Elektrochemické reakce
|
|
- Marek Němec
- před 8 lety
- Počet zobrazení:
Transkript
1 Elektrochemické reakce elektrochemie, základní pojmy mechanismus elektrochem. reakce elektrodový potenciál Faradayův zákon kinetika elektrodové reakce 1 Elektrochemie Elektrochemické reakce - využívají jako reaktant elektron rychlost přísunu reaktantu - elektrického proudu oxidační/redukční síly - potenciálu (napětí) Elektroseparační procesy - využívají elektrické pole jako hnací sílu Prostorové oddělení elektrodových reakcí umožňuje uskutečnit reakce jinak obtížně realizovatelné nebo nerealizovatelné. 1
2 Základní pojmy Elektroda - z technologického hlediska se jedná o kus elektricky vodivého materiálu (ve vhodném tvaru) na kterém probíhá elektrodová reakce (přenos náboje do elektrolytu) Anoda - elektroda na které probíhá oxidace Katoda - elektroda na které probíhá redukce Elektrolyzér - reaktor ve kterém pomocí vloženého napětí probíhají elektrochemické reakce Galvanický článek - reaktor ve kterém probíhající elektrochemické reakce generují elektrickou energii Elektrolyt - iontově vodivé prostředí. Převážně roztoky obsahující disociované ionty. 3 Oblasti uplatnění Chlor-Alkalický průmysl Vylučování kovů Výroba organických a anorganických látek Recyklace Separace a zpracování odpadů Dezinfekce a rozklad toxických odpadů Čištění kontaminovaných půd Zdroj elektrické energie Elektroanalytika 4
3 Velikost procesů F. C.Walsh, Pure Appl. Chem., Vol. 73, No. 1, pp , Elektrochemická reakce Reakce, kde jako reaktant nebo produkt vystupuje elektron a A + n e - = m M Reakci nelze provozovat samostatně, ale vždy ve spojení s reakcí na druhé elektrodě. b B = z Z + n e - celkově tedy probíhá v systému reakce aa + b B = mm + zz Elektrodové reakce však probíhají na prostorově oddělených elektrodách v tzv. poločláncích. 6 3
4 Elektrochemická reakce Baterie z Bagdádu 000 př.n.l. 7 Mechanismus elektrodové reakce průběh elektrodové reakce je ovlivněnřadou dílčích kroků transport k elektrodě adsorpce na povrch elektrody reakce na elektrodě desorpce produktu z povrchu transport od elektrody více-elektronové rekce jsou málo pravděpodobné a zpravidla jsou tvořeny několika následnými reakcemi NO H O + 5 e - = 1/ N + 6 OH N N H 3 N H 4 N H O H N N O N O N O - N O 4 N O N O alka lické prostředí 8 4
5 Základní vztahy Elektrodová reakce reakce jako každá jiná tj. lze vypočítat množství zreagované látky, energii uvolněnou nebo spotřebovanou systémem za daných podmínek,řád reakce, atd. Faradayův zákon vztah mezi elektrickým nábojem a množstvím zreagované látky Rovnovážná konstanta stav systému v rovnováze Gibbsova energie zda žádoucí proces bude uvolňovat energii nebo ji spotřebovávat a kolik Nernstova rovnice výpočet potenciálu elektrody Přepětí míra ireverzibility reakce, kinetika elektrodové reakce 9 Polarizační křivka polarizační křivka závislost proudu na napětí vypovídá o průběhu dějů na elektrodě v daném systému Pt v 0.5M HSO4,.0E E-05 Reverzibilní děj I [A] 0.0E E-05 Polarografický záznam -.0E E E-05 E [V] Pt elektroda v H SO
