Nobelovy ceny za fyziku 2011 a 2006
|
|
- Vilém Svoboda
- před 8 lety
- Počet zobrazení:
Transkript
1 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 1/38 Zrychlující expanze vesmíru Nobelovy ceny za fyziku 2011 a 2006 Jiří Podolský Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze PMF, Praha
2 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 2/38 kosmologie se opírá o Einsteinovou teorii gravitace gravitace je deformace prostoročasu Einsteinovy rovnice gravitačního pole: R µν 1 2 R g µν + Λ g µν = 8πG c T 4 µν metrika geometrie tenzor energie-hybnosti hmota geometrie prostoročasu určena hmotným obsahem hmota se pohybuje v neeuklidovské geometrii Albert Einstein 11/1907: Bern Praha Curych Berlín: 11/1915 4/1911 7/1912 3/1914
3 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 3/38 Einstein v Praze: řádný profesor teoretické fyziky na německé části Karlo Ferdinandovy uviverzity doporučení Max Planck, souhlas s povoláním dal císař František Josef přednášel 2 semestry (mechanika, molekulová fyzika, termodynamika) bydlel na Smíchově (dnes Lesnická č. 7) oblíbný host salonu Berty Fantové: filozoficko-literární kroužek židovských intelektuálů: Max Brod, Franz Werfel, Hugo Bergmann, Philipp Frank, Franz Kafka... pracovna v Ústavu pro teoretickou fyziku ve Viničné ulici (dnes Přírodovědecká fakulta UK na Karlově)? příhodné místo pro práci (výhled do hezkého parku blázince) publikoval 12 článků, z toho 7 z relativity zúčastnil se první Solvayovy konference (Planck, Lorentz, Madame Curie, Poincaré) studoval důsledky principu ekvivalence (ohyb světelných paprsků, rudý posuv v gravitačním poli) načrtnul hlavní rysy nové teorie gravitace (geodetiky, nelinearita rovnic pole) inspirace: profesor matematiky Georg Pick
4 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 4/38 matematická struktura obecné teorie relativity geometrie protoročasu popsána metrickým tenzorem v souřadnicích je to symetrická matice g µν dimenze 4 µ = 0,1,2, 3 čísluje řádky, ν = 0,1,2, 3 čísluje sloupce z 4 4 = 16 jenom 10 nezávislých složek protože g µν = g νµ obecně jsou složky metriky funkce souřadnic: g µν (x α ) x α (x 0, x 1, x 2, x 3 ) časová tři prostorové metrika určuje skalární součin a velikost vektoru : A B 3 g µν A µ B ν, A 2 3 µ,ν=0 µ,ν=0 výsledek nezávisí na použitých souřadnicích g µν A µ A ν speciálně: polohový vektor spojující 2 blízké události o souřadnicích (x 0, x 1, x 2, x 3 ) a ( x 0, x 1, x 2, x 3 ): 3 prostoročasový interval ds 2 = g µν dx µ dx ν, µ,ν=0 Massimiliano Fuksas, 2005 (Nový veletržní areál, Milán, Itálie) dx µ x µ x µ je rozdíl souřadnic
5 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 5/38 Einsteinovy rovnice gravitačního pole g µν prostoročasový interval ds 2 = 3 µ,ν=0 g µν dx µ dx ν je zobecněním Pythagorovy věty: pro současné události je dx 0 = 0 a v euklidovském prostoru je g 11 = g 22 = g 33 = 1 invariantní vzdálenost je tedy dl 2 = (dx 1 ) 2 + (dx 2 ) 2 + ( dx 3 ) 2 metriku popisující geometrii prostoročasu získáme řešením Einsteinových rovnic: R µν 1 2 R g µν + Λ g µν = 8πG c 4 T µν pravá strana: zdroj zakřivení (hmota popsaná T µν ) levá strana: komplikovaná kombinace složek metriky g µν a jejích 1. a 2. derivací: 3X 3X Ricciho tenzor R µν = R α µαν, Ricciho skalár R = g αβ R αβ, kosmologická konstanta Λ, α=0 Riemannův tenzor křivosti R κ λµν = Γκ λν x µ Γκ λµ x ν + 3X konexe Γ κ µν = 1 g κα g µα 2 x ν + g να x µ g µν x α, α=0 α,β=0 3X α=0 Γ α λν Γκ αµ 3X α=0 Γ α λµ Γκ αν, složitá soustava nelineárních parciálních diferenciálních rovnic 2. řádu pro g µν
6 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 6/38 testy obecné teorie relativity klasické testy: dodnes stovky dalších precizních ověření, například: ohyb paprsků (1,75 ) stáčení orbit (43 ) rudý posuv testy slabého principu ekvivalence testy PPN parametru γ zdroj: Clifford M. Will, Living Rev. Relativity, 9 (2006) 3
7 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 7/38 binární pulsary významné testy obecné relativity v silných gravitačních polích: systém dvou neutronových hvězd obíhajících velmi blízko sebe stáčení dráhy: přibližování po spirále: PSR B (1974) 4,2 za rok 3,5 m za rok PSR J (2003) 16,9 za rok 2,6 m za rok
