odpovídá 0,77 molu H2, přičemž bylo spotřebováno 0,290 molu glukosy. Kultivace probíhala při teplotě 37º C a počáteční hodnotě ph 5,6 bez regulace ph. Z předchozího textu je vidět, že bylo při kultivaci dosaženo výtěžku 2,47 molu H2 na mol glukosy tento výsledek koresponduje s literaturou5, kde se uvádí maximální možný výtěžek 4 moly H2 na mol glukosy při utilisaci glukosy na acetát. Časová závislost objemové koncentrace vodíku ve fermentačním plynu je znázorněna na Obr vodík [obj.%] čas [h] Obr.2. Časová závislost objemové koncentrace vodíku ve fermentačním plynu. 449

5 Diskuse a závěr ABE fermentace má v současnosti řadu omezení. Produkce vodíku je jednou z cest jak vylepšit energetickou a ekonomickou bilanci celého procesu, který zatím trpí poměrně nízkými výtěžnostmi způsobenými hlavně inhibicí vznikajícími produkty hlavně butanolem. Při kultivacích ve fermentoru byl zjištěn zajímavý výtěžek vedlejšího produktu - vodíku a to 2,4 molu H2 na mol glukosy, což je výsledek srovnatelný s výsledky uváděnými v literatuře. V budoucnu se jeví jako velmi zajímavé využití odpadních lignocelulosových materiálů pro tvorbu biopaliv. Tato studie byla zpracována s finanční podporou projektu NAZV č. QH8323/2008 a výzkumného záměru MŠM Literatura. Claassen P. A. M., van Lier J. B., Lopez Contreras A. M., van Niel E. W. J., Sijtsma L., Stams A. J. M., de Vries S. S. and Weusthuis R. A.: Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 999, 52, Khanal S. K., Chen W.-H., Li L. and Sung S.: Biological hydrogen production: efects of ph and intermediate products. International Journal of Hydrogen Energy 2004, 29, Pattra S.,Sangyoka S.,Boonmee M. and Reungsang A.: Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. International Journal of Hydrogen Energy 2008, 33, Fan Y.-T., Xing Y., Ma H.-C., Pan C.-M. and Hou H.-W.: Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure. International Journal of Hydrogen Energy 2008, 33, Walid M. A., Mohd S. K., Abdul A. H. K., Jamaliah M. J. and Najeeb M. A.:Hydrogen production using Clostridium saccharoperbutylacetonicum N-4 (ATCC 3564). International Journal of Hydrogen Energy 2008, 33, Jones D. T., Woods D. R.: ACETONE-BUTANOL FERMENTATION REVISITED. Microbiol. Rev. 986, 50, Flickinger M.C., Drew S.W. (Eds): Encyclopedia of Bioprocess Technology Fermentation, Biocatalysis, and Bioseparation. Wiley, New York Ezeji T. C., Qureshi N., Blaschek H. P.: Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 2007, 8, Castaño D. M.: Dissertation. Technische Universität München, München, Deutschland,

Využití stripování plynem při separaci acetonu, 1-butanolu a ethanolu z kultivačního média

Využití stripování plynem při separaci acetonu, 1-butanolu a ethanolu z kultivačního média 281 Využití stripování plynem při separaci acetonu, 1-butanolu a ethanolu z kultivačního média Ing. Petr Fribert; Ing. Jakub Lipovský; Dr. Ing. Petra Patáková; Prof. Ing. Mojmír Rychtera, CSc.; Prof. Ing.

Více

PERSPEKTIVY PRODUKCE BUTANOLU ZE ŠKROBNATÝCH A CELULOSOVÝCH MATERIÁLŮ

PERSPEKTIVY PRODUKCE BUTANOLU ZE ŠKROBNATÝCH A CELULOSOVÝCH MATERIÁLŮ PERSPEKTIVY PRODUKCE BUTANOLU ZE ŠKROBNATÝCH A CELULOSOVÝCH MATERIÁLŮ JAKUB LIPOVSKÝ, PETRA PATÁKOVÁ, MOJMÍR RYCHTERA, HANA ČÍŽKOVÁ a KAREL MELZOCH Ústav kvasné chemie a bioinženýrství, VŠCHT Praha, Technická

Více

Fermentační produkce butanolu - současné reálné možnosti a výhled do budoucnosti

Fermentační produkce butanolu - současné reálné možnosti a výhled do budoucnosti 205 Fermentační produkce butanolu - současné reálné možnosti a výhled do budoucnosti Dr.ing. Petra Patáková, ing. Jakub Lipovský, ing. Petr Fribert, prof. ing. Mojmír Rychtera, CSc. a prof. ing. Karel

Více

Průmyslová mikrobiologie a genové inženýrství

Průmyslová mikrobiologie a genové inženýrství Průmyslová mikrobiologie a genové inženýrství Nepatogenní! mikroorganismus (virus, bakterie, kvasinka, plíseň) -kapacita produkovat žádaný produkt -relativně stabilní růstové charakteristiky Médium -substrát

Více

Eva Benešová. Dýchací řetězec

Eva Benešová. Dýchací řetězec Eva Benešová Dýchací řetězec Dýchací řetězec Během oxidace látek vstupujících do různých metabolických cyklů (glykolýza, CC, beta-oxidace MK) vznikají NADH a FADH 2, které následně vstupují do DŘ. V DŘ

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SAHARIDŮ A. Odbourávání sacharidů - nejdůležitější zdroj energie pro heterotrofy - oxidací sacharidů až na. získávají aerobní organismy energii ve formě. - úplná oxidace glukosy: složitý proces

Více

Bioplynová stanice. Úvod. Immobio-Energie s.r.o. Jiráskovo nám. 4 Tel.: 377 429 799 326 00 Plzeň Fax: 377 429 921 contact@immobio-energie.

