Biologie 4, 2014/2015, I. Literák. pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN

Rozměr: px
Začít zobrazení ze stránky:

Download "Biologie 4, 2014/2015, I. Literák. pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN"

Transkript

1 Biologie 4, 2014/2015, I. Literák pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN

2 >10 LET JE ZNÁM LIDSKÝ GENOM 2000 Bill Clinton, Tony Blair: ukončení hrubého sekvenování lidského genomu (= známo pořadí nukleotidů 83 % lidského genomu) 2003 (Nature, 2004): dokončení kompletního genomu 2010 známo pořadí 93 % nukleotidů, 100 % kódujících oblastí, odolávají některé repetitivní sekvence, centromery, telomery geny kódující proteiny geny kódující RNA několik (málo) tisíc? počtu modifikací jednotlivých genů (alternativní sestřih) 2 lidé sdílejí 99,5 % genetické informace, 0,5 % se liší Project ENCODE: do RNA se přepisuje i cca 75 % negenové DNA (!), hlavně regulační oblasti před ale i za (!) genem a z obou (!) řetězců DNA Jen u několika lidí je známá kompletní sekvence celého genomu (např. u J.D. Watsona spoluobjevitele struktury DNA)

3 PAMĚŤOVÝ SYSTÉM BUŇKY BUNĚČNÁ PAMĚŤ PAMĚŤ - zaznamenání, uchování a předání informace (kniha, flash disk, DNA, lidský mozek) DĚDIČNOST = schopnost předávat soubor informací ve sledu po sobě jdoucích generací (buněk, mnohobuněčných organismů) BUNĚČNÁ PAMĚŤ (vnitřní paměť buňky) - zpracovává informaci pro - udržování buňky (struktura a funkce) - reprodukci - u jednobuněčných - u mnohobuněčných + informace o vývoji, funkci a chování celého jedince

4 NUTNÉ VLASTNOSTI BUNĚČNÉ PAMĚTI 1. velká kapacita 2. dlouhodobost 3. stabilita 4. snadná dostupnost a transformovatelnost do konkrétní vlastnosti buňky 5. zdvojitelnost (pro 2 dceřiné buňky) 6. schopnost doplňování (evoluce) TYPY - informace genová (genetická) nesená genofory hlavní médium... NK exprese genetické informace = kódování, vyzvedávání a vyjadřování (exprimace) do konkrétních vlastností - informace negenová (epigenetická) - část vnitřní informace buňky zprostředkovaná jinak ovlivňuje vyjádření genů (metylace DNA, acetylace histonů, sbalování chromatinu) UNIVERZÁLNOST GENETICKÉ INFORMACE každá genetická informace je zapsána v primární struktuře NK - DNA (většinou), RNA (RNA viry)

5 GEN MENDEL (1865) - diskrétní elementy odpovědné za vytvoření znaků JOHANSSEN (1909) - gen = jednotka dědičnosti MORGAN (1911) - geny jsou lokalizovány na lokusech chromozomů BEAGLE, TATUM (1941) - jeden gen - jeden protein (enzym) WATSON, CRICK (1953) - gen je část molekuly DNA kódující jeden protein GEN = úsek polynukleotidového řetězce obsahující genetickou informaci pro strukturu polypeptidu jako translačního produktu (gen strukturní) nebo informaci pro strukturu RNA, která nepodléhá translaci (geny pro rrna a trna) GENY STRUKTURNÍ: informace o primární struktuře polypeptidu (bílkovině strukturní, enzymové, signální) - složené: z exonů (kódující sekvence genů) z intronů (nekódující sekvence genů) primární transkript podléhá posttranskripčnímu sestřihu mrna, která se na ribosomu překládá do molekuly polypeptidu (eukaryota) -jednoduché: přepisují se celé bez sestřihu (prokaryota) GENY PRO RNA: (rrna, trna, )

