1. Obyčejné diferenciální rovnice
|
|
- Ladislav Šmíd
- před 6 lety
- Počet zobrazení:
Transkript
1 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá diferenciální rovnice. V následujících příkladech je y symbol pro neznámou funkci, y, y, symboly pro derivace neznámé funkce a je nezávisle proměnná. Příklad. y ( y) y y y y 4 y ( y ) y y y y 6 ( ) sin( ) Obecný zápis: ( n) F(, y, y, y,, y ) (.) F( a, b, c, d) ad c ab 4 F( a, b, c, d) cd sin( ab) b 6 Obyčejné diferenciální rovnice neznámá funkce je jedné proměnné, y y( ). Parciální diferenciální rovnice neznámá funkce je více proměnných, z z(, y). z z z y yz Definice. (řád rovnice) Řádem dif. rovnice (.) rozumíme nejvyšší stupeň derivace neznámé funkce, který se v rovnici vyskytuje. Definice. (řešení dif. rovnice) Řešením dif. rovnice (.) na intervalu I rozumíme funkci : I, kde I je interval, pro kterou platí I F ( n) (, ( ), ( ), ( ))
2 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Příklad. Známý případ: y f ( ) Řešením je každá primitivní funkce k funkci f. Množinu všech řešení na intervalu I lze psát ve tvaru y( ) F( ) c, F f ( ) d. Ilustrace množiny primitivních funkcí. Definice. (maimální řešení) ( n) Řešení : I se nazývá maimálním řešením rovnice F(, y, y, y,, y ), jestliže neeistuje řešení : J takové, že J I a I, tj. nemůže být rozšířeno na delší interval. Příklad. Mějme rovnici yy. Ukažte, že množina funkcí určená vztahem ( ) (.) pro libovolné {} je řešením uvedené rovnice na intervalu (, ). Ilustrace množiny řešení popsané formulí (.). Řešení. Nechť (, ), pak eistuje derivace ( ) a platí Dosazením do diferenciální rovnice dostaneme ( ) ( ) ( ).
3 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Platí tedy (, ) ( ) ( ), je tedy na intervalu (, ). ( ) řešením uvedené rovnice Příklad.4 Ukažte, že množina funkcí určená vztahem pro libovolné, je řešením rovnice na intervalech (, ), (, ). e ( ), (.) y ( ) y Ilustrace množiny řešení určené formulí (.). Definice.4 (obecné řešení) ( n) Množina všech řešení rovnice F(, y, y, y,, y ) je nazývána Obecné řešení. Obecné řešení je často popsáno formulí, ve které se vyskytuje n nezávislých parametrů c, c, cn, např. y (, c, c, c n ). Tato formule se rovněž nazývá obecné řešení. Definice.5 (dif. rovnice s počáteční podmínkou a její řešení) Nechť jsou dána čísla, b, b,, bn. ( n) Diferenciální rovnic F(, y, y, y,, y ) spolu s podmínkami ( n ) y( ) b, y ( ) b,, y ( ) b n se nazývá diferenciální rovnice s počátečními podmínkami, ekvivalentně taky auchyova úloha, nebo počáteční úloha.
4 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Řešením počáteční úlohy ( n) F(, y, y, y,, y ), ( n ) y( ) b, y ( ) b,, y ( ) b n na intervalu I je funkce : I, která splňuje dále uvedené podmínky:. je řešením uvedené rovnice na intervalu I,.. I, ( ), ( ),, ( ). ( n ) b b b n Příklad.5 Řešte rovnici s počáteční podmínkou: yy, y(). V příkladě. jsme se přesvědčili, že formule ( ) popisuje množinu řešení uvedené dif. rovnice. Dá se ukázat, že to je obecné řešení dané rovnice. Z množiny všech řešení vyberu takové, které splňuje zadanou počáteční podmínku (), tj. najdu parametr, pro který () Odtud vyplývá, že 5, hledané řešení má tvar ( ) 5, viz obrázek Příklad.6 Některé známé diferenciální rovnice. Newtonova pohybová rovnice hmotného bodu m v gravitačním (newtonovském) poli tělesa hmotnosti M. M m rg r, r( t ) r, r ( t) v. r 4
5 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných r(t) M r m v Schrödingerova rovnice: V ( ) E, m ( ) v prostoru za potenciálovou bariérou V ( ) E, viz šrafovaná oblast. hustota pravděpodobnosti výskytu částice hmotnosti m a energii E, je nenulová i Vlnová rovnice. E E E E. y z c t Einsteinovy rovnice gravitačního pole: G R Rg L g 8 T c kde: gik i k ik ik ik 4 ik b b, ik g ik g, k rs gms gsn gmn G mn g n m s, l l Gil Gik r l r l Rik G k l ilgkr GikG lr, ik R g R ik, Tik - tenzor energie a hybnosti, - kosmologická konstanta. 5