Bioplynová stanice. Úvod. Immobio-Energie s.r.o. Jiráskovo nám. 4 Tel.: 377 429 799 326 00 Plzeň Fax: 377 429 921 contact@immobio-energie. Ing. Diana Sedláčková Mobil: 728 019 076 Bioplynová stanice Úvod Vznik bioplynu z organických látek i využití methanu k energetickým účelům je známo již dlouho. Bioplyn je směs methanu, oxidu uhličitého

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn Anaerobní proces Bez přístupu vzduchu C x H y O z + a H 2 O b CH 4 + c CO 2 + biomasa (S) H 2 S / S 2- (N) NH 3 / NH + 4 Počátky konec 19.stol. (septik, využívání bioplynu) Stabilizace kalů od poloviny

Více

METABOLISMUS SACHARIDŮ

METABOLISMUS SACHARIDŮ METABOLISMUS SACHARIDŮ PRINCIP Rozštěpené sacharidy vstřebávání střevní sliznicí do krevního oběhu dopraveny vrátnicovou žílou do jater. V játrech enzymaticky hexózy štěpeny na GLUKÓZU vyplavována do krve

Více

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková

Buněčné dýchání Ch_056_Přírodní látky_buněčné dýchání Autor: Ing. Mariana Mrázková Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

Oxid uhličitý, biopaliva, společnost

Oxid uhličitý, biopaliva, společnost Oxid uhličitý, biopaliva, společnost Oxid uhličitý Oxid uhličitý v atmosféře před průmyslovou revolucí cca 0,028 % Vlivem skleníkového efektu se lidstvo dlouhodobě a všestranně rozvíjelo v situaci, kdy

Více

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz

Metabolismus, taxonomie a identifikace bakterií. Karel Holada khola@lf1.cuni.cz Metabolismus, taxonomie a identifikace bakterií Karel Holada khola@lf1.cuni.cz Klíčová slova Obligátní aeroby Obligátní anaeroby Aerotolerantní b. Fakultativní anaeroby Mikroaerofilní b. Kapnofilní bakterie

Více

Energetický metabolizmus buňky

Energetický metabolizmus buňky Energetický metabolizmus buňky Buňky vyžadují neustálý přísun energie pro tvorbu a udržování biologického pořádku (život). Tato energie pochází z energie chemických vazeb v molekulách potravy (energie

Více

VODÍK Vodík Methan petrochemickými metodami. elektrolýza vody původu použité elektrické energie atomové, větrné, vodní a fotovoltaické

VODÍK Vodík Methan petrochemickými metodami. elektrolýza vody původu použité elektrické energie atomové, větrné, vodní a fotovoltaické VODÍK Vodík je obecně považován za ekologické palivo bez škodlivých emisí. Methan, jehož zdrojem je zemní plyn, je považován za neekologické palivo, neobnovitelný zdroj energie. Toto dělení je však třeba

Více

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy

DÝCHÁNÍ. uložená v nich fotosyntézou, je z nich uvolňována) Rostliny tedy mohou po určitou dobu žít bez fotosyntézy Dýchání 2/38 DÝCHÁNÍ Asimiláty vzniklé v rostlinných buňkách fotosyntézou mají různé funkce: stavební, zásobní, enzymatické aj. Zásobní látky jsou v případě potřeby využívány (energie, uložená v nich fotosyntézou,

Více

VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU

VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU Ing. David Hrušťák, Cristina Serrano Gil Školitel: Prof. Ing. Pavel Ditl, DrSc. Abstrakt Článek se zabývá úpravou substrátu pomocí iradiace ultrazvukem a

Více

Poloprovoz. Hydrolýza a frakcionace lignocelulosových materiálů

Poloprovoz. Hydrolýza a frakcionace lignocelulosových materiálů Poloprovoz Hydrolýza a frakcionace lignocelulosových materiálů Vypracovali: VŠCHT Praha Ústav biotechnologie Ing. Marek Drahokoupil Ing. Barbora Branská, PhD Dr. Ing. Leona Paulová Ing. Maryna Vasylkivska

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 2 1 je hmota organického původu (rostlinného

Více

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn

Anaerobní proces. Anaerobní rozklad organických látek. Bioplyn Anaerobní proces Bez přístupu vzduchu C x H y O z + a H 2 O b CH 4 + c CO 2 + biomasa (S) H 2 S / S 2- (N) NH 3 / NH + 4 Počátky konec 19.stol. (septik, využívání bioplynu) Stabilizace kalů od poloviny

Více

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018

Enzymologie. Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar. akad. rok 2017/2018 Enzymologie Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol Matej Kohutiar akad. rok 2017/2018 Osnova I. Základní principy enzymových reakcí II. Termodynamické a kinetické aspekty enzymové

Více

SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY

SPOTŘEBA ENERGIE ODKUD BEREME ENERGII VÝROBA ELEKTŘINY SPOTŘEBA ENERGIE okamžitý příkon člověka = přibližně 100 W, tímto energetickým potenciálem nás pro přežití vybavila příroda (100Wx24hod = 2400Wh = spálení 8640 kj = 1,5 kg chleba nebo 300 g jedlého oleje)

Více

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení

Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. RNDr. Monika Jörková Biologie 30 Metabolismus, fotosyntéza, dýchání, glykolýza, kvašení Ročník 1.