6 NEGENOVÁ DNA: REGULAČNÍ OBLASTI (regulační sekvence) - úseky molekuly NK, které nesou informaci pro navázání specifických proteinů např. signalizace zahájení nebo ukončení transkripce (na DNA) TRANSPOZONY, RETROELEMENTY = endogenní retroviry, SINE, LINE, u člověka 42 % DNA, REPETITIVNÍ DNA (mikrosatelity, minisatelity) PROKARYOTA - jen malá část DNA je negenová EUKARYOTA - větší část DNA je negenová (u savců 90 %) GENOM soubor všech molekul DNA v buňce (genová i negenová DNA) GENOFORY: CHROMOZOMY PLAZMIDY

7 Některé známé kompletní GENOMY ORGANISMUS POČET BAZÍ (Mb) POČET GENŮ bakteriofág X174 (1977) 5386 b ssdna 10 FPV (fowlpoxvirus) (2000) dsdna min. 65 Haemophilus influenzae (1995) Mycoplasma genitalium Escherichia coli Saccharomyces cerevisiae Arabidopsis thaliana Caenorhabditis elegans Drosophila melanogaster Homo sapiens Triticum aestivum ( )

8 EXPRESE GENETICKÉ INFORMACE F. CRICK: DNA RNA PROTEIN CENTRÁLNÍ DOGMA MOLEKULÁRNÍ BIOLOGIE 1. stupeň DNA RNA TRANSKRIPCE - na základě komplementarity bazí vznikají RNA kopie (transkripty) - postranskripční úprava 2. stupeň RNA PROTEIN TRANSLACE - nukleotidy AK - postranslační úprava přesná regulace (!!!): KVALITATIVNÍ KVANTITATIVNÍ ČASOVÁ

9 Od DNA k proteinu Espero Publishing, s.r.o.

10 TRANSKRIPCE transkripční jednotka = definovaný úsek DNA pro transkripci složení: - promotor - sekvence DNA (40 bp) pro navázání RNA-polymerázy (prostřednictvím proteinu sigma faktor) - sekvence strukturního genu (strukturních genů) - terminátor 1. INICIACE - po navázání RNA-polymerázy na promotor se rozvinou oba řetězce DNA - od místa startu (1. přístupného nukleotidu) na matricovém vláknu se přiřazují RNA nukleotidy, začíná syntéza RNA - po dosažení délky 9 nukleotidů se odštěpuje sigma faktor prokaryota eukaryota RNA-polymeráza vazby RNA-polymerázy na promotor Bacteria - 1 typ Archea - mnoho typů prostá 3 typy (I, II, III) vyžaduje transkripční faktory TF (regulační proteiny TFIID, TFIIB se váží na TATA box součást promotoru s 25 bp)

11 2. ELONGACE - RNA-polymeráza se posunuje podél molekuly DNA - vzniká vlákno RNA v orientaci TERMINACE terminátor - sekvence DNA, po jejíž transkripci se RNA zdvojí (zdvojení je signál pro oddělení RNA polymerázy od DNA) jiná možnost terminace - vazba rho faktoru (specifický protein) na molekulu RNA REVERZNÍ TRANSKRIPCE... RNA DNA pomocí reverzní transkriptázy (RNA- závislé DNA-polymerázy) u retrovirů

12 DNA je transkribována enzymem RNA-polymerázou

13 směry transkripce genů v krátkém úseku bakteriálního chromosomu

14 POSTTRANSKRIPČNÍ ÚPRAVA RNA (RNA PROCESSING) mrna prokaryota - přímo translace eukaryota: pre-mrna (hnrna heterologní nukleární RNA) mrna 1. navázání 7-metylguanozinu na 5 konec (vznik tzv. čepičky) 2. polyadenylace (připojení adenosinnukleotidů) na 3 konec (vznik tzv. polya přívěsku) důvody 1. a 2.: - ochrana před účinkem nukleáz - nutné pro rozpoznání ribozomem - umožňuje přechod z jádra do cytoplazmy 3. splicing ponechání exonů (kódujících sekvencí k exprimování) průměrný gen má asi 1000 nukleotidů vystřižení intronů (často delších než exony) [ ribozym endonukleáza P] 4. RNA silencing (RNAi, sirna, mirna)