6 Elektrodový potenciál Galvaniho potenciál práce potřebná k přenesení jednotkového kladného náboje z nekonečné vzdálenosti do nitra dané fáze. Prakticky neměřitelná veličina Obecně měříme rozdíl potenciálů mezi elektrodami Srovnávací (referenční) elektroda elektroda o známém konstantním potenciálu nejčastěji elektrody druhého druhu. (kalomelová, merkurosulfátová, Ag/AgCl) uzančně byla zavedena soustava redukčních elektrodových potenciálů vztažená ke zvolené elektrodě: Vodíková elektroda Elektrodový děj: + H ( aq) + e H ( g) Standardní elektrodový potenciál vodíkové elektrody ve standardním stavu (p(h )= 101,3 kpa, a(h + )=1) je podle dohody roven nule. 11 Faradayův zákon Výpočet množství vyloučené/spotřebované látky m hmotnost [g] Q prošlý náboj [C] q náboj elektronu = 1.60 x C n počet elektronů F Faradayova konstanta 96485,3 C/mol M molární hmotnost [g/mol] N A Avogadrova konstanta 6,0 x 10 3 t čas [s] Příklad: vypočítejte objem a hmotnost vyloučeného Cl po dobu 1h při celkovém proudovém zatížení 10 ka, tlaku 101,3 kpa a teploty 5 0 C. Proudová účinnost je 95 %. Mr (Cl ) = 70,9 g/mol Q = I t = * 3600 = 3, C Q(Cl ) = 3, * 0,95 = 3, C n(cl ) = 3, /(96485 * ) = 177,3 mol V = n R T / p = 177,3 * 8,314 * 98 / 101, = 4,3346 m 3 m = n*m = 177,3 * 70,9 = 1565,5 g = 1,5655 kg 1 6
7 Nernstova rovnice Výpočet elektrodového potenciálu E = E o r RT nf a ln a νp p νr r obecně jsou tabelovány standardní elektrodové potenciály v redukčním směru Příklad: vypočítejte potenciál vodíkové elektrody v roztoku HCl ph=1, tlaku H 99,8 kpa a teploty 5 0 C. Elektrodový děj: + H ( aq) + e H ( g) 0 RT ah E = E ln F ( a ) + H a(h + ) = 10 -ph = 10-1 = 0,1 a(h ) = p(h )/f std = 99,8/101,3 = 0,985 E = 0 (8,314* 98)/(*96500) * ln(0,985/0,1 ) = - 0,0589 V 13 Nernstova rovnice II Výpočet potenciálu/napětí sytému při výpočtu napětí na elektrolyzéru resp. potenciálu glavanického článku lze počítat se součtem potenciálu elektrod, kdy anoda je počítána v oxidačním směru a katoda v redukčním. v praxi je výhodnější počítat potenciál obou elektrod v redukčním směru a rozdíl potenciálů odpovídá výslednému potenciálu/napětí E celk = E kat E and U elz = - E celk Příklad: vypočítejte potřebné napětí na elektrolyzéru pro elektrolýzu HCl, v systému uvedeném v předchozím příkladu. Cl (g) + e - = Cl - E o = V E(H + /H ) = - 0,0589 V E(Cl /Cl - ) = E o RT/nF ln(a(cl - ) /a(cl )) E (Cl /Cl - ) = 1,358 (8,314* 98)/(*96500) * ln(0,1 /0,985) = V E celk = E kat E and = - 0, = V U elz = - E celk = V 14 7
8 Význam reakce na protielektrodě Energetická náročnost elektrochemických procesů je vzhledem k vysokým proudům v řádu až 100 ka obrovská. Pokud se podaří snížit napětí na elektrolyzéru již o 0,1V je úspora energie značná. Výroba Cl elektrolýzou HCl. Nahrazením reakce na katodě je třeba k výrobě 1 t Cl 1000 kwh místo původních 1700 kwh. E o (H + /H )= 0,000V; E o (O /H O)= 1,9V; E o (Cl /Cl - )= 1.358V 15 Význam reakce v galvanotechnice Vhodnou volbou elektrochemických reakcí lze docílit vylučování slitin např. bronze nebo mosazi Cu + + e = Cu E o = 0,337 V Sn + + e = Sn E o = - 0,140 V Zn + + e = Zn E o = - 0,736 V Sn(OH) 6 + e - = HSnO + 3 OH + H O HSnO + H O + e - = Sn + 3 OH E o = V E o = 0.93 V 16 8
9 Kinetika elektrodové reakce rychlost elektrochemické reakce je závislá na mnoha parametrech materiál elektrody, složení elektrolytu, teplota aj. Přepětí rozdíl mezi potenciálem v rovnováze a potenciálem v případě proudového zatížení η = E( j ) E r proudová hustota (rychlost elektrodové reakce) je exponenciálně závislá na přepětí Anoda definičně kladné přepětí j / A m E r E / V vs. E r 17 Druhy přepětí podleřídícího děje rozlišujeme přepětí: aktivační (přenosové) řídícím dějem je přenos elektronu mezi elektrodou a iontem koncentrační (difúzní) řídícím dějem je transport látky k povrchu elektrody dále může být limitující děj předřazená rakce v roztoku nebo chemická reakce na povrchu elektrody 18 9