Více

Biogeochemické cykly biogenních prvků

Biogeochemické cykly biogenních prvků Technologie výroby bioplynu a biovodíku http://web.vscht.cz/pokornd/bp Biogeochemické cykly biogenních prvků Ing. Pokorná Dana, CSc. (č.dv.136, pokornd@vscht.cz) Prof.Ing.Jana Zábranská, CSc. (č.dv.115,

Více

Hydrolytické a acidogenní mikroorganismy

Hydrolytické a acidogenní mikroorganismy Í Hydrolytické a acidogenní mikroorganismy - nejrychleji rostoucí a nejodolnější vůči změnám podmínek! - první dva kroky anaerobního rozkladu, hydrolýzu a acidogenesi - exoenzymy, které jsou uvolňovány

Více

Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe

Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe Pouţití hydrolytických enzymů při produkci bioplynu z odpadů: Výsledky z praxe Ing. Jan Štambaský NovaEnergo Ing. Jan Štambaský, Na Horánku 673, CZ-384 11 Netolice, stambasky@novaenergo.cz Nakládání s

Více

Biosyntéza sacharidů 1

Biosyntéza sacharidů 1 Biosyntéza sacharidů 1 S a c h a r id y p o tr a v y (š k r o b, g ly k o g e n, sa c h a r o sa, a j.) R e z e r v n í p o ly sa c h a r id y J in é m o n o sa c h a r id y Trávení (amylásy - sliny, pankreas)

Více

16a. Makroergické sloučeniny

16a. Makroergické sloučeniny 16a. Makroergické sloučeniny Makroergickými sloučeninami v biochemii nazýváme skupinu látek umožňujících uvolnění značného množství energie v jednoduché reakci. Nelze je definovat prostě jako sloučeniny

Více

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie

Otázka: Metabolismus. Předmět: Biologie. Přidal(a): Furrow. - přeměna látek a energie Otázka: Metabolismus Předmět: Biologie Přidal(a): Furrow - přeměna látek a energie Dělení podle typu reakcí: 1.) Katabolismus reakce, při nichž z látek složitějších vznikají látky jednodušší (uvolňuje

Více

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY Jan Škvařil Článek se zabývá energetickými trendy v oblasti využívání obnovitelného zdroje s největším potenciálem v České republice. Prezentuje výzkumnou práci prováděnou

Více

VYUŽITÍ GENOVÉHO INŽENÝRSTVÍ PRO ZLEPŠENÍ PROCESU FERMENTAČNÍ VÝROBY BUTANOLU

VYUŽITÍ GENOVÉHO INŽENÝRSTVÍ PRO ZLEPŠENÍ PROCESU FERMENTAČNÍ VÝROBY BUTANOLU VYUŽITÍ GENOVÉHO INŽENÝRSTVÍ PRO ZLEPŠENÍ PROCESU FERMENTAČNÍ VÝROBY BUTANOLU JAN KOLEK a PETRA PATÁKOVÁ Ústav biotechnologie, Vysoká škola chemickotechnologická v Praze, Technická 5, 166 28 Praha 6 kolekj@vscht.cz

Více

pátek, 24. července 15 GLYKOLÝZA

pátek, 24. července 15 GLYKOLÝZA pátek,. července 15 GLYKLÝZ sacharosa threalosa laktosa sacharasa threlasa laktasa D-glukosa D-fruktosa T T hexokinasa T hexokinasa glykogen - škrob fosforylasa D-galaktosa UD-galaktosa UD-glukosa fruktokinasa

Více

M Ý T Y A F A K T A. O obnovitelných zdrojích energie v dopravě (Biopaliva)

M Ý T Y A F A K T A. O obnovitelných zdrojích energie v dopravě (Biopaliva) M Ý T Y A F A K T A O obnovitelných zdrojích energie v dopravě (Biopaliva) Zpracovala a předkládá Odborná sekce Energetika při Okresní hospodářské komoře v Mostě, Ve spolupráci s Českou rafinérskou, a.

Více

Citrátový cyklus. Tomáš Kučera.

Citrátový cyklus. Tomáš Kučera. itrátový cyklus Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Schéma energetického

Více

Bio LPG. Technologie a tržní potenciál Ing. Jakub Rosák 17/05/2019

Bio LPG. Technologie a tržní potenciál Ing. Jakub Rosák 17/05/2019 Bio LPG Technologie a tržní potenciál Ing. Jakub Rosák 17/05/2019 Co je Bio LPG Vlastnosti a chemické složení identické jako LPG (propan, butan či jejich směsi) Bio LPG není fosilní palivo, je vyrobeno

Více

Předmět: Chemie Ročník: 9.