15 rrna syntéza v jadérku % RNA pre-rrna rrna prokaryonta - 3 druhy rrna (pro ribosomální podjednotky) eukaryonta - 4 druhy rrna (pro ribosomální podjednotky) trna syntéza v jadérku pre-trna trna 1. odstranění zaváděcí sekvence 2. chemické modifikace (metylace) bazí 3. vystřižení intronů 4. přidání trojice nukleotidů CCA (u všech funkčních molekul trna)

16 TRANSLACE (PROTEOSYNTÉZA) = překlad z jazyka nukleotidů (4-písmenná abeceda) do jazyka AK (21-písmenná abeceda) - v cytoplazmě, - na ribosomech GENETICKÝ KÓD Nirenberg, Khoran, Ochoa ( Nobelova cena) kombinace tří nukleotidů kóduje 1 AK 64 variant (61 je využito pro AK) tripletový kód triplet nukleotidů v mrna... kodon (5 3 ) genetický kód je univerzální (stejný u všech organismů) je nepřekryvný (5 3 ) je degenerovaný, redundantní

17

18 Degenerovaný genetický kód Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodónů může kódovat jednu a tutéž aminokyselinu. Degenerované kodóny se obvykle liší ve své třetí pozici, viz kodony GAA a GAG, které oba kódují glutamin. Tato degenerace genetického kódu umožňuje existenci tzv. tichých mutací. Degenerovanost genetického kódu a z ní plynoucí existence tichých mutací značně zvyšuje toleranci substitučních mutací v degenerovaných kodonech. Např. kodony kódující alanin (GCG, GCA, GCU, GCC) mohou po libosti mutovat na své třetí pozici, aniž by došlo k záměně aminokyseliny, kterou kódují. Naproti tomu aminokyselina histidin je kódována pouze dvěma kodony, takže bez změny aminokyseliny je pouze jedna z možných tří mutací na třetí pozici.

19 PROTEOSYNTETICKÝ APARÁT mrna ribosomy - místa syntézy proteinů trna - řadí AK podle tripletů volné AK ATP, GTP (zdroje energie) řada enzymů a tzv. pomocných faktorů mrna prokaryota - nese informaci pro několik polypeptidů (polycistronická RNA) operon = skupina genů přepisovaných do 1 molekuly RNA eukaryota - nese informaci 1 genu

20 RIBOSOMY tělíska z rrna a bílkoviny (1:1) v cytoplazmě prokaryotních i eukaryotních buněk v matrix mitochondrií a stromatu chloroplastů - volné - vázané na membrány (ER, vnější membrána jaderného obalu) v buňce ribosomů velikost ribozomů v Svedbergových sedimentačních jednotkách prokaryota (+ mitochondrie a chloroplasty) Celý ribosom Větší podjednotka Menší podjednotka eukaryota 4 specifická vazebná místa: - místo pro vazbu mrna - A (aminoacyl) místo vazba trna s AK (aminoacyl-trna) - P (peptidyl) místo (vazba peptidyl-trna) - E (exit) místo (místo, kde t-rna opouští ribosom) polysom - řetízek ribosomů, na nichž probíhá translace proteinů (prokaryota i eukaryota)

21 komponenty eukaryontního ribosomu

22

23 RIBOZOMY VELIKOST VE SVEDBERGOVÝCH SEDIMENTAČNÍCH JEDNOTKÁCH S celý ribozom LSU rdna SSU rdna EUKARYOTA PROKARYOTA CHLOROPLASTY MITOCHONDRIE

24 vazebná místa pro RNA na ribosomu

25 polyribosom

26 trna rameno antikodonové rameno aminokyselinové vazbu trna a AK zajištuje specifická aminoacyl-trna-syntetáza 20 syntetáz pro 20 AK (21. AK selenocystein vzniká kotranslační modifikací až po navázání AK na trna) energie uvolněná rozštěpením této vazby se použije k tvorbě peptidové vazby nového polypeptidu Izoakceptorové t-rna - stejná AK/jiný antikodon