8 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 8/38 hlavní aplikace obecné teorie relativity černé díry: relativistická astrofyzika supernovy, akreční disky obří černé díry v centrech galaxií gravitační čočky gravitační vlny: astrofyzikální i kosmologické rozvlnění prostoročasové geometrie vzniklé při explozích, kolapsech a srážkách kosmologie: globální modely vesmíru studium struktury a evoluce kosmu
9 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 9/38 Einstein a kosmologie fundamentální příspěvek z února 1917: formulace studia vesmíru jako celku v kontextu obecné teorie relativity model statického uzavřeného vesmíru s rovnoměrným rozložením hmoty zavedení kosmologické konstanty Λ A. Einstein, Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, (1917)
10 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 10/38 kosmologie 20. století: stručné dějiny první modely a pozorování ( ) Einstein (1917): model statického vesmíru zavedení Λ jako antigravitace de Sitter (1917): rozpínající se prázdný vesmír s Λ Friedmann (1922): model rozpínajícího se vesmíru s hmotou Lemaître (1927): prvotní atom - zrod teorie velkého třesku Hubble a Humason (1929): rudý posuv spekter galaxií vesmír se rozpíná souboj teorií velkého třesku a stacionárního vesmíru ( ) Gamow, Alpher, Herman versus Hoyle, Gold, Bondi pochopení nukleosyntézy prvků: ( léta) zpřesnění stáří vesmíru: Baade (1952), Sandage (1958) prokázání evoluce vesmíru: rádiové galaxie Ryle (1961), kvasary Schmidt (1963) objev reliktního mikrovlnného záření: Penzias a Wilson (1965) triumf teorie velkého třesku a obecné teorie relativity (od 1965) souhlasí s řadou nezávislých přesných pozorování struktura a stáří kosmu, zastoupení prvků, reliktní záření: COBE (1989), WMAP (2001)
11 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 11/38 reliktní mikrovlnné záření vesmír vyplňuje reliktní mikrovlnné záření, které přichází rovnoměrně z celé oblohy teoretická předpověď Alpher, Gamow, Herman (1948), pak Dicke, Peebles, Wilkinson: ozvěna horkého velkého třesku má mít Planckovo spektrum absolutně černého tělesa s teplotou několika kelvinů poprvé je pozorovali Penzias, Wilson (1965) záření je velmi izotropní, opravdu planckovské a má teplotu T = 2, 728 K Nobelova cena 1978 Arno R. Penzias a Robert Wilson
12 anténa je od roku 1989 národním památníkem US Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 12/38
13 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 13/38 objev nepatrných anizotropií reliktního záření U-2 COBE dipólová anizotropie (1976): špionážní letadlo U-2: T 3 mk způsobena pohybem Země 300 km/s a Dopplerovým jevem družice COBE (start ): odchylky teploty T 20 µk řádu 10 5 : zárodky struktur, které vedly ke vzniku hvězd a galaxií
14 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 14/38 hlavní výsledky družice COBE reliktní záření má dokonale planckovské spektrum Max Planck křivka záření absolutně černého tělesa vykazuje drobné anizotropie řádu 10 5 : zárodky struktur
15 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 15/38 Nobelova cena za fyziku 2006 John C. Mather a George F. Smoot za objev planckovského charakteru a anizotropie reliktního záření kosmického mikrovlnného pozadí
16 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 16/38 družice WMAP výsledky COBE byly potvrzeny a skvěle upřesněny družicí WMAP (start ):
17 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 17/38 porovnání rozlišení 2010 evropská družice Planck (start ):
18 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 18/38 rozbor dat z družice WMAP poloha, výška a šířka akustických píků závisí na fyzikálních podmínkách poloha 1.píku: křivost Ω k výška 1.píku: Ω b + Ω dm podíly lichých a sudých píků: Ω b atd. z odchylek reliktního záření na různých úhlových škálach lze určit parametry vesmíru:
19 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 19/38 stáří, rychlost rozpínání, geometrie a složení vesmíru základní parametry vesmíru (výsledky sedmiletého měření WMAP+BAO+SN): velký třesk se odehrál před 13, 75 ± 0, 11 miliardami let Hubbleova konstanta H je dnes 70, 4 ± 1, 3 km/s/mpc celková hustota vesmíru je 1, 002 ± 0, 005 rudý posuv oddělení reliktního záření od hmoty je z = 1091 ± 1 oddělení (rekombinace) nastalo 376 ± 3 tisíce let po velkém třesku čas reionizace (zážeh hvězd) je 432 ± 90 milionů let po velkém třesku ve vesmíru je kromě obvyklé hmoty také temná hmota a temná energie : atomy a částice: 5 % 4, 6 ± 0, 1 % temná hmota: 23 % 22, 7 ± 0, 2 % temná energie: 72 % 72, 7 ± 1, 5 % obvyklá hmota tedy tvoří jen nepatrnou součást celého vesmíru! stavová rovnice temné energie je p = wρ, kde w = 0, 99 ± 0, 06, přičemž w = 1 odpovídá kosmologické konstantě Λ díky temné energii alias kosmologické konstantě vesmír zrychluje rozpínání
20 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 20/38 hmotný obsah vesmíru dnes: atomy temná energie temná hmota kdysi: neutrina temná hmota fotony atomy
21 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 21/38 kosmologické FLRW modely Friedmann Lemaître Robertson Walker a další (20. léta): prostor je homogenní a izotropní (má 6 symetrií) konstantní křivost ( ) dr ds 2 = dt 2 + R 2 2 (t) 1 k r 2 + r2 ( dθ 2 + sin 2 θ dφ 2 ) expanze vesmíru popsána funkcí R(t), jež řeší rovnici ( prach typická řešení: ( Ṙ R ) 2 Λ = 3 k R 2 + 8π 3 k = 0,+1, 1 odpovídá geometrii E 3, S 3, H 3 R 3 + záření R 4 kosmologická křivost hustota hmoty konstanta prostoru expanze z velkého třesku v R = 0 (singularita), R(t ) exp ) q Λ 3 t Λ = 0 Λ 0, k = 0, 1 Λ 0, k = +1
22 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 22/38 vesmír zrychluje své rozpínání funkce expanze R(t) má charakter: poprvé prokázáno v roce 1998 pozorováním vzdálených supernov: Nobelova cena 2011
23 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 23/38 Nobelova cena za fyziku 2011 Saul Perlmutter, Brian P. Schmidt a Adam G. Riess za objev zrychlující expanze vesmíru pozorováním vzdálených supernov
24 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 24/38 reprezentují dva konkurenční týmy: HZT High-z Supernova Search Team SCP Supernova Cosmology Project
25 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 25/38 zánik hvězd bílý trpaslík neutronová hvězda černá díra planetární mlhovina Helix supernova 1987A schéma binární soustavy výbuch supernovy Tychonova supernova (1572) Keplerova supernova (1604)
26 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 26/38 supernovy typu Ia (např. Tychonova) dají se dobře použít jako standardní svíčky k určení kosmických vzdáleností když hmota přetákající z druhé hvězdy překročí kritickou mez 1,4 M (blízkou Chandrasekharově mezi) bílý trpaslík vybuchne jako supernova všechny ostatní typy: kolaps jádra hvězdy
27 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 27/38 pozorovnání supernov ve vzdálených galaxiích oba týmy používají největší teleskopy a CCD detektory Keckův ø 10 m (Havaj), Cerro Tololo ø 4 m, ESO ø 3,6 m (Chile), Hubbleův kosmický atd. supernova SN1994D v NGC 4526 ukázky supernov pozorovaných z HST po objevu nutno měřit jejich spektra a změny zářivosti v několika oborech světelné křivky: rozpad 56 Ni
28 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 28/38 revoluční článek týmu HZT: září 1998 analýza supernov až do z 0, 6 rudý posuv z = λ λ přičemž z + 1 = R(t 0) R(t) z = 0,1 1 mld světelných let, kde λ je vlnová délka světla z = 1 8 mld světelných let
29 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 29/38 analogický článek týmu SCP: červen 1999 analýza supernov až do z 0, 8
30 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 30/38 výsledky obou článků dohromady statistická analýza ukázala, že datům nejlépe vyhovuje kosmologický (plochý) FLRW model: Ω m = 0, 3 podíl hmoty Ω Λ = 0, 7 podíl kosmologické konstanty Λ alias temné energie
31 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 31/38 a co dnes? zlepšení od r. 1998: více supernov větší rudé posuvy menší chyby (IR) Robert P. Kirshner, přednáška na MG13, Stockholm, červenec 2012