Předmět: Chemie Ročník: 9. Předmět: Chemie Ročník: 9. Očekávané výstupy Školní výstupy Učivo Průřezová témata 1. ANORGANICKÉ SLOUČENINY Uvede příklady uplatňování Popíše princip neutralizace Neutralizace neutralizace v praxi Vysvětlí

Více

POUŽITÍ PROPUSTNÉ REAKTIVNÍ BARIÉRY Z NULMOCNÉHO ŽELEZA V SANACI CHLOROVANÝCH ETYLENŮ A JEJÍ VLIV NA BAKTERIÁLNÍ OSÍDLENÍ PODZEMNÍ VODY

POUŽITÍ PROPUSTNÉ REAKTIVNÍ BARIÉRY Z NULMOCNÉHO ŽELEZA V SANACI CHLOROVANÝCH ETYLENŮ A JEJÍ VLIV NA BAKTERIÁLNÍ OSÍDLENÍ PODZEMNÍ VODY POUŽITÍ PROPUSTNÉ REAKTIVNÍ BARIÉRY Z NULMOCNÉHO ŽELEZA V SANACI CHLOROVANÝCH ETYLENŮ A JEJÍ VLIV NA BAKTERIÁLNÍ OSÍDLENÍ PODZEMNÍ VODY Mgr. Marie Czinnerová Technická univerzita v Liberci Ústav pro nanomateriály,

Více

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS

RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS RESEARCH OF ANAEROBIC FERMENTATION OF ORGANIC MATERIALS IN SMALL VOLUME BIOREACTORS Trávníček P., Vítěz T., Dundálková P., Karafiát Z. Department of Agriculture, Food and Environmental Engineering, Faculty

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

PODPOROVANÁ ATENUACE V PRAXI. Vít Matějů, ENVISAN-GEM, a.s. Tomáš Charvát, VZH, a.s. Robin Kyclt, ENVISAN-GEM, a.s.

PODPOROVANÁ ATENUACE V PRAXI. Vít Matějů, ENVISAN-GEM, a.s. Tomáš Charvát, VZH, a.s. Robin Kyclt, ENVISAN-GEM, a.s. PODPOROVANÁ ATENUACE V PRAXI Vít Matějů, ENVISAN-GEM, a.s. Tomáš Charvát, VZH, a.s. Robin Kyclt, ENVISAN-GEM, a.s. envisan@grbox.cz PŘIROZENÁ ATENUACE - HISTORIE 1990 National Contigency Plan INTRINSIC

Více

ENERGIE Z ODPADNÍCH VOD

ENERGIE Z ODPADNÍCH VOD ENERGIE Z ODPADNÍCH VOD Pavel Jeníček VŠCHT Praha, Ústav technologie vody a prostředí Cesty k produkci energie z OV Kinetická energie (mikroturbiny) Tepelná energie (tepelná čerpadla, tepelné výměníky)

Více

Hydrotermické zpracování materiálů

Hydrotermické zpracování materiálů Hydrotermické zpracování materiálů Kapitola 1 strana 2 Cíle kapitoly Úvodní popis problematiky hydrotermické úpravy materiálů Popis děje hydrotermické úpravy za účelem výroby kapalných biopaliv Popis děje

Více

Pentosový cyklus. osudy glykogenu. Eva Benešová

Pentosový cyklus. osudy glykogenu. Eva Benešová Pentosový cyklus a osudy glykogenu Eva Benešová Pentosový cyklus pentosafosfátová cesta, fosfoglukonátová cesta nebo hexosamonofosfátový zkrat Funkce: 1) výroba NADPH 2) výroba ribosa 5-fosfátu 3) zpracování

Více

Zbytky léčiv v ŽP a jejich dopady na potravinářské technologie

Zbytky léčiv v ŽP a jejich dopady na potravinářské technologie Zbytky léčiv v ŽP a jejich dopady na potravinářské technologie DETEKCE PŘÍTOMNOSTI ANTIBIOTIKA V TEKUTÉM MÉDIU JAROMÍR FIALA Vysoká škola chemicko-technologická v Praze Fakulta technologie ochrany prostředí

Více

Fotosyntéza (2/34) = fotosyntetická asimilace

Fotosyntéza (2/34) = fotosyntetická asimilace Fotosyntéza (2/34) = fotosyntetická asimilace FOTO - protože k fotosyntéze je třeba fotonů Jedná se tedy o zachycování sluneční energie a přeměnu jednoduchých anorganických látek (CO 2 a H 2 O) na složitější

Více

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN

FYZIOLOGIE ROSTLIN VÝŽIVA ROSTLIN 1) AUTOTROFNÍ VÝŽIVA ROSTLIN 2) HETEROTROFNÍ VÝŽIVA ROSTLIN FYZIOLOGIE ROSTLIN Fyziologie rostlin, Biologie, 2.ročník 25 Podobor botaniky, který studuje životní funkce a individuální vývoj rostlin. Využívá poznatků z dalších odvětví biologie jako je morfologie,

Více

Energetické využití odpadu. 200 let První brněnské strojírny

Energetické využití odpadu. 200 let První brněnské strojírny 200 let První brněnské strojírny Řešení využití odpadů v nové produktové linii PBS Spalování odpadů Technologie spalování vytříděného odpadu, kontaminované dřevní hmoty Depolymerizace a možnosti využití

Více

VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU

VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU VLIV IRADIACE ULTRAZVUKEM NA PRODUKCI BIOPLYNU Ing. David Hrušťák Školitel: Prof. Ing. Pavel Ditl, DrSc. České vysoké učení technické v Praze, Fakulta strojní, Ústav procesní a zpracovatelské techniky,

Více

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech

Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech Citrátový cyklus Oxidace proteinů, tuků a cukrů jako zdroj energie v živých organismech 1. stupeň: OXIDACE cukrů, tuků a některých aminokyselin tvorba Acetyl-CoA a akumulace elektronů v NADH a FADH 2 2.