27 PRŮBĚH TRANSLACE 1. INICIACE - připojení iniciačních faktorů na menší podjednotku ribosomu - vazba iniciační trna (trna f-met formylmethionin -eubakterie, trnamet methionin archea, eukaryota) na menší podjednotku ribosomu - vazba mrna na menší podjednotku ribosomu - připojení větší podjednotky ribosomu tj. vznik translačního komplexu energie z GTP (GTP GDP) 2. ELONGACE - na startovací kodon mrna se váže antikodon trna a další trna (A místo P místo E místo, tzv. translokace) nutné elongační faktory (EF-Tu, EF-Ts, EF-G) + energie z GTP spojování AK je katalyzováno peptidyltransferázovou aktivitou 23S rrna (RNA s enzymovou aktivitou, ribozym)

28 3. TERMINACE - elongace končí dosažením stop kodonu: UAA, UAG, UGA stop kodony - nejsou rozeznávány trna - jsou rozeznávány proteiny (uvolňovací faktory, terminační faktory), které se na tyto stop kodony váží - oddělení polypeptidu - rozpad translačního komplexu

29 POSTTRANSLAČNÍ MODIFIKACE PROTEINŮ k zajištění biologické funkčnosti polypeptidů postranslační modifikace kotranslační (začínající již během translace) modifikace - deformylace (odstranění formylové skupiny z methioninu) - odštěpení AK - vyštěpení peptidů - chemické modifikace AK (metylace, fosforylace) - tvorba disulfidových můstků - připojení cukerných zbytků (glykoproteiny) - odstranění signálních sekvencí řada postranslačních modifikací se uskutečňuje specifickými enzymy (peptidázy, deformylázy,...) tj. produkty jiných strukturních genů vznik SEK., TERC. a KVART. STRUKTURY - spontánně - asistovanou autoagregací pomocí chaperonových proteinů (chaperonů), které se vážou na některé funkční skupiny vznikajících proteinů a nedovolí vznik nežádoucích vazeb (např. HSP heat shock proteins)

30 REGULACE GENOVÉ EXPRESE důvody pro regulaci genové exprese genové produkty - proteiny - jsou pro buňku potřebné: - v určité koncentraci - v určitém čase - na určitém místě A. PROKARYOTA B. EUKARYOTA

31 A. PROKARYOTA GENY KONSTITUTIVNÍ - produkce konstitutivních (trvale potřebných) proteinů - bez regulace GENY ADAPTIVNÍ - produkce adaptivních proteinů regulace na úrovni transkripce (geny zapínány a vypínány) katabolické enzymy - indukce substrátem anabolické enzymy - represe konečným produktem OPERONOVÉ GENY- skupina genů řízených promotorem a operátorem operátor je sekvence nukleotidů, na kterou se váže represor (protein kódovaný regulačním genem) tj. alosterický protein represor zastavuje transkripci genu, po jeho uvolnění transkripce probíhá Nedávné objevy: mrna může vázat různé nízkomolekulární látky (aptamerová funkce) a regulavat genovou expresi - s ribozymovým zprostředkovatelem (regulace enzymovou aktivitou ribozymu - bez ribozymového zprostředkovatele (regulace změnou konformace mrna)

32 B. EUKARYOTA mnohem složitější regulační mechanismy na více úrovních 1. regulace na úrovni genomu - dekondenzace a kondenzace chromozomů EPIGENETICKÁ - acetylace (a deacetylace) histonů AKTIVACE - metylace (a demetylace) DNA (geny s metylovanými nukleotidy nejsou transkribovány) INHIBICE - přestavba genomu pomocí transpozonů (zkopírování určitých sekvencí a jejich včlenění do určitých lokusů, např. spuštění odlišných diferenciačních programů u kvasinek) - amplifikace určitých úseků genomu - genově specifické regulátory diferencující mezi transkripcí a replikací 2. regulace na úrovni transkripce - působení transkripčních faktorů: TFIID, TFIIB (vazba na promotorové části sekvence inr, TATA box) zesilovače transkripce - enhancery tlumiče transkripce - silencery