32 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 32/38 dnešní stav pozorováno 500 supernov až do z 1, 4
33 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 33/38 zcela nezávislé pozorovací metody souhlasí CMB reliktní mikrovlnné záření SNe vzdálné supernovy BAO struktura galaxií a jejich kup shodují se že: Ω m = 0, 28 podíl hmoty Ω Λ = 0, 72 podíl kosmologické konstanty Λ celková hustota energie je Ω celk = 1 tedy prostor má plochou geometrii
34 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 34/38 temná energie je kosmologická konstanta stavová rovnice temné energie je p = w ρ w = 0, 99 ± 0, 06 přičemž w 1 pro kosmologickou konstantu Λ
35 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 35/38 shrnutí dnešního modelu vesmíru: FLRW ΛCDM globálně homogenní a izotropní prostor expandující 13,7 mld let z velkého třesku dnes dominantní kosmologická konstanta (72 %) a nebaryonová temná hmota (23 %)
36 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 36/38 a budoucnost kosmu? věčná expanze, pusto, mráz a tma... tři standardní scénáře dle křivosti prostoru K (Roger Penrose)
37 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 37/38 a budoucnost kosmu? věčná expanze, pusto, mráz a tma... užívejme si vesmíru, dokud je v něm spousta krásných struktur! tři standardní scénáře dle křivosti prostoru K (Roger Penrose)
38 Nobelovy ceny za fyziku 2011 a 2006: kosmologie p. 38/38 doporučená literatura Robert P. Kirshner: Výstřední vesmír: Explodující hvězdy, temná energie a zrychlování kosmu (Paseka, edice Fénix, Praha a Litomyšl, 2005) Simon Singh: Velký třesk: Nejdůležitější vědecký objev všech dob a proč o něm musíte vědět (Argo / Dokořán, edice Zip, Praha, 2007)
Obecná teorie relativity. Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze
Obecná teorie relativity a dnešníí obraz vesmíru p. 1/24 Obecná teorie relativity a dnešní obraz vesmíru Jiří Podolský Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze Velké
LIGO, VIRGO, LISA. Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze PMF
LIGO, VIRGO, LISA: detektory gravitačních vln p. 1/37 LIGO, VIRGO, LISA detektory gravitačních vln Jiří Podolský Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze PMF 2013
Reliktní záření a jeho polarizace. Ústav teoretické fyziky a astrofyziky
Reliktní záření a jeho polarizace Jiří Krtička Ústav teoretické fyziky a astrofyziky Proč je obloha temná? v hlubohém lese bychom v každém směru měli vidět kmen stromu. Proč je obloha temná? pokud jsou
po kosmologii 20. století
Stručný průvodce po kosmologii 20. století Jiří Podolský Všeobecně uznávaným vědeckým popisem vesmíru je představa vyvíjejícího se hierarchického kosmu, který již více než 10 miliard let expanduje z počátečního
Kosmologické kapitoly. FY2BP_KOS2 Vybrané kapitoly z kosmologie FY2BP_KOSM Kosmologie podzim 2016
Kosmologické kapitoly FY2BP_KOS2 Vybrané kapitoly z kosmologie FY2BP_KOSM Kosmologie podzim 2016 Motivace Nový kurz koncipovaný zejména pro učitelská studia, modernizace obsahu přednášky i formy Studijní
Kroužek pro přírodovědné talenty při Hvězdárně Valašské Meziříčí Lekce XXX. Kosmologie
Kroužek pro přírodovědné talenty při Hvězdárně Valašské Meziříčí Lekce XXX Kosmologie Kosmologie Petr Kulhánek FEL ČVUT, FJFI ČVUT Univerzita Palackého Hvězdárna a planetárium hl. m. Prahy, Aldebaran Group
Epilog: Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze PMF
Epilog: A co gravitační vlny? Jiří Podolský Ústav teoretické fyziky Matematicko-fyzikální fakulta Univerzita Karlova v Praze PMF 2015 17. 12. 2015 LIGO, VIRGO, LISA: detektory gravitačních vln p.1/27 gravitační
Funkce expanze, škálový faktor
Funkce expanze, škálový faktor Astronomové zjistili, že vesmír není statické jeviště. Zjistili, že galaxie jsou unášeny ve všech směrech pryč od nás. A to nejen od nás, ale od všech pozorovatelů ve Vesmíru.
Úvod do moderní fyziky. lekce 7 vznik a vývoj vesmíru