Více

KVASNÁ CHEMIE A BIOINŽENÝRSTVÍ 2010

KVASNÁ CHEMIE A BIOINŽENÝRSTVÍ 2010 Konference KVASNÁ CHEMIE A BIOINŽENÝRSTVÍ 2010 7. seminář Pivovarství a kvasné technologie 2010 1. seminář Environmentální biotechnologie 2010 Ústav kvasné chemie a bioinženýrství 8. a 9. dubna 2010 Sborník

Více

PROGRAM BIOPLYNOVÉ STANICE

PROGRAM BIOPLYNOVÉ STANICE PROGRAM BIOPLYNOVÉ STANICE Obsah 1 Co je a jak vzniká bioplyn...2 2 Varianty řešení...3 3 Kritéria pro výběr projektů...3 4 Přínosy...4 4.1. Přínosy energetické...4 4.2 Přínosy environmentální...4 4.3

Více

OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ. Seminář, Bratislava, 6.6.2013 Autor: J.LEDERER

OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ. Seminář, Bratislava, 6.6.2013 Autor: J.LEDERER OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ Seminář, Bratislava, 6.6.2013 Autor: J.LEDERER OBSAH - CESTY K REDUKCI NOVOTVORBY CO 2 NEOBNOVITELNÉ SUROVINY OMEZENÍ UHLÍKOVÝCH

Více

Fermentace. Na fermentaci je založena řada potravinářských výrob. výroba kysaného zelí lihovarnictvní pivovarnictví. mlékárenství.

Fermentace. Na fermentaci je založena řada potravinářských výrob. výroba kysaného zelí lihovarnictvní pivovarnictví. mlékárenství. Fermentace Rozklad organických látek ( hlavně cukrů) za účasti mikrobiálních enzymů za vzniku metabolických produktů, které člověk cíleně využívá ke svému prospěchu - výroba, konzervace potravin. Fermentace

Více

Anaerobní mikrobiální procesy - teorie, praxe a potenciál pro bioremediace ANAEROBNÍ LABORATOŘ. Metabolismus. Respirace. Fermentace.

Anaerobní mikrobiální procesy - teorie, praxe a potenciál pro bioremediace ANAEROBNÍ LABORATOŘ. Metabolismus. Respirace. Fermentace. Anaerobní mikrobiální procesy - teorie, praxe a potenciál pro Praxe I ANAEROBNÍ Praxe II LABORATOŘ Sanační technologie, 2013 Ipsum CNP zdroje Dolor Redfield Sit praxe Amet Proces látkové a energetické

Více

14. Biotechnologie. 14.4 Výroba kvasné kyseliny octové. 14.6 Výroba kyseliny citronové. 14.2 Výroba kvasného etanolu. 14.1 Výroba sladu a piva

14. Biotechnologie. 14.4 Výroba kvasné kyseliny octové. 14.6 Výroba kyseliny citronové. 14.2 Výroba kvasného etanolu. 14.1 Výroba sladu a piva 14. Biotechnologie 14.1 Výroba sladu a piva 14.2 Výroba kvasného etanolu 14.3 Výroba droždí 14.4 Výroba kvasné kyseliny octové 14.5 Výroba kyseliny mléčné 14.6 Výroba kyseliny citronové 14.7 Výroba antibiotik

Více

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů

Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Integrovaná soustava získávání energie využitím domácích obnovitelných a alternativních zdrojů Prof. Ing. Petr Stehlík, CSc. Vysoké učení technické v Brně Ústav procesního a ekologického inženýrství Ing.

Více

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí. Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava

Více

Využití biobutanolu v zážehových motorech

Využití biobutanolu v zážehových motorech Využití biobutanolu v zážehových motorech Use of BioButanol in Gasoline Engines Vladimír Hönig, Martin Kotek, Matyáš Orsák, Jan Hromádko Česká zemědělská univerzita v Praze Biopaliva se v posledních letech

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, organická chemie, biochemie, chemické výpočty Kvarta 2 hodiny týdně + 1x za 14 dní 1 hod laboratorní práce Školní tabule, interaktivní

Více

Sbírka zákonů č. 477 / Strana 6354 Částka 180 A-PDF Split DEMO : Purchase from to remove the watermark

Sbírka zákonů č. 477 / Strana 6354 Částka 180 A-PDF Split DEMO : Purchase from  to remove the watermark Sbírka zákonů č. 477 / 2012 Strana 6354 Částka 180 A-PDF Split DEMO : Purchase from www.a-pdf.com to remove the watermark 477 VYHLÁŠKA ze dne 20. prosince 2012 o stanovení druhů a parametrů podporovaných

Více

Úvod do problematiky. Možnosti energetického využití biomasy

Úvod do problematiky. Možnosti energetického využití biomasy Úvod do problematiky Možnosti energetického využití biomasy Cíle Uvést studenta do problematiky energetického využití biomasy Klíčová slova Biomasa, energie, obnovitelný zdroj 1. Úvod Biomasa představuje

Více

OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ. Most, Autor: Doc. Ing. J.LEDERER, CSc.

OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ. Most, Autor: Doc. Ing. J.LEDERER, CSc. OMEZOVÁNÍ NEGATIVNÍCH ENVIRONMENTÁLNÍCH DOPADŮ PŘI VÝROBĚ PALIV A PETROCHEMIKÁLIÍ Most, 29.11.2012 Autor: Doc. Ing. J.LEDERER, CSc. OBSAH - CESTY K REDUKCI NOVOTVORBY CO 2 NEOBNOVITELNÉ SUROVINY OMEZENÍ

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_D.1.10 Integrovaná střední škola technická

Více

NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY

NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY NOVÉ TECHNOLOGIE ROZŠIŘUJÍCÍ VYUŽITÍ CELKOVÉHO ENERGETICKÉHO POTENCIÁLU BIOPLYNU A BIOMASY Prof. Ing. Jana Zábranská, CSc Ústav technologie vody a prostředí, Vysoká škola chemicko-technologická Praha,

Více

POTENCIÁLNÍ PRODUKCE MOTOROVÝCH BIOPALIV ACETON-BUTANOL- ETANOLOVOU FERMENTACI HYDROLYZÁTŮ VYBRANÝCH LIGNOCELULÓZOVÝCH SUROVIN

POTENCIÁLNÍ PRODUKCE MOTOROVÝCH BIOPALIV ACETON-BUTANOL- ETANOLOVOU FERMENTACI HYDROLYZÁTŮ VYBRANÝCH LIGNOCELULÓZOVÝCH SUROVIN POTENCIÁLNÍ PRODUKCE MOTOROVÝCH BIOPALIV ACETON-BUTANOL- ETANOLOVOU FERMENTACI HYDROLYZÁTŮ VYBRANÝCH LIGNOCELULÓZOVÝCH SUROVIN PROSPECTIVE PRODUCTION OF ENGINE BIOFUELS WITH ACETONE-BUTANOL-ETHANOLFERMENTATION

Více

AKTUALIZACE STUDIE DOPADŮ KLIMATICKO-ENERGETICKÉHO BALÍČKU EU NA VYBRANÉ SPOLEČNOSTI ČESKÉHO CHEMICKÉHO PRŮMYSLU

AKTUALIZACE STUDIE DOPADŮ KLIMATICKO-ENERGETICKÉHO BALÍČKU EU NA VYBRANÉ SPOLEČNOSTI ČESKÉHO CHEMICKÉHO PRŮMYSLU AKTUALIZACE STUDIE DOPADŮ KLIMATICKO-ENERGETICKÉHO BALÍČKU EU NA VYBRANÉ SPOLEČNOSTI ČESKÉHO CHEMICKÉHO PRŮMYSLU 23. 9. 2010 Jaroslav Suchý, SCHP ČR Výbor pro energetiku a změnu klimatu Praha 1 27 550

Více

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o.

PROSUN BIOPLYNOVÉ STANICE BIOFERM. alternative energy systems s.r.o. PROSUN alternative energy systems s.r.o. Přes 17let zkušeností v oboru tepelné a elektrické energie nyní využíváme v oblasti instalace solárních systémů, plynových kondenzačních kotelen, tepelných čerpadel

Více

ČESKÉ RAFINÉRSKÉ, a.s.

ČESKÉ RAFINÉRSKÉ, a.s. Bilance vodíku v ČESKÉ RAFINÉRSKÉ, a.s. APROCHEM 2010 Kouty nad Desnou 19 21.4.2010 Ing.Hugo Kittel, CSc., MBA www.ceskarafinerska.cz 1 Obsah Úvod do problému Zdroje vodíku pro rafinérie Využití vodíku

Více

Energie z odpadních vod. Karel Plotěný

Energie z odpadních vod. Karel Plotěný Energie z odpadních vod Karel Plotěný Propojení vody a energie Voda pro Energii Produkce paliv (methan, ethanol, vodík, ) Těžba a rafinace Vodní elektrárny Chladící okruhy Čištění odpadních vod Ohřev vody

Více

Biologické odstraňování nutrientů

Biologické odstraňování nutrientů Biologické odstraňování nutrientů Martin Pivokonský, Jana Načeradská 8. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v. v. i. Nutrienty v

Více

SUCHÁ FERMENTACE V MALOOBJEMOVÉM

SUCHÁ FERMENTACE V MALOOBJEMOVÉM SUCHÁ FERMENTACE V MALOOBJEMOVÉM FERMENTAČNÍM M REAKTORU Marian Mikulík Žilinská univerzita v Žilině seminář Energetické využití biomasy 2011 Trojanovice 18. 19. 5. 2011 Anaerobní fermentace Mikrobiální

Více

Potravinářské a biochemické technologie

Potravinářské a biochemické technologie Potravinářské a biochemické technologie část Technologie cukru P.Kadlec, E. Šárka - PTB-cukr 1 P.Kadlec, E. Šárka - PTB-cukr 2 VÝROBA CUKRU V ČR A VE SVĚTĚ Počátky průmyslové výroby cukru u nás - rok 1831

Více

Koloběh látek v přírodě - koloběh dusíku

Koloběh látek v přírodě - koloběh dusíku Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N