33 Regulace prostřednictvím RNA (RNAi, sirna, mirna) RNA SILENCING 90. léta 20. st. shutting down genes (= SILENCERs) = tlumicí postranskripční geny (PTGS) houby, rostliny, živočichové RNAi RNA interference = proces sekvenčně specifického umlčování genů pomocí homologní dsrna (nekódující úseky z nukleotidů) sirna (short interferring RNA) - malé interferující duplexy uplatňují se v obranném procesu proti transkripci cizorodé RNA (evolučně starobylý obranný mechanismus proti virům a transpozonům) mirna (microrna) uplatňují se v regulaci běžné genové výbavy buňky (platí odhadem pro 1/3 lidských genů)

34 NEDÁVNÉ OBJEVY další krátké RNA pirna (Piwi-interacting RNA) snorna (small nucleolar RNA) dlouhé nekódující RNA lncrna (long non-coding RNA, 200 nukleotidů) (u savců desítky až tisíce,? funkce) cirkulární cirkulární RNA (mir-7) váže na sebe mirna, sirna (má regulační a ochrannou funkci)

35 EFEKT: degradace mrna, tj. ukončení genové aktivity knockdown efekt obvykle: ds DNA ss mrna translace s si(mi)rna: ds DNA ss mrna + komplementární si(mi)rna s nukleázou (RISC komplex) degradace mrna blokace translace výhledově velké terapeutické využití: ovlivnění genetických chorob, kontrola virových infekcí: specifická dsrna se dá se vyrobit in vitro a použít in vivo poprvé využití v PRAXI: spinocerebelární ataxie myší je vyvolávaná toxinem produkovaným mutovanou alelou genu SCA1, nemocná myš byla vyléčena umlčením mutovaného genu po podání specifické sirna

36 RNA - SILENCING dsrna DICER = specifická RNA endonukleáza sirna RISC (RNA-induced silencing complex) = sirna + endonukleáza RISC degraduje mrna

37 3. regulace na úrovni postranskripčních modifikací - alternativní sestřih RNA (např. produkce IgM) 4. regulace na úrovni translokace - přechod mrna z jádra do cytoplazmy 5. regulace na úrovni translace - působení iniciačních translačních faktorů 6. postranslační regulace - modulace chemické modifikace proteinů - modulace proteolýzy PROTEASOMY - komplexy proteáz, které degradují bílkoviny (s pomocí ATP jako zdroje energie) molekulární značka - rozeznávající komplex specifických enzymů připojí k bílkovině v místě lyzinu malý protein - ubikvitin (terč pro proteasomy)

38 UBIKVITINACE proces degradace nepotřebných, nadbytečných, poškozených bílkovin v buňce princip: na bílkovinu, která má být zničena, jsou navázány min. 4 molekuly UBIKVITINU a tím je cílová bílkovina předurčena k likvidaci v PROTEASOMU - probíhá aktivně (za spotřeby ATP), rychle, účinně a regulovaně UBIKVITIN je aktivován enzymem E1(UBA, ubikvitin aktivující) AKTIVOVANÝ UBIKVITIN je připojen enzymem E2 (UBC, ubikvitin konjugující) na cílovou bílkovinu enzym E3 (ubikvitin-ligáza) připojí min. další 3 ubikvitiny E1 1 typ E2 10 typů Degradace bílkoviny v PROTEAZOMU: - proteázy odštěpí ubikvitiny pro další použití - proteázy štěpí bílkoviny na krátké úseky AK pro další použití E3 stovky typů zajišťují specifitu PROTEASOMY u všech organismů UBIKVITINACE jen u eukaryot Existují další malé proteiny (např. SUMO proteiny) ovlivňující aktivitu cílových bílkovin (nezpůsobují ale degradaci), někdy soutěží o vazebná místa pro ubikvitin.