Úvod do moderní fyziky lekce 7 vznik a vývoj vesmíru proč nemůže být vesmír statický? Planckova délka, Planckův čas l p =sqrt(hg/c^3)=1.6x10-35 m nejkratší dosažitelná vzdálenost, za kterou teoreticky
Vesmír - z ruského slova весь мир (ves mir celý svět ) z doby národního. Kosmos - z řeckého κόσμος = ozdoba, šperk; později také vše uspořádané,
Kosmologie 1/2 Vesmír - z ruského slova весь мир (ves mir celý svět ) z doby národního obrození; dříve staročeské vesvět Kosmos - z řeckého κόσμος = ozdoba, šperk; později také vše uspořádané, řádné; vesmír
Struktura a vývoj vesmíru. Úvod: kosmologie jako věda o vesmíru jako celku
Struktura a vývoj vesmíru aneb základní kosmologická fakta a modely (Jiří Podolský, MFF UK, červenec 2008) Úvod: kosmologie jako věda o vesmíru jako celku základní kosmologické otázky jaká je struktura
Vesmír - z ruského slova весь мир (ves mir celý svět ) z doby národního. Kosmos - z řeckého κόσμος = ozdoba, šperk; později také vše uspořádané,
Kosmologie 1/2 Vesmír - z ruského slova весь мир (ves mir celý svět ) z doby národního obrození; dříve staročeské vesvět Kosmos - z řeckého κόσμος = ozdoba, šperk; později také vše uspořádané, řádné; vesmír
Naše představy o vzniku vesmíru
Naše představy o vzniku vesmíru Prof. Ing. Miroslav Kasal, CSc. Ústav radioelektroniky FEKT VUT v Brně Technická 12, SD6.97 E-mail kasal@feec.vutbr.cz http://www.urel.feec.vutbr.cz/esl/ U3V 1 Kurs U3V
Einstein, Georg Pick a matematika
Einstein, Georg Pick a matematika Georg Pick, matematik 10. srpen 1859 Wien 26. červenec 1942 Terezín Slavná Pickova věta! Inspiroval Alberta Einsteina ke studiu Riemannovy geometrie, Ricci a Lévi-Civitovy
Kosmologie II. Zdeněk Mikulášek, Základy astronomie + U3V, 10. května 2018
Kosmologie II Zdeněk Mikulášek, Základy astronomie + U3V, 10. května 2018 Úspěchy standardního modelu vesmíru Standardní model je založen na současných fyzikálních teoriích obecné teorie relativity, teoriích
VY_32_INOVACE_FY.19 VESMÍR
VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie
Einsteinových. podle množství. dá snadno určit osud vesmíru tři možné varianty
Známe už definitivní iti model vesmíru? Michael Prouza Klasický pohled na vývoj vesmíru Fid Fridmanovo řešení š í Einsteinových rovnic podle množství hmoty (a energie) se dá snadno určit osud vesmíru tři
Kosmologické kapitoly. Jan Novotný, Jindřiška Svobodová Pedagogická fakulta Masarykova universita, Brno,
Kosmologické kapitoly Jan Novotný, Jindřiška Svobodová Pedagogická fakulta Masarykova universita, Brno, Seminář Vlachovice 2015 Kosmologie - věda o vesmíru jako celku Základní kosmologické otázky: jaká
Dějiny vesmíru. v kostce. Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity v Brně
Dějiny vesmíru v kostce Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity v Brně Třesklo to při velkém třesku? Kosmologové svorně soudí, že vesmír vznikl
Vesmír. Studijní text k výukové pomůcce. Helena Šimoníková D07462 9.6.2009
2009 Vesmír Studijní text k výukové pomůcce Helena Šimoníková D07462 9.6.2009 Obsah Vznik a stáří vesmíru... 3 Rozměry vesmíru... 3 Počet galaxií, hvězd a planet v pozorovatelném vesmíru... 3 Objekty ve
Obecná teorie relativity pokračování. Petr Beneš ÚTEF
Obecná teorie relativity pokračování Petr Beneš ÚTEF Dilatace času v gravitačním poli Díky principu ekvivalence je gravitační působení zaměnitelné mechanickým zrychlením. Dochází ke stejným jevům jako
Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143. Zpracovala: RNDr. Libuše Bartková
Vznik vesmíru (SINGULARITA) CZ.1.07/1.1.00/14.0143 Zpracovala: RNDr. Libuše Bartková Teorie Kosmologie - věda zabývající se vznikem a vývojem vesmírem. Vznik vesmírů je vysvětlován v bájích každé starobylé
Černé díry: brány k poznávání našeho Vesmíru
Jihlavská astronomická společnost, 9. února 2017, Muzeum Vysočina. Černé díry: brány k poznávání našeho Vesmíru Ing. Petr Dvořák petr.dvorak@ceitec.vutbr.cz Ústav fyzikálního inženýrství, FSI VUT v Brně
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost
Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence
Virtual Universe Future of Astrophysics?