10 Tafelova rovnice Tafelova rovnice výpočet aktivačního přepětí platí v případě velké odchylky od rovnovážného stavu η = a + b log j a, b jsou konstanty (určitelné experimentálně) 19 Příklad: Vypočítejte velikost napětí na anodě, na které dochází vylučování chloru při proudové hustotě j = 60 A/dm a teplotě = 70 ºC. Aktivitní koeficienty Cl - i Cl jsou rovny jedné (a(cl - ) = 1, a(cl ) = 1). Koncentrace chloridových iontů je c(cl - ) = 1mol/L. Vylučování probíhá za tlaku 760 mm Hg. 1) na grafitu - Tafelova rovnice při 70 ºC j = [A/cm ] η = 0,6 0,1 log j ) na ATA Tafelova rovnice Kinetika elektrodové reakce η 0 E Cl = 1, 3595 de dt Cl Cl + Cl = 0, + V = - 0,389 mv/k 0,06 log j j = [A/cm ] při 5 ºC ph O = 33 mm Hg 0 10
11 Kinetika elektrodové reakce Elektrodová reakce Cl + e - = Cl - Rovnovážný potenciál anody z Nernstovy rovnice ( 70 5) = 1,3595 0,0175 1, V 0 3 E = 1,3595 0, = p ph O acl = γ a Cl = = 0, p0 0 E = E r E RT nf de dt a ln a Cl Cl ( T ) = E 1 T 8,314 (73, ) 1 3 r E = 1,34 ln = 1,34 5,4 10 = 1, ,693 Přepětí na grafitu 60 A/dm = 0,6 A/cm E = r E + η Cl Přepětí na ATA ηcl = 0,6 + 0,1 log 0,6 = 0,6 0,07 = 0, 573 E = 1, ,573 = 1, 91V ηcl = 0, + 0,06 log0,6 = 0, 0,0008 0, 199 V = E = 1, ,199 = 1, 536V V V 1 Koncentrační přepětí koncentrační (difúzní) řídícím dějem je transport látky k povrchu elektrody J c D δ = 0 N c s 6 3 c τ c 0 0 j / A m η / V c s δ N 11
12 Význam přepětí galvanotechnika Přidáváním složek zvyšujícím přepětí a omezujícím transport je dosaženo kvalitního pokovení (tvorby homogenního povrchu). Polarization curve for the potentiostatic deposition of copper. (a) Overpotential; 00 mv, deposition time: 6 hours; (b) Overpotential: 300 mv, deposition time: 5 hours; (c) Overpotential: 700 mv, deposition time: min. 3 Význam přepětí při výrobě Cl Elektrolýza NaCl využívá přepětí na elektrodách pomocí přepětí na O lze na anodě vylučovat Cl pomocí přepětí na vývoj H lze vylučovat amalgám na katodě E o (O /H O)= 1,9 V E o (Cl /Cl - )= V polarizační křivky u amalgámové elektrolýzy 4 1
13 Přepětí u elektrochem. zdrojů energie baterie, akumulátory, palivové články je zřejmé, že je nutné pro nabíjení použít větší napětí než je rovnovážné a při vybíjení je vlivem přepětí napětí na článku nižší než rovnovážné. tj. energii získáme zpět se ztrátou 5 Otázky ke zkoušce Základní pojmy v elektrochemii Mechanismus elektrodové reakce Elektrodový potenciál Nernstova rovnice Faradayův zákon Přepětí, druhy Význam přepětí v průmyslu 6 13
12. Elektrochemie základní pojmy
Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál
Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku
Oxidace a redukce Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe + 3 CO CuO + H 2 Cu + H 2 O 1 Oxidace a redukce Širší pojem oxidace
Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2
Oxidace a redukce Objev kyslíku nový prvek, vyvrácení flogistonové teorie Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Lavoisier Redukce = odebrání kyslíku Fe 2 O 3 + 3 C 2 Fe
Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2
Oxidace a redukce Objev kyslíku nový prvek, vyvrácení flogistonové teorie Hoření = slučování s kyslíkem = oxidace 2 Mg + O 2 2 MgO S + O 2 SO 2 Antoine Lavoisier (1743-1794) Redukce = odebrání kyslíku
Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au
Řada elektrochemických potenciálů (Beketova řada) v níž je napětí mezi dvojicí kovů tím větší, čím větší je jejich vzdálenost v této řadě. Prvek více vlevo vytěsní z roztoku kov nacházející se vpravo od
Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti
Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Cíl práce: Cílem laboratorní úlohy Elektrochemické metody stanovení korozní rychlosti je stanovení korozní rychlosti oceli v prostředí