39 INHIBITORY PROTEAZOMU objeveny v 90. létech 20. st. různá struktura, síla účinku a specifita (hl. přes inhibici nukleárního faktoru kappa B) potenciální využití v medicíně: - léčba nádorů (potlačit růst nádorů, neničit zdravé buňky) - regulace zánětlivých procesů - léčba negativní proteinové bilance (průvodní jev řady patologických stavů) KONTROLA SPRÁVNÉHO OZNAČENÍ při nesprávném označení se mohou uplatnit DUB deubikvitinizující enzymy (uchrání protein před destrukcí)

40 TRANSKRIPTOSOM multienzymový komplex zajišťující transkripci SPLICEOSOM multienzymový komplex zajišťující posttranskripční sestřih snrnp small nuclear ribonucleoprotein particles umožňují vystřižení intronu = ribozymová ribonukleáza P PROCESOM komplex v jádře zajišťující vyzrávání rrna

41 Geny mohou být exprimovány s různou účinností Espero Publishing, s.r.o.

42 Bakteriální a eukaryontní gen Espero Publishing, s.r.o.

43 Struktura dvou lidských genů ukazující uspořádání exonů a intronů Espero Publishing, s.r.o.

44 Alternativní sestřih α-tropomyosinového genu u krys

45 Souhrn procesů vedoucích od genu k proteinu Espero Publishing, s.r.o.

B5, 2007/2008, I. Literák

B5, 2007/2008, I. Literák B5, 2007/2008, I. Literák NOBELOVY CENY V R. 2004 LÉKAŘSTVÍ A FYZIOLOGIE R. AXEL (USA) a L. BUCK (USA): funkce čichového systému u myší cca 1000 genů (u člověka něco méně) pro vznik stejného počtu čichových

Více

TRANSLACE - SYNTÉZA BÍLKOVIN

TRANSLACE - SYNTÉZA BÍLKOVIN TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy

Více

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.

Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D. Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec

Více

Biologie 4, 2015/2016, I. Literák. pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN

Biologie 4, 2015/2016, I. Literák. pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN Biologie 4, 2015/2016, I. Literák pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN >10 LET JE ZNÁM LIDSKÝ GENOM 2000 Bill Clinton, Tony Blair: ukončení hrubého sekvenování lidského genomu

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu

Více

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza

Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových

Více

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA

Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.

Více

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:

2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné: Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících

Více

19.b - Metabolismus nukleových kyselin a proteosyntéza

19.b - Metabolismus nukleových kyselin a proteosyntéza 19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění

Více

Exprese genetické informace

Exprese genetické informace Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny

Více

Molekulárn. rní. biologie Struktura DNA a RNA

Molekulárn. rní. biologie Struktura DNA a RNA Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace

Více

Bílkoviny a rostlinná buňka

Bílkoviny a rostlinná buňka Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin

Více

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Syntéza a postranskripční úpravy RNA

Syntéza a postranskripční úpravy RNA Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující

Více

Centrální dogma molekulární biologie

Centrální dogma molekulární biologie řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových

Více

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu

jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho

Více

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny

AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení

Více

Základy molekulární biologie KBC/MBIOZ

Základy molekulární biologie KBC/MBIOZ Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,

Více

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 11 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 11 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 30.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Princip genové exprese, intenzita překladu

Více

Úvod do studia biologie. Základy molekulární genetiky

Úvod do studia biologie. Základy molekulární genetiky Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor

Více

7. Regulace genové exprese, diferenciace buněk a epigenetika

7. Regulace genové exprese, diferenciace buněk a epigenetika 7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen

Více

6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).

6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot). 6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,

Více

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací

Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,

Více

Struktura a funkce nukleových kyselin

Struktura a funkce nukleových kyselin Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební

Více

NUKLEOVÉ KYSELINY. Základ života

NUKLEOVÉ KYSELINY. Základ života NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním

Více

Molekulární biologie. 4. Transkripce

Molekulární biologie. 4. Transkripce Molekulární biologie 4. Transkripce Transkripce (přepis) genetické informace z DNA do RNA Osnova 1. Transkripce (prokaryotického) bakteriálního genomu 2. Transkripce eukaryotického genomu 3. Posttranskripční

Více

Molekulární genetika (Molekulární základy dědičnosti)

Molekulární genetika (Molekulární základy dědičnosti) Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin

Více

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie

Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny

Více

DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.