Future of Astrophysics? Robert Klement a Pet oš 8. Listopadu 2009 1 Virtuální Observatoře: Co to je a k čemu jsou? 2 Pár slov k 3 Jak se s pracuje 4 5 6 Vlastní článek Vědecké metody Proč VO? Každé tři
Jiří Grygar: Velký třesk za všechno může... 1/ 22
Jiří 1/ 22 C2CR 2005: Od urychlovačů ke kosmickým paprskům 9. 9. 2005 Urychlovače č na nebi a pod zemí, aneb může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prou Jiří 2/ 22 Cesta do mikrosvěta
Kvadrát celková energie částice je dána součtem kvadrátu její kinetické energie a kvadrátu klidové energie v důsledku její hmotnosti,
Hmota ve vesmíru Kvadrát celková energie částice je dána součtem kvadrátu její kinetické energie a kvadrátu klidové energie v důsledku její hmotnosti, Ec 2 = m 2 0 c4 + p 2 c 2. Tento relativistický vztah
VYBRANÉ PARTIE SOUČASNÉ FYZIKY
Katedra teoretické fyziky Přírodovědecká fakulta Univerzita Palackého VYBRANÉ PARTIE SOUČASNÉ FYZIKY Tomáš Opatrný a Lukáš Richterek Olomouc 005 Abstrakt Tento text si klade za cíl seznámit čtenáře s vybranými
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
O tom, co skrývají centra galaxíı. F. Hroch. 26. březen 2015
Kroužíme kolem černé díry? O tom, co skrývají centra galaxíı F. Hroch ÚTFA MU, Brno 26. březen 2015 Kroužíme kolem černé díry? Jak zkoumat neviditelné objekty? Specifika černých děr Objekty trůnící v centrech
Vesmírné perpetuum mobile. Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky MU
Vesmírné perpetuum mobile Zdeněk Mikulášek, Ústav teoretické fyziky a astrofyziky MU Univerzita třetího věku, PřF MU Brno, 20. října 2016 Perpetuum mobile O sestrojení samovolně a věčně se hýbajícího umělého
VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE
VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO MŮŽE Jiří GRYGAR Fyzikální ústav Akademie věd ČR, Praha 17.4.2012 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESK opravdu za všechno může 10-43
V příspěvku představím kurz Kosmologie, který nabízíme studentům učitelství Kosmologie se vždy dotýkala témat, která jsou i doménou filozofie,
V příspěvku představím kurz Kosmologie, který nabízíme studentům učitelství Kosmologie se vždy dotýkala témat, která jsou i doménou filozofie, matematiky a umění, Patří k oblastem vědy, které obsahují
Temná hmota a temná energie
Temná hmota a temná energie Složení vesmíru? Temná energie SN Ia velkorozměrová struktura reliktní záření Supernova SN 2002bo Galaxie: NGC 3190 Vzdálenost: 20 milionů světelných roků Fotografie byla pořízena
Klíčová slova Kosmologie, obecná relativita, Hubbbleova konstanta;výklad. Key words Cosmology; General Relativity, Hubble constant,explanation.
1 Kosmologické minimum Jan Novotný Abstrakt Současné kosmologické modely jsou založeny na obecné teorii relativity. Chování vesmíru v těchto modelech lze však vysvětlit i na základě představ blízkých newtonovské
České Vysoké Učení Technické v Praze Fakulta Elektrotechnická. Astrofyzika. Petr Kubašta. Vypracované otázky od Milana Červenky (verze z 14.5.
České Vysoké Učení Technické v Praze Fakulta Elektrotechnická Astrofyzika Petr Kubašta Vypracované otázky od Milana Červenky (verze z 14.5.2012) Praha, 2012 Tento soubor vypracovaných otázek vznikl neoficiálně
Járovy experimentální laboratoře. prof. PhDr. MUDr. MVDr. Ing. Mgr. Pavel Jež, DrSc., BDP JNV. doc. PeadDr. Ing. Arch. Bc. Jan Prehradný, CSc.
Járovy experimentální laboratoře prof. PhDr. MUDr. MVDr. Ing. Mgr. Pavel Jež, DrSc., BDP JNV. doc. PeadDr. Ing. Arch. Bc. Jan Prehradný, CSc., SDP Obsah historie ústavu činnost ústavu: jaderný reaktor
Urychlovače na nebi a pod zemí, aneb Velký třesk za všechno může
Urychlovače na nebi a pod zemí, aneb Velký třesk za všechno může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prouza Cesta do mikrosvěta 1895 W. Röntgen: paprsky X 1896 H. Becquerel: radioaktivita
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 4. 3. 2013 Pořadové číslo 20 1 Černé díry Předmět: Ročník: Jméno autora: Fyzika
Za hranice současné fyziky
Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie
Od kvarků k prvním molekulám
Od kvarků k prvním molekulám Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz ZÁKLADNÍ SLOŽKY
Černé díry ve vesmíru očima Alberta Einsteina
Černé díry ve vesmíru očima Alberta Einsteina Martin Blaschke otevření Světa techniky ve dnech 14. - 20. 3. 2014 Ústav fyziky, Slezská univerzita v Opavě 1 / 21 Černá díra, kde jsme to jen slyšeli? Město
Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum
Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra
Temná energie realita nebo fikce?
Temná energie realita nebo fikce? Petr Kulhánek Z několika nezávislých experimentů dnes víme, že temná energie tvoří přibližně 70 % našeho vesmíru. V současnosti jde o zcela dominantní složku ovlivňující
Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15
Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší
Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření
Urychlování částic ve vesmíru aneb záhadné extrémně energetické kosmické záření Pozorování kosmického záření Kosmické záření je proud převážně nabitých částic, které dopadá na zeměkouli z kosmického prostoru.
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/ Tato prezentace slouží jako vzdělávací materiál.
Vznik této prezentace byl podpořen projektem CZ.1.07/2.3.00/09.0138 Tato prezentace slouží jako vzdělávací materiál. Co uvidíte v černé díře? extrémní gravitační lensing Pavel Bakala Ústav fyziky Filozoficko-přírodovědecká
Batse rozložení gama záblesků gama záblesků detekovaných družicí BATSE v letech Rozložení je isotropní.