3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE
3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE (Elektrochemické články kinetické aspekty) Nerovnovážné elektrodové děje = děje probíhající na elektrodách při průchodu proudu. 3.1. Polarizace Pojem polarizace se používá
= vědní disciplína zabývající se ději a rovnováhami v soustavách, ve kterých se vyskytují elektricky nabité částice
Otázka: Elektrochemie Předmět: Chemie Přidal(a): j. Elektrochemie = vědní disciplína zabývající se ději a rovnováhami v soustavách, ve kterých se vyskytují elektricky nabité částice Př. soustav s el. nábojem
Elektrolýza. (procesy v elektrolytických článcích) ch) Základní pojmy a představy z elektrolýzy. V rovnováze E = 0 (I = 0)
Elektrolýza (procesy v elektrolytických článcích) ch) V rovnováze Základní pojmy a představy z elektrolýzy E = (I = ) Ag Ag + ϕ Ag Ag E RT F r = E + + ln aag + Ag / Ag roztok AgNO 3 Po připojení zdroje
Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály
Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemie rovnováhy a děje v soustavách nesoucích elektrický náboj Krystal kovu ponořený do destilované vody + +
Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)
Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením
GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.
GALAVANICKÝ ČLÁNEK V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek. Galvanický článek je zařízení, které využívá redoxní reakce jako zdroj energie. Je zdrojem
Na www.studijni-svet.cz zaslal(a): Téra2507. Elektrochemické metody
Na www.studijni-svet.cz zaslal(a): Téra2507 Elektrochemické metody Elektrolýza Do roztoku elektrolytu ponoříme dvě elektrody a vložíme na ně dostatečně velké vnější stejnosměrné napětí. Roztok elektrolytu
Inovace profesní přípravy budoucích učitelů chemie
Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný
Stanovení korozní rychlosti elektrochemickými polarizačními metodami
Stanovení korozní rychlosti elektrochemickými polarizačními metodami Úvod Měření polarizačního odporu Dílčí děje elektrochemického korozního procesu anodická oxidace kovu a katodická redukce složky prostředí
Elektrochemie. Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky)
Elektrochemie 1 Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky) Vodièe: I. tøídy { vodivost zpùsobena pohybem elektronù uvnitø
KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV
KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV Přednáška č. 02: Elektrochemická koroze Autor přednášky: Ing. Vladimír NOSEK Pracoviště: TUL FS, Katedra materiálu Elektrochemická koroze Elektrochemická koroze probíhá
U = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno
Voltametrie a polarografie Princip. Do roztoku vzorku (elektrolytu) jsou ponořeny dvě elektrody (na rozdíl od potenciometrie prochází obvodem el. proud) - je vytvořen elektrochemický článek. Na elektrody
ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR
ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR Elektrochemie: chemické reakce vyvolané elektrickým proudem a naopak vznik elektrického proudu z chemických reakcí Historie: L. Galvani - žabí
[ ] d[ Y] rychlost REAKČNÍ KINETIKA X Y
REAKČNÍ KINETIKA Faktory ovlivňující rychlost chemických reakcí Chemická povaha reaktantů - reaktivita Fyzikální stav reaktantů homogenní vs. heterogenní reakce Teplota 10 C zvýšení rychlosti 2x 3x zýšení
Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KONTROLNÍ TEST ŠKOLNÍHO KOLA kategorie C. ZADÁNÍ: 60 BODŮ časová náročnost: 120 minut