Více

Úvod do studia biologie. Základy molekulární genetiky

Úvod do studia biologie. Základy molekulární genetiky Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann

Více

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.

Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu. Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové

Více

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.

Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti

Více

Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni

Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel

Více

-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:

-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením: Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,

Více

přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza)

přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza) Transkripce přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza) Zpětná transkripce (RT) - přepis genetické informace

Více

Nukleové kyseliny. DeoxyriboNucleic li Acid

Nukleové kyseliny. DeoxyriboNucleic li Acid Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou

Více

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)

Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén

Více

Translace (druhý krok genové exprese)

Translace (druhý krok genové exprese) Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).

Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA). Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a

Více

Struktura a organizace genomů

Struktura a organizace genomů CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut

Více

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI

MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu

Více

Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur

Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci

Více

Schéma průběhu transkripce

Schéma průběhu transkripce Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna

Více

Molekulární základy dědičnosti

Molekulární základy dědičnosti Mendelova genetika v příkladech Molekulární základy dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Stručná historie 1853-65

Více

Molekulární základ dědičnosti

Molekulární základ dědičnosti Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení

Více

Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur

Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci

Více

Molekulární základy dědičnosti

Molekulární základy dědičnosti Obecná genetika Molekulární základy dědičnosti Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Eva Benešová. Genetika

Eva Benešová. Genetika Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.

Více

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv

ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v

Více

Molekulární mechanismy řídící expresi proteinů

Molekulární mechanismy řídící expresi proteinů Molekulární mechanismy řídící expresi proteinů Aleš ampl Proteiny Proteios - první místo (řecky) = Bílkoviny u většiny buněčných typů tvoří nejméně 50% jejich suché hmoty hrají klíčovou úlohu ve většině

Více

Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019

Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019 1 Otázky ke zkoušce z Biologie (MSP, FVHE, FVL) a ke zkoušce z Biologie a mol. biol. metod (BSP, FVHE), 2018/2019 Okruh A 1. Definice a podstata života, princip hierarchických systémů živých soustav 2.

Více

REGULACE TRANSLACE. Regulace translace INICIACE TRANSLACE. 1. Translační aparát ribosomální podjednotky. 2. translace- iniciace

REGULACE TRANSLACE. Regulace translace INICIACE TRANSLACE. 1. Translační aparát ribosomální podjednotky. 2. translace- iniciace 1. Translační aparát ribosomální podjednotky Ribosom je tvořen dvěma nestejnými podjednotkami: SSU + LSU Jádro podjednotky tvořeno vysoce polymérní samouspořádanou rrna Každá ribosomální bílkovina má své

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Bakteriální transpozony

Bakteriální transpozony Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular

Více

Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny

Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson

Více

Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih

Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Jan Šmarda Ústav experimentální biologie, PřF MU Genová exprese: cesta od DNA k RNA a proteinu fenotyp je výsledkem

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů

Více

MOLEKULÁRNÍ BIOLOGIE PROKARYOT

MOLEKULÁRNÍ BIOLOGIE PROKARYOT Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci

Více

Virtuální svět genetiky 1. Translace

Virtuální svět genetiky 1. Translace (překlad) je druhým krokem exprese genetické informace a ukončuje dráhu DNA > RNA > protein. probíhá mimo jádro, v cytoplazmě na ribozómech. Výchozími látkami pro translaci je 21 standardních aminokyselin,

Více

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika

DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

Biosyntéza a metabolismus bílkovin

Biosyntéza a metabolismus bílkovin Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě

Více

Molekulárn. rní genetika

Molekulárn. rní genetika Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté

Více

Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA

Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským

Více

Struktura a funkce biomakromolekul

Struktura a funkce biomakromolekul Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a

Více

Transpozony - mobilní genetické elementy

Transpozony - mobilní genetické elementy Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné

Více

Buněčný cyklus. Replikace DNA a dělení buňky

Buněčný cyklus. Replikace DNA a dělení buňky Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných

Více

Molekulární a buněčná biologie, genetika a virologie

Molekulární a buněčná biologie, genetika a virologie Publikováno z 2. lékařská fakulta Univerzity Karlovy v Praze ( https://www.lf2.cuni.cz) Molekulární a buněčná biologie, genetika a virologie Okruhy otázek ke státní doktorské zkoušce Část molekulární biologie

Více

Nukleové kyseliny. obecný přehled

Nukleové kyseliny. obecný přehled Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován

Více

TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE

TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy

Více

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?

b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky? 1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'

Více

O původu života na Zemi Václav Pačes

O původu života na Zemi Václav Pačes O původu života na Zemi Václav Pačes Ústav molekulární genetiky Akademie věd ČR centrální dogma replikace transkripce DNA RNA protein reverzní transkripce translace informace funkce Exon 1 Intron (413

Více

GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita

GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu

Více

Nukleové kyseliny Replikace Transkripce, RNA processing Translace

Nukleové kyseliny Replikace Transkripce, RNA processing Translace ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti

Více

Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci

Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci Evoluce RNA Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci Po určité období měl obě funkce jeden typ sloučenin, RNA - informační i

Více

Struktura a funkce biomakromolekul KBC/BPOL

Struktura a funkce biomakromolekul KBC/BPOL Struktura a funkce biomakromolekul KBC/BPOL 2. Posttranslační modifikace a skládání proteinů Ivo Frébort Biosyntéza proteinů Kovalentní modifikace proteinů Modifikace proteinu může nastat předtím než je

Více

Kontrola genové exprese

Kontrola genové exprese Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 KBB/ZGEN Základy genetiky Dana Šafářová KBB/ZGEN Základy genetiky Rozsah: 2+1

Více

Translace - překlad genetické informace

Translace - překlad genetické informace Translace - překlad genetické informace Složky translačního aparátu: mrna 20 standardních aminokyselin (+ SeCys. Pyrrolyzin)) molekuly trna aminoacyl-trna-syntetázy ribozomy translační faktory: IF, EF,

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

RNA molekuly. Analýza genové exprese pomocí cytometrických (a jiných) metod. Analýza exprese a funkce microrna. Úrovně regulace genové exprese

RNA molekuly. Analýza genové exprese pomocí cytometrických (a jiných) metod. Analýza exprese a funkce microrna. Úrovně regulace genové exprese Analýza genové exprese pomocí cytometrických (a jiných) metod Studium exprese a funkce microrna Eva Slabáková, Ph.D. Bi9393 Analytická cytometrie 12.11.2013 Oddělení cytokinetiky Biofyzikální ústav AVČR,

Více

Evoluční genetika 2/1 Zk/Z

Evoluční genetika 2/1 Zk/Z Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením

Více

Přijímací test navazující magisterské studium Molekulární a buněčná biologie

Přijímací test navazující magisterské studium Molekulární a buněčná biologie Přijímací test navazující magisterské studium Molekulární a buněčná biologie 14. června 2016 Číslo uchazeče: Poznámky k řešení testu: Doba řešení: 60 min Správná je jen 1 odpověď, která je hodnocena 1

Více

Globální pohled na průběh replikace dsdna

Globální pohled na průběh replikace dsdna Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový

Více

Genetika zvířat - MENDELU

Genetika zvířat - MENDELU Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je

Více

Nukleové kyseliny Replikace Transkripce translace

Nukleové kyseliny Replikace Transkripce translace Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,

Více

Organizace genomu eukaryot a prokaryot GENE Mgr. Zbyněk Houdek Stavba prokaryotické buňky Prokaryotické jádro nukleoid 1 molekula 2-řetězcové DNA (chromozom kružnicová struktura), bez jaderné membrány.

Více

Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)

Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky) Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou

Více

Evoluční genetika 2/1 Zk/Z

Evoluční genetika 2/1 Zk/Z Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením

Více