GRB Gama Ray Burst Úvod Objevení a pozorování Lokalizace a hledání optických protějšků Vzdálenosti a rozložení Typy gama záblesků Možné vysvětlení Satelit Fermi Objev gama záblesků Gama záření je zcela
Jak starý je vesmír? ( ± 0.021) x 10 9 let (družice Planck) odhad pomocí Hubbleovy konstanty
Kosmologie 2/2 Jak starý je vesmír? odhad pomocí Hubbleovy konstanty úvaha: rozpínající se vesmír => rychlost rozpínání ovlivněna jedinou silou - gravitací => prázdný vesmír se rozpíná konstantní rychlostí
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.
4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti
Model rovnoměrně se rozpínajícího vesmíru
Model rovnoměrně se rozpínajícího vesmíru Mgr. Rostislav Szeruda Roznov p.r. Czech Republic 22. srpna 2015 Abstrakt This article deals with possibility of finding an alternative model to the expanding
Astronomické pozadí Nobelovy ceny za fyziku v roce 2011
4 Aktuality Astronomické pozadí Nobelovy ceny za fyziku v roce 2011 Jiří G r ygar Fyzikální ústav AV ČR, v. v. i., Na Slovance 2, 182 21 Praha 8 V říjnu 2011 oznámila komise pro udělování Nobelových cen,
Vybrané podivnosti kvantové mechaniky
Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:
Svˇetelné kˇrivky dosvit u
Světelné křivky dosvitů. Filip Hroch Světelné křivky dosvitů p. 1 Charakteristiky dosvitů Dosvit (Optical Afterglow) je objekt pozorovaný po gama záblesku na větších vlnových délkách. Dosvit je bodový
Gravitační vlny detekovány! Gravitační vlny detekovány. Petr Valach ExoSpace.cz Seminář ExoSpace.
století vlny! Petr Valach ExoSpace.cz www.exospace.cz valach@exospace.cz století vlny Johannes Kepler (1571 1630) Zakladatel moderní vědy Autor tří zákonů o pohybech planet V letech 1600 1612 v Praze Autor
EINSTEINOVA RELATIVITA
EINSTEINOVA RELATIVITA Pavel Stránský Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta Univerzity Karlovy www.pavelstransky.cz Science to Go! Městská knihovna Praha 21. leden 2016 Pohyb a
Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15
Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele
OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
10 objevů...
10 objevů... Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Univerzita Palackého Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz 10 objevů...
VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB MŮŽE
VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO V MŮŽE Fyzikáln Jiří GRYGAR lní ústav AkademieA věd ČR, Praha 27.2.2012 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESKT opravdu za všechno
Kvantová mechanika bez prostoročasu
Natura 30. listopadu 2002 Kvantová mechanika bez prostoročasu zpracoval: Jiří Svršek 1 podle článku T. P. Singha Abstract Pravidla kvantové mechaniky pro svoji formulaci vyžadují časovou souřadnici. Pojem
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vladimír Wagner Je kosmologie mytologií? aneb úvaha experimentálního fyzika o kosmologických hypotézách a modelech Pokroky matematiky, fyziky a astronomie, Vol.
ZÁŘENÍ V ASTROFYZICE
ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční
Profily eliptických galaxíı
Profily eliptických galaxíı Pozorování a modely Filip Hroch, Kateřina Bartošková, Lucie Jílková ÚTFA, MU, Brno 26. říjen 2007 O galaxíıch Galaxie? gravitačně vázaný systém obsahuje hvězdy, hvězdokupy,
Temná hmota ve vesmíru
Gymnázium Tachov, seminář 16. října 2002 Temná hmota ve vesmíru Jiří Svršek 1 c 2002 Intellectronics Abstract Temná hmota je hypotetická nesvítící substance, která se nachází mezi galaxiemi ve vesmíru
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Tomáš Málek; Vojtěch Pravda; Alena Pravdová Einsteinovy rovnice a jejich vybrané důsledky Pokroky matematiky, fyziky a astronomie, Vol. 60 (2015), No. 3, 203 214
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Vzdálenosti ve vesmíru
Vzdálenosti ve vesmíru Proč je dobré, abychom je znali? Protože nám udávají : Výchozí bod pro astrofyziku: Vzdálenosti jakéhokoli objektu ve vesmíru je rozhodující parametr k pochopení mechanizmu tvorby
pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,
Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,
VY_32_INOVACE_06_III./19._HVĚZDY
VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír
Jaký je náš vesmír? Petr Kulhánek Univerzita Palackého Přírodovědecká fakulta 21. 1. 2010. kulhanek@aldebaran.cz http://www.aldebaran.