Ústřední komise Chemické olympiády 53. ročník 2016/2017 KONTROLNÍ TEST ŠKOLNÍHO KOLA kategorie C ZADÁNÍ: 60 BODŮ časová náročnost: 120 minut Zadání kontrolního testu školního kola ChO kat. A a E Úloha
Elektrody pro snímání biologických potenciálů. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů
Elektrody pro snímání biologických potenciálů X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Spojení elektroda elektrolyt organismus vodič 2. třídy (ionty) přívodní
Elektrolytické vylučování mědi (galvanoplastika)
Elektrolytické vylučování mědi (galvanoplastika) 1. Úvod Často se setkáváme s požadavkem na zhotovení kopie uměleckého nebo muzejního sbírkového předmětu. Jednou z možností je použití galvanoplastické
ELEKTRICKÝ PROUD V KAPALINÁCH
ELEKTRICKÝ PROUD V KPLINÁCH 1. Elektrolyt a elektrolýza elektrolyt kapalina, která může vést elektrický proud (musí obsahovat ionty kyselin, zásad nebo solí - rozpuštěné nebo roztavené) elektrolýza proces,
ELEKTROCHEMIE. - studuje soustavy, které obsahují elektricky nabité částice.
ELEKTROCHEMIE - studuje soustavy, které obsahují elektricky nabité částice. ZÁKLADNÍ POJMY Vodiče látky, které vedou elektrický proud. Vodiče I. třídy přenos elektrického náboje je zprostředkován volně
Elektrolyty. Disociace termická disociace (pomocí zvýšené teploty) elektrolytická disociace (pomocí polárního rozpouštědla)
Elektrolyty Elektrolyty látky, které při rozpouštění nebo tavení disociují (štěpí se) na elektricky nabité částice (ionty) jejich roztoky a taveniny jsou elektricky vodivé kyseliny, hydroxidy, soli Ionty
Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.
ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje. Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka, Tomáš Navrátil
Elektrický proud v kapalinách
Elektrický proud v kapalinách Kovy obsahují volné (valenční) elektrony a ty způsobují el. proud. Látka se chemicky nemění (vodiče 1. třídy). V polovodičích volné náboje připravíme uměle (teplota, příměsi,
Sekundární elektrochemické články
Sekundární elektrochemické články méně odborně se jim říká také akumulátory všechny elektrochemické reakce jsou vratné (ideálně na 100%) řeší problém ekonomický (vícenásobné použití snižuje náklady) řeší
Elektrody pro snímání biologických potenciálů. A6M31LET Lékařská technika Jan Havlík Katedra teorie obvodů
Elektrody pro snímání biologických potenciálů A6M31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektroda rozhraní dvou světů elektroda je součástí rozhraní dvou světů světa
Ú L O H Y
Ú L O H Y 1. Vylučování kovů - Faradayův zákon; Př. 8.1 Stejný náboj, 5789 C, projde při elektrolýze každým z roztoků těchto solí: (a) AgNO 3, (b) CuSO 4, (c) Na 2 SO 4, (d) Al(NO 3 ) 3, (e) Al 2 (SO 4
Elektrochemické metody
Elektrochemické metody Konduktometrie Coulometrie Potenciometrie, Iontově selektivní elektrody (ISE) Voltametrie (Ampérometrie, Polarografie) Biosenzory Petr Breinek Elektrochemie_N2012 Elektrochemie Elektrochemie
7. Elektrolýza. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod:
7. Elektrolýza Úkoly měření: 1. Sestavte obvod, prověřte a znázorněte průběh ekvipotenciálních hladin a siločar elektrostatického pole mezi dvojicí elektrod. Zakreslete vektory intenzity. 2. Sestavte obvod
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
Složení soustav (roztoky, koncentrace látkového množství)
VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice
Hmotnost atomů a molekul 6 Látkové množství 11. Rozdělení směsí 16 Separační metody 20. Hustota, hmotnostní a objemový zlomek 25.