Více

Název: Fotosyntéza, buněčné dýchání

Název: Fotosyntéza, buněčné dýchání Název: Fotosyntéza, buněčné dýchání Výukové materiály Autor: Mgr. Blanka Machová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: Biologie, chemie Ročník: 2. Tematický

Více

N N N* Cyklus a transformace N. Dvě formy: N 2 a N* Mikrobiální ekologie vody. Cyklus uhlíku a dusíku - rozdíly

N N N* Cyklus a transformace N. Dvě formy: N 2 a N* Mikrobiální ekologie vody. Cyklus uhlíku a dusíku - rozdíly Mikrobiální ekologie vody 5. Cyklus dusíku a transformace PřFUK Katedra ekologie Josef K. Fuksa, VÚV T.G.M.,v.v.i. josef_fuksa@vuv.cz Cyklus a transformace N Mechanismy transformace N v přírodě. Vztahy

Více

ANABOLISMUS SACHARIDŮ

ANABOLISMUS SACHARIDŮ zdroj sacharidů: autotrofní org. produkty fotosyntézy heterotrofní org. příjem v potravě důležitou roli hraje GLUKÓZA METABOLISMUS SACHARIDŮ ANABOLISMUS SACHARIDŮ 1. FOTOSYNTÉZA autotrofní org. 2. GLUKONEOGENEZE

Více

BIOLOGICKÉ ODBOURÁNÍ KYSELIN. Baroň M.

BIOLOGICKÉ ODBOURÁNÍ KYSELIN. Baroň M. BIOLOGICKÉ ODBOURÁNÍ KYSELIN Baroň M. Biologické odbourání kyselin, jablečno-mléčná či malolaktická (od malic acid = kyselina jablečná, lactic acid = kyselina mléčná) fermentace je proces, při němž dochází

Více

Metabolismus. Source:

Metabolismus. Source: Source: http://www.roche.com/ http://www.expasy.org/ Metabolismus Source: http://www.roche.com/sustainability/for_communities_and_environment/philanthropy/science_education/pathways.htm Metabolismus -

Více

Výukový portál Biotechlab

Výukový portál Biotechlab Výukový portál Biotechlab Biotechnologie jsou perspektivním a neustále se rozvíjejícím oborem, který zahrnuje celou řadu výrobních technologií využívající jak mikrobiální, tak i živočišné a rostlinné buňky

Více

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu

1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná

Více

Strategie optimálního využití obnovitelných zdrojů energie v dopravě. Jiří Hromádko

Strategie optimálního využití obnovitelných zdrojů energie v dopravě. Jiří Hromádko Strategie optimálního využití obnovitelných zdrojů energie v dopravě Jiří Hromádko Proč ji děláme Dle směrnice o podpoře využívání energie z OZE musí každý členský stát zajistit, aby podíl OZE v dopravě

Více

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron).

Energie fotonů je předávána molekulám chlorofylu A, který se zachyceným fotonem excituje (uvolní se energeticky bohatý elektron). Otázka: Fotosyntéza a biologické oxidace Předmět: Biologie Přidal(a): Ivana Černíková FOTOSYNTÉZA = fotosyntetická asimilace: Jediný proces, při němž vzniká v přírodě kyslík K přeměně jednoduchých látek

Více

Hlavní sledované parametry při provozu bioplynové stanice

Hlavní sledované parametry při provozu bioplynové stanice Hlavní sledované parametry při provozu bioplynové stanice Luděk Kamarád Wolfgang Gabauer Rudolf Braun Roland Kirchmayr 2.12.2009 Energyfuture AT-CZ, Brno 2009 / IFA Tulln 1z 21 Obsah Krátké představení

Více

Biologické čištění odpadních vod - anaerobní procesy

Biologické čištění odpadních vod - anaerobní procesy Biologické čištění odpadních vod - anaerobní procesy Martin Pivokonský, Jana Načeradská 7. přednáška, kurz Znečišťování a ochrana vod Ústav pro životní prostředí PřF UK Ústav pro hydrodynamiku AV ČR, v.

Více

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2)

SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) SVĚTOVÝ VÝHLED ENERGETICKÝCH TECHNOLOGIÍ DO ROKU 2050 (WETO-H2) KLÍČOVÁ SDĚLENÍ Studie WETO-H2 rozvinula referenční projekci světového energetického systému a dvouvariantní scénáře, případ omezení uhlíku

Více

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU

EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU EVECO Brno, s.r.o. ZAŘÍZENÍ PRO EKOLOGII A ENERGETIKU Sídlo/kancelář: Březinova 42, Brno Pobočka: Místecká 901, Paskov Česká Republika eveco@evecobrno.cz www.evecobrno.cz INTRODUCTION Společnost EVECO

Více

VYUŽITÍ BIOCAT+ V ZAŘÍZENÍ KOMPOGAS V GERMANIER ECORECYCLAGE SA V LAVIGNY VE ŠVÝCARSKU

VYUŽITÍ BIOCAT+ V ZAŘÍZENÍ KOMPOGAS V GERMANIER ECORECYCLAGE SA V LAVIGNY VE ŠVÝCARSKU VYUŽITÍ BIOCAT+ V ZAŘÍZENÍ KOMPOGAS V GERMANIER ECORECYCLAGE SA V LAVIGNY VE ŠVÝCARSKU Germanier Ecorecyclage SA je společnost, zabývající se likvidací biologického odpadu s ročním objemem 25 000 tun.