6 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných l i k gikd d délka křivky, měření vzdálenosti. Eistují dif. rovnice které nemají řešení, např. ( y). Eistují dif. rovnice jejichž řešení není jednoznačně určeno počáteční podmínkou. Definice.6 (jednoznačná řešitelnost) Dif. rovnice s počáteční podmínkou ( n) F(, y, y, y,, y ), ( n ) y( ) b, y ( ) b,, y ( ) b n (.4) je jednoznačně řešitelná jestliže platí:. Eistuje alespoň jedno řešení: : I úlohy (.4).. Pro každá dvě řešení rovnice (.4) : I, : I eistuje okolí U( ) takové, že I I U ( ) ( ( ) ( )).. Obyčejné diferenciální rovnice. řádu Pro jednoduchost uvažujme rovnici (.) ve tvaru: F(, y, y) (.) y f (, y), y( ) y. Věta. (Eistence a jednoznačnost) Je dána rovnice s počáteční podmínkou y f (, y), y( ) y, (.) kde f : G, G G, G je souvislá, [, y] G. 6
7 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných y G f [, y ] Jestliže f je spojitá na G, pak počáteční úloha je řešitelná, tj. eistuje alespoň jedno řešení : I. Jestliže navíc f y je spojitá na G, je úloha (.) jednoznačně řešitelná pro každou počáteční podmínku [, y] G. Příklad. Uvažujme rovnici y y, (.) f (, y) y. Řešením rovnice na je konstantní funkce ( ) a každá funkce tvaru ( ) ( c) pro libovolné c, viz obrázek. Tyto funkce tvoří obecné řešení rovnice (.). Uvažujeme-li rovnici (.) s poč. podmínkou y(), tj. pro [, y] [,], rovnice je jednoznačně řešitelná, řešení však není na jediné, viz následující obrázky: 7
8 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Rovnice (.) s poč. podmínkou y(), tj. pro [, y] [,], není jednoznačně řešitelná, tím méně má jediné řešení. Učiněná pozorování jsou v souladu s větou., neboť f y y y y je spojitá funkce všude v rovině {}, tj. v bodech [,y] kde y. Rovnice (.) je jednoznačně řešitelná pro každou počáteční podmínku [,y ], pro kterou y. Piccardovy aproimace (idea důkazu věty o eistenci a jednoznačnosti) Nechť y f (, y), y( ) y, (.4) f je spojitá na G a je řešením úlohy (.4) na intervalu I, tj. platí Pak platí: Eistuje derivace na I. I ( ) f (, ( )) a ( ) y. (.5) Protože R( f), derivace je konečná na I. Protože derivace je konečná na I, funkce je spojitá na I. Jestliže je spojitá na I, pak kompozice spojitých funkcí f (, ( )) je spojitá funkce. Jestliže f (, ( )) je spojitá funkce, pak podle (.5) je derivace spojitá na I. 8
9 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Ze spojitosti plyne eistence Riemannových integrálů pro každé, I, ( t) dt f ( t, ( t)) dt, které lze psát ve tvaru ( ) y f ( t, ( t)) dt. (.6) Obdobnou argumentací je možno ukázat, že platí-li (.6) pro každé I, pak funkce je řešením dif. rovnice (.4) na I a vyhovuje počáteční podmínce. Rovnice (.6) má ovšem velmi výhodný tvar, který vynikne, definujeme-li zobrazení A vztahem: A ( ) = ( ) y f ( t, ( t)) dt pro každé I. (.7) Řešení rovnice (.6) a tedy i dif. rovnice (.4) je pak pevným bodem zobrazení A, tj. platí: Funkce je řešením úlohy (.4) právě když A ( ) =. Pevný bod zobrazení A lze nají iterací. Položme y, A n ( n). Jsou-li splněny předpoklady věty o eistenci a jednoznačnosti, pak posloupnost funkcí n konverguje k pevnému bodu zobrazení A. Příklad. Mějme počáteční úlohu y y, y(). Potom f (, y) Pak dostaneme posloupnost:, y, a n ( ) n( t) dt ( ) ( t) dt dt,. ( ) ( t) dt t dt, ( ) e n n! n! 9
10 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Rovnice se separovanými proměnnými. Definice. (separace proměnných) Diferenciální rovnice ve tvaru se nazývá rovnice se separovanými proměnnými. p( ) q( y) y (.8) Lze-li rovnici F(, y, y) zapsat ve tvaru (.8), pak rovnice F(, y, y) se nazývá separovatelná. Věta. (řešení rovnice se separovanými proměnnými) Nechť funkce p je spojitá na intervalu (a, b) a funkce q je spojitá na intervalu (c, d). Nechť P p na (a, b) a Q q na (c, d), pak platí: (a) Pro každé řešení y ( ) rovnice (.8) na intervalu I ( a, b) eistuje konstanta taková, že P( ) Q( ( )) (.9) (b) Nechť funkce splňuje rovnici (.9) na intervalu I ( a, b) pro nějakou konstantu a na intervalu I je diferencovatelná. Pak funkce je řešením (.8). p( ) q( ( )) ( ) I P( ) Q( ( )) ( ) I P( ) Q( ( )) I P( ) Q( ( )) I P( ) Q( ( )) I Příklad. Je dána rovnice y y. (.) y Jestliže, y, pak platí. (.) y Původní rovnice je tedy separovatelná, rovnice po úpravě je s původní ekvivalentní pouze pro, y.