Obsah Obecná chemie II. 1. Látkové množství Hmotnost atomů a molekul 6 Látkové množství 11 2. Směsi Rozdělení směsí 16 Separační metody 20 3. Chemické výpočty Hustota, hmotnostní a objemový zlomek 25 Koncentrace
E ŘEŠENÍ KONTROLNÍHO TESTU ŠKOLNÍHO KOLA
Ústřední komise Chemické olympiády 48. ročník 2011/2012 ŠKOLNÍ KOLO kategorie A a E ŘEŠENÍ KONTROLNÍ TESTU ŠKOLNÍ KOLA KONTROLNÍ TEST ŠKOLNÍ KOLA (60 BODŮ) ANORGANICKÁ CEMIE 16 BODŮ Úloha 1 8 bodů Napište
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
Gymnázium Jiřího Ortena, Kutná Hora. Pojmy Metody a formy Poznámky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie, anorganická chemie 2. ročník a sexta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný
ELEKTROLÝZA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 13. 3. 2012. Ročník: osmý
Autor: Mgr. Stanislava Bubíková ELEKTROLÝZA Datum (období) tvorby: 13. 3. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí s elektrolýzou. V rámci
MitoSeminář II: Trochu výpočtů v bioenergetice. Souhrn. MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK
MitoSeminář II: Trochu výpočtů v bioenergetice MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK (se zahrnutím cenných připomínek, kterými přispěl prof. MUDr. Jiří Kraml, DrSc.) 1 Dýchacířet etězec
Sešit pro laboratorní práci z chemie
Sešit pro laboratorní práci z chemie téma: Galvanické pokovování a reakce kovů autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační
Elektrický proud v kapalinách
Elektrický proud v kapalinách Elektrické vlastnosti kapalin Čisté kapaliny omezíme se na vodu jsou poměrně dobrými izolanty. Když však ve vodě rozpustíme sůl, kyselinu anebo zásadu, získáme tzv. elektrolyt,
Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013
Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Seminář chemie (SCH) Náplň: Obecná chemie, anorganická chemie, chemické výpočty, základy analytické chemie Třída: 3. ročník a septima Počet hodin: 2 hodiny týdně Pomůcky: Vybavení odborné učebny,
Elektrický proud v elektrolytech
Elektrolytický vodič Elektrický proud v elektrolytech Vezěe nádobu s destilovanou vodou (ta nevede el. proud) a vlože do ní dvě elektrody, které připojíe do zdroje stejnosěrného napětí. Do vody nasypee
kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]
KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace
Číslo projektu Číslo materiálu Název školy Autor Průřezové téma Tematický celek CZ.1.07/1.5.00/34.0565 VY_32_INOVACE_356_Kovy Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková
Elektrochemické reaktory
Elektrochemické reaktory Prostor, kde dochází k přeměně elektrické energie na chemickou a naopak. Materiál a uspořádání reaktoru Materiál a tvar elektrod Separátory Přenos hmoty Rozložení napětí Zapojení
Elektrochemie. Elektrochemie v ochraně životního prostředí. Základní pojmy. Výhody. Možnosti využití elektrochemie
Elektrochemie v ochraně životního prostředí Elektrochemie Historie Využití elektrochemie k úpravě vody navrženo již 1889 v UK Elektrokoagulace - patentována 1904 Z důvodu vysoké ceny el. energie - elektrochemické