Jaký je náš vesmír? Petr Kulhánek Univerzita Palackého Přírodovědecká fakulta 21. 1. 2010 kulhanek@aldebaran.cz http://www.aldebaran.cz Složení vesmíru? Temná energie velkorozměrová struktura SN Ia reliktní
FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice
Příloha č. 1 REJSTŘÍK FYZIKÁLNÍCH POJMŮ
Příloha č. 1 REJSTŘÍK FYZIKÁLNÍCH POJMŮ 2 Absolutní čas: Newtonova představa univerzálního času, podle které lze zavést univerzální, jednoznačně určenou současnost událostí a univerzální význam časové
Milníky kosmologie KOSMOLOGIE. Expanze vesmíru ASTRONOMIE A FYZIKA SOUVISLOSTI
Milníky kosmologie Hubblova konstanta koeficient úměrnosti mezi rychlostí vzdalování a vzdáleností objektů při expanzi vesmíru. Dnes se hodnota Hubblovy konstanty odhaduje na 68 km/s na megaparsek. Hubblův
Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.
VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu
Hvězdy se rodí z mezihvězdné látky gravitačním smrštěním. Vlastní gravitací je mezihvězdný oblak stažen do poměrně malého a hustého objektu kulovitého tvaru. Tento objekt je nazýván protohvězda. V nitru
Relativistické jevy při synchronizaci nové generace atomových hodin. Jan Geršl Český metrologický institut
Relativistické jevy při synchronizaci nové generace atomových hodin Jan Geršl Český metrologický institut Objasnění některých pojmů Prostoročas Vlastní čas fyzikálního objektu Souřadnicový čas bodů v prostoročase
Přímá detekce gravitačních vln historické souvislosti i detaily ohlášeného objevu
Fyzika jako dobrodružství poznání mimořádná přednáška 25. 2. 2016 Přímá detekce gravitačních vln historické souvislosti i detaily ohlášeného objevu Jiří Podolský, Jiří Bičák, Jiří Langer, Tomáš Ledvinka,
1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Jiří Švestka Nobelova cena za fyziku za objev reliktního záření Pokroky matematiky, fyziky a astronomie, Vol. 24 (1979), No. 4, 202--205 Persistent URL: http://dml.cz/dmlcz/137797
Kosmické záření a astročásticová fyzika
Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?
Radomír Šmída: Reliktní záření
Radomír Šmída: Reliktní záření Kosmologie vysvětluje vznik a následný vývoj vesmíru pomocí teorie velkého třesku. Vesmír měl být původně vyplněn velmi žhavou ionizovanou hmotou plazmou, která díky rozpínání
Astronomie. Astronomie má nejužší vztah s fyzikou.
Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,
VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB MŮŽE
VZNIK FYZIKY, CHEMIE A BIOLOGIE, ANEB VELKÝ TŘESK ZA VŠECHNO V MŮŽE Jiří GRYGAR Fyzikální ústav Akademie A věd v ČR, Praha 6.2.2014 VELKÝ TŘESK 1 Na počátku bylo slovo: VELKÝ TŘESK opravdu za všechno může
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075
Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 7. 1. 2013 Pořadové číslo 10 1 Astronomie Předmět: Ročník: Jméno autora: Fyzika
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Něco z astronomie aneb Kosmologie, pozorování a astročásticová fyzika
Něco z astronomie aneb Kosmologie, pozorování a astročásticová fyzika 29. listopadu 2012 Michael Prouza Fyzikální ústav AV ČR Klasický pohled na vývoj vesmíru Fridmanovo řešení Einsteinových rovnic (1916-1918)
Základy spektroskopie a její využití v astronomii
Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?
Extragalaktické novy a jejich sledování
Extragalaktické novy a jejich sledování Novy těsné dvojhvězdy v pokročilém stadiu vývoje přenos hmoty velikost bílého trpaslíka Spektrum klasické novy Objevy nov v ČR 1936 - Záviš Bochníček objevuje ve
Slovo úvodem 9 1 Klasická astronomie, nebeská mechanika 11 1.1 Časomíra...... 11 1.1.1 Sluneční hodiny.... 11 1.1.2 Pravý místní sluneční čas versus pásmový středoevropský čas.. 13 1.1.3 Přesnější definice
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Reliktní záření. Radomír Šmída. Záhadný mikrovlnný šum. Vznik reliktního záření
Reliktní záření Reliktní záření Radomír Šmída Kosmologie vysvětluje vznik a následný vývoj vesmíru pomocí teorie velkého třesku. Vesmír měl být původně vyplněn velmi žhavou ionizovanou hmotou - plazmou,
Země. galaxie BANG! y/2 y/2. Regresní modely okolo velkého třesku. Jiří Mihola
Regresní modely okolo velkého třesku Jiří Mihola Teorie velkého třesku je dnes považovaná za samozřejmost jak mezi astronomy, tak dokonce i v širší veřejnosti. V knize (Singha, 2007, s.359) je model vesmíru
Fyzik potkává filmaře
Den otevřených dveří MFF UK, 23.11.2017 Tři setkání (nejen) s Einsteinem, aneb: Fyzik potkává filmaře Pavel Cejnar Ústav částicové a jaderné fyziky, MFF UK Praha Einstein v Praze: duben 1911 červen 1912