Více

05 Biogeochemické cykly

05 Biogeochemické cykly 05 Biogeochemické cykly Ekologie Ing. Lucie Kochánková, Ph.D. Prvky hlavními - biogenními prvky: C, H, O, N, S a P v menších množstvích prvky: Fe, Na, K, Ca, Cl atd. ve stopových množstvích I, Se atd.

Více

Bioenergetika a makroergické sloučeniny

Bioenergetika a makroergické sloučeniny Bioenergetika a makroergické sloučeniny Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole

Více

CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly

CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I. (06) Biogeochemické cykly Centre of Excellence CHEMIE ŽIVOTNÍHO PROSTŘEDÍ I Environmentální procesy (06) Biogeochemické cykly Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni

Více

Technologické zlepšení výtěžnosti bioplynu. Mechanické usnadnění míchání, čerpání, dávkování. Legislativní nařízená předúprava VŽP:

Technologické zlepšení výtěžnosti bioplynu. Mechanické usnadnění míchání, čerpání, dávkování. Legislativní nařízená předúprava VŽP: Důvody předúpravy: Technologické zlepšení výtěžnosti bioplynu Mechanické usnadnění míchání, čerpání, dávkování Legislativní nařízená předúprava VŽP: hygienizace vstupního materiálu Výsledkem předúpravy

Více

ENERGETICKO EKONOMICKÉ SROVNÁNÍ METOD INTENZIFIKACE BIOPLYNU

ENERGETICKO EKONOMICKÉ SROVNÁNÍ METOD INTENZIFIKACE BIOPLYNU ENERGETICKO EKONOMICKÉ SROVNÁNÍ METOD INTENZIFIKACE BIOPLYNU Ing. David Hrušťák Školitel: Prof. Ing. Pavel Ditl, DrSc. Abstrakt Článek se zabývá různými způsoby úpravy substrátu vedoucí ke zvýšení výroby

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Fotosyntéza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fotosyntéza Fotosyntéza pohlcení energie slunečního záření a její přeměna na chemickou energii rovnováha fotosyntetisujících a heterotrofních

Více

Etanol Etanol je obsažen v alkoholických nápojích: whisky, slivovice apod. obsahují %, vína 6 12 % a pivo 2 5 % etanolu V klinické praxi se vysk

Etanol Etanol je obsažen v alkoholických nápojích: whisky, slivovice apod. obsahují %, vína 6 12 % a pivo 2 5 % etanolu V klinické praxi se vysk Etanol Miroslava Beňovská Etanol Etanol je obsažen v alkoholických nápojích: whisky, slivovice apod. obsahují 30 60 %, vína 6 12 % a pivo 2 5 % etanolu V klinické praxi se vyskytují: Projevy chronického

Více

BIOTECHNOLOGIE LENTIKATS A JEJÍ UPLATNĚNÍ PŘI VÝROBĚ BIOETANOLU

BIOTECHNOLOGIE LENTIKATS A JEJÍ UPLATNĚNÍ PŘI VÝROBĚ BIOETANOLU BIOTECHNOLOGIE LENTIKATS A JEJÍ UPLATNĚNÍ PŘI VÝROBĚ BIOETANOLU VÝROBA BIOETANOLU Z CUKERNATÉ, ŠKROBNATÉ A LIGNOCELULÓZOVÉ SUROVINY BIOTECHNOLOGIE LENTIKATS A JEJÍ UPLATNĚNÍ PŘI VÝROBĚ BIOETANOLU Společnost

Více

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová

Glykolýza Glukoneogeneze Regulace. Alice Skoumalová Glykolýza Glukoneogeneze Regulace Alice Skoumalová Metabolismus glukózy - přehled: 1. Glykolýza Glukóza: Univerzální palivo pro buňky Zdroje: potrava (hlavní cukr v dietě) zásoby glykogenu krev (homeostáza

Více

Obecný metabolismus.

Obecný metabolismus. mezioborová integrace výuky zaměřená na rostlinnou biochemii a fytopatologii CZ.1.07/2.2.00/28.0171 Obecný metabolismus. Regulace glykolýzy a glukoneogeneze (5). Prof. RNDr. Pavel Peč, CSc. Katedra biochemie,

Více

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013 Kogenerační jednotky a zařízení na úpravu plynu Dreyer & Bosse Kraftwerke GmbH, Streßelfeld 1, 29475

Více

CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ

CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ CO JE TO GLOBÁLNÍ OTEPLOVÁNÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Co je to globální oteplování V této kapitole se dozvíte: Co je to globální oteplování. Co je to změna klimatu. Co jsou to antropogenní změny.

Více

Klima, uhlíková stopa úřadu, energie. Josef Novák (CI2, o. p. s.) Praha,

Klima, uhlíková stopa úřadu, energie. Josef Novák (CI2, o. p. s.) Praha, Klima, uhlíková stopa úřadu, energie Josef Novák (CI2, o. p. s.) Praha, 26. 6. 2018 Důkazy Zvyšující se koncentrace CO 2 Důkazy Teplotní anomálie: 2000 2010 vs. 1900 1910 Důkazy Příčina Uvolňujeme příliš

Více