Elektrochemická redukce korozních produktů na stříbře a jeho slitinách
E (V) / ACLE Elektrochemická redukce korozních produktů na stříbře a jeho slitinách (Využití metody pro určování agresivity prostředí ve výstavních prostorách a depozitářích) Úvod Vyhodnocení agresivity
PROTOLYTICKÉ ROVNOVÁHY
PROTOLYTICKÉ ROVNOVÁHY Protolytické rovnováhy - úvod Obecná chemická reakce a A + b B c C + d D Veličina Symbol, jednotka Definice rovnovážná konstanta reakce K K = ac C a d D a a A a b B aktivita a a
AKUMULÁTORY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 15. 3. 2012. Ročník: devátý
Autor: Mgr. Stanislava Bubíková AKUMULÁTORY Datum (období) tvorby: 15. 3. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce 1 Anotace: Žáci se seznámí se zdroji elektrického
Solární dům. Vybrané experimenty
Solární dům Vybrané experimenty 1. Závislost U a I na úhlu osvitu stolní lampa, multimetr a) Zapojíme články sériově. b) Na výstup připojíme multimetr. c) Lampou budeme články nasvěcovat pod proměnlivým
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.
CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu
Úlohy: 1) Vypočítejte tepelné zabarvení dané reakce z následujících dat: C 2 H 4(g) + H 2(g) C 2 H 6(g)
Úlohy: 1) Vypočítejte tepelné zabarvení dané reakce z následujících dat: C 2 H 4(g) + H 2(g) C 2 H 6(g) C 2 H 4(g) + 3O 2(g ) 2CO 2(g) +2H 2 O (l) H 0 298,15 = -1410,9kJ.mol -1 2C 2 H 6(g) + 7O 2(g) 4CO
Energie v chemických reakcích
Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění
Ústřední komise Chemické olympiády. 55. ročník 2018/2019 TEST ŠKOLNÍHO KOLA. Kategorie E ŘEŠENÍ
Ústřední komise Chemické olympiády 55. ročník 2018/2019 TEST ŠKOLNÍHO KOLA Kategorie E ŘEŠENÍ ANORGANICKÁ CHEMIE 16 BODŮ Úloha 1 Vlastnosti sloučenin manganu a chromu 8 bodů 1) Elektronová konfigurace:
Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce
Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její
Elektrochemie. 2. Elektrodový potenciál
Elektrochemie 1. Poločlánky Ponoříme-li kov do roztoku jeho solí mohou nastav dva různé děje: a. Do roztoku se z kovu uvolňují kationty (obr. a), na elektrodě vzniká převaha elektronů. Elektroda se tedy
Oxidačně-redukční reakce (Redoxní reakce)
Seminář z nlytické chemie idčně-redukční rekce (Redoxní rekce) RNDr. R. Čbl, Dr. Univerzit Krlov v Prze Přírodovědecká fkult Ktedr nlytické chemie Definice pojmů idce částice (tom, molekul, ion) ztrácí
ELEKTROCHEMIE. Danielův článek e
ELEKTROCHEMIE Při reakcích v elektrochemických soustavách vzniká nebo se spotřebovává elektrická energie. Praktické aplikace elektrochemie: 1. Využití elektrochemických soustav jako zdroje elektrické energie
Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha
Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Oxidace a redukce jsou chemické reakce spojené s výměnou elektronů. Při oxidaci látka elektrony uvolňuje a její oxidační číslo se zvyšuje.