11 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných = II I y = III IV ln y ( ), ln y ( ), ln y( ), ln y( ), ln y( ) e e y y( ) e e ( ) y K e, K {}. (.) Řešení (.) je i řešením původní rovnice (.) avšak pouze uvnitř kvadrantů I, II, III, IV. Při dělení rovnice (.) veličinou y jsme ztratili jedno konstantní řešení původní rovnice y =. Ilustrace množiny řešení diferenciální rovnice (.).
12 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných y y f Pro lze původní rovnici psát ve tvaru y. Odtud f (, y) a je spojitá y y všude v ( {}), tj. rovnice y je jednoznačně řešitelná pro každou počáteční podmínku [,y ] kde. Maimální řešení původní rovnice není jednoznačně určené počáteční podmínkou, různá řešení (.) lze přes nulu propojovat, viz obrázek. Rovnice se separovanými proměnnými a počáteční podmínkou. p( ) q( y) y, y( ) y. (.) Podle Věty. víme (jsou-li splněny její předpoklady), že eistuje konstanta taková, že řešení (.) je implicitně určeno rovnicí P( ) Q( ( )). Má-li řešení splňovat počáteční podmínku, pak nutně P( ) Q( ( )) P( ) Q( y ) Odtud pro řešení počáteční úlohy dostaneme rovnici P( ) P( ) Q( ( )) Q( y ),
13 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných tj. ( ) p( t) dt q( t) dt. (.4) y Věta. (eistence a jednoznačnost řešení pro p( ) q( y) y, y( ) y) Jestliže p je spojitá na (a, b) a q je spojitá na (c, d) a y ( c, d) ( q( y) ), pak pro každou počáteční podmínku [, y] ( a, b) ( c, d) je úloha (.) jednoznačně řešitelná, řešení je implicitně určeno rovnicí (.4). Věta o implicitní funkci aplikovaná na (.4). Za uvedených předpokladů, funkce F(, y) p( t) dt q( t) dt y y je funkce F : ( a, b) ( c, d) třídy, F(, y), F ( y, ) ( ) y q y. Pak podle věty o implicitní funkci eistují okolí U( ), V( y ) a funkce : U ( ) V ( y) třídy taková, že U ( ) y V ( y ) F(, y) ( ) y. Příklad.4 yy, y(). (.5) Funkce p( ) je spojitá v {}, funkce q( y) y je spojitá a nenulová na stejné množině {}. Protože poč. podmínka leží v {} {},tj. [, ] {} {}, je rovnicí (.4) v jistém okolí bodu [,] určeno jediné řešení. Pro počáteční podmínku [, ] {} {} dostaneme y ln( ). Pro libovolnou počáteční podmínku [, y] {} {} je řešení dáno formulí y y y ln y.
14 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Ilustrace obecného řešení diferenciální rovnice (.5). Zobecnění: p ( ) q ( y) p ( ) q ( y) y, y( ) y (.6) Jestliže q ( ), pak y ( ) je konstantním (říkáme též stacionárním) řešením rovnice (.6). Jestliže: p, p jsou spojité na I ( a, b) a p je na I nenulová, q, q jsou spojité a nenulové na intervalu K ( c, d), pak platí: (a) Rovnice (.6) je na množině I K ekvivalentní s rovnicí p( ) q( y) y, y( ) y (.7) p( ) q( y) a rovnice (.7) je na I K jednoznačně řešitelná. (b) Úlohy (.6) i (.7) mají pro každou počáteční podmínku [, y] I K identická řešení na množině I K. Příklad.5 y y y (.8) y y y {,} odtud plyne, že y ( ) a y ( ) jsou konstantní řešení rovnice (.8). 4
15 & : Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných Pro, y, y, tj. na množině ( {}) ( {,}), je rovnice (.8) ekvivalentní s rovnicí y y y což je rovnice se separovanými proměnnými, a lze ji řešit podle Věty.. 5
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
Více1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
VíceFakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
VíceObyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
VíceUčební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Více19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
VíceRiemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
Více4. Lineární diferenciální rovnice rovnice 1. ádu
4. Lineární diferenciální rovnice rovnice. ádu y + p( ) y = (4.) L[ y] = y + p( ) y p q jsou spojité na I = (ab) a < b. Z obecné teorie vyplývá že množina všech ešení rovnice (4.) na intervalu I (tzv.
VíceDiferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
VíceDnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
VíceKapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
Více11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceFunkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
Vícey = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
VíceDiferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
Více4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
VíceDEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
Více1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU
VíceHomogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde
Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
VíceŘADY KOMPLEXNÍCH FUNKCÍ
ŘADY KOMPLEXNÍCH FUNKCÍ OBECNÉ VLASTNOSTI Řady komplexních čísel z n byly částečně probírány v kapitole o číselných řadách. Definice říká, že n=0 z n = z, jestliže z je limita částečných součtů řady z
VíceOtázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
Více8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule
Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
VíceQ(y) dy = P(x) dx + C.
Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato
VíceVEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
VíceNMAF 051, ZS Zkoušková písemná práce 16. ledna 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8
VíceVěta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceUniverzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
VíceObsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
VíceZimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
VíceMatematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
VícePŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceGreenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice
Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Více8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
VíceDiferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
VíceFunkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
Více5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
VíceDiferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
VíceMatematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceDiferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
VíceInterpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
VíceVEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
VícePotenciál vektorového pole
Kapitola 12 Potenciál vektorového pole 1 Definice a výpočet Důležitým typem vektorového pole je pole F, pro které existuje spojitě diferencovatelná funkce f tak, že F je pole gradientů funkce f, tedy F
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
VíceStudijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.
Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,
VíceObsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
VíceMatematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
VíceDiferenciální rovnice a dynamické modely
Diferenciální rovnice a namické modely Robert Mařík 31. srpna 2009 c Robert Mařík, 2009 G. Galilei: Velkou knihu příro mohou číst jen ti, kteří znají jazyk, jímž je tato kniha napsána. A tímto jazykem
Vícei=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
VíceI. TAYLORŮV POLYNOM. 2. a) x x3, b) x x3 + x5, c) 1 + 2x x2 2x 4, f (4) (0) = 48, d) x , c)
VÝSLEDKY I. TAYLORŮV POLYNOM. a) ( ) + ( ) ( 6 ), b) ( π ). a) +, b) +, c) + + 4, f (4) (0) = 48, d) + 4 4, e) + 0, f), g) ++ 6 4, h) + 70 4, i) 4 j) + 6 k) 7 8 40. + o( ), 8 4. a), b), c), d) -, e) 4
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Vícef(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
VíceKapitola 8: Dvojný integrál 1/26
Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet
VíceZobecněný Riemannův integrál
Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál
Více12. Křivkové integrály
12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ
VíceLDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Více6. dubna *********** Přednáška ***********
KMA/MAT2 Přednáška a cvičení č. 8, Obyčejné diferenciální rovnice 2 6. dubna 2016 *********** Přednáška *********** 1 Existence a jednoznačnost řešení Cauchyovy úlohy Stále uvažujeme rovnici y = f(t, y).
VíceMatematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
Více8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
VíceFunkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceSeznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.
INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodce studiem V kapitole Diferenciální počet funkcí jedné proměnné jste se seznámili s derivováním funkcí Jestliže znáte derivace
VíceINTEGRACE KOMPLEXNÍ FUNKCE
INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje
VíceMatematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceNumerické řešení diferenciálních rovnic
Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních
VíceMatematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Více18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Více+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
VíceOtázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
Vícex 2 +1 x 3 3x 2 4x = x 2 +3
I. Určitý integrál I.. Eistence určitých integrálů Zjistěte, zda eistují určité integrály : Příklad. + + d Řešení : Ano eistuje, protože funkce f() + + je spojitá na intervalu,. Příklad. + 4 d Řešení :
VíceSeznámíte se s principem integrace metodou per partes a se základními typy integrálů, které lze touto metodou vypočítat.
.. Integrace metodou per partes.. Integrace metodou per partes Průvodce studiem V předcházející kapitole jsme poznali, že integrování součtu funkcí lze provést jednoduše, známe-li integrály jednotlivých
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceKristýna Kuncová. Matematika B2
(8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +
VíceNecht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Více1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
Vícef(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
VíceLimita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
VíceMatematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19
Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie
Více7B. Výpočet limit L Hospitalovo pravidlo
7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,
VíceNyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
VíceObyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
VíceINTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
Více5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Více