N A = 6,023 10 23 mol -1
Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,
test zápočet průměr známka
Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte
Atomistická teorie (Dalton, 1803)
Atomistická teorie (Dalton, 1803) Zákon stálých poměrů slučovacích: hmotnosti prvků tvořících čistou látku jsou k sobě vždy ve stejném poměru, bez ohledu na to jakým způsobem látka vznikla. Některé prvky
PDF vytvořeno zkušební verzí pdffactory Pro
Elektrolýza neutrálních vodných roztoků NaCl a KCl Úvod: Elektrolýza je rozklad elektrolytů stejnosměrným elektrickým proudem. Na katodě probíhá katodická redukce, na anodě anodická oxidace. Úkol: 1) Stanovit
Optimalizace procesu přípravy elektrolytu pro vanadovou redoxní průtočnou baterii
Úspěšně obhájeno 2. 6. 2014 na Ústavu chemického inženýrství VŠCHT Praha Optimalizace procesu přípravy elektrolytu pro vanadovou redoxní průtočnou baterii Autor Jiří Vrána Školitel Juraj Kosek Konzultanti
Automatická potenciometrická titrace Klinická a toxikologická analýza Chemie životního prostředí Geologické obory
Automatická potenciometrická titrace Klinická a toxikologická analýza Chemie životního prostředí Geologické obory Titrace je spolehlivý a celkem nenáročný postup, jak zjistit koncentraci analytu, její
Chemie - 5. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.
očekávané výstupy RVP témata / učivo Chemie - 5. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.2., 2.1., 2.2., 2.4., 3.3. 1. Přeměny chemických soustav chemická
OPTIMALIZACE CHEMICKY PODPOROVANÝCH METOD IN SITU REDUKTIVNÍ DEHALOGENACE CHLOROVANÝCH ETHYLENŮ.
OPTIMALIZACE CHEMICKY PODPOROVANÝCH METOD IN SITU REDUKTIVNÍ DEHALOGENACE CHLOROVANÝCH ETHYLENŮ. Jaroslav Hrabal, MEGA a.s., Drahobejlova 1452/54, 190 00 Praha 9 e-mail: audity@mega.cz Něco na úvod Boj
Konduktometrie. Potenciometrie, Iontově selektivní elektrody (ISE) Voltametrie (Ampérometrie, Polarografie)
Elektrochemické metody Konduktometrie Coulometrie Potenciometrie, Iontově selektivní elektrody (ISE) Voltametrie (Ampérometrie, Polarografie) Biosenzory Petr Breinek Elektrochemie-I 2012 Elektrochemie
Biosenzory Ondřej Wiewiorka
Elektrochemické analytické metody Základy elektrochemie Potenciometrie Voltametrie a Polarografie Amperometrie Coulometrie Konduktometrie Biosenzory Ondřej Wiewiorka Co je to elektroanalýza? Elektrochemie
Hlavní parametry přírodního prostředí ph a Eh
Hlavní parametry přírodního prostředí ph a Eh Stabilita prostředí je určována: ph kyselost prostředí regulace: karbonátový systém, výměnné reakce jílových minerálů rezervoáry: kyselost CO 2 v atmosféře,
Chemické výpočty I. Vladimíra Kvasnicová
Chemické výpočty I Vladimíra Kvasnicová 1) Vyjadřování koncentrace molarita procentuální koncentrace převod jednotek 2) Osmotický tlak, osmolarita Základní pojmy koncentrace = množství rozpuštěné látky
Ústřední komise Chemické olympiády. 47. ročník 2010/2011. OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH
Ústřední koise Cheické olypiády 47. ročník 010/011 OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH Řešení okresního kola ChO kat. D 010/011 TEORETICKÁ ČÁST (70 BODŮ) Úloha 1 Palivo budoucnosti 5 bodů 1.
Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6
3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně
řada potenciálů kovů, Nernstova rovnice 2)Článek spojení dvou poločlánků (nejprve ve standardním stavu),
Koroze kovů 1)kov v roztoku vlastní soli Rovnovážný potenciál, měření proti něčemu, vodíková elektroda!, solný můstek, řada potenciálů kovů, Nernstova rovnice 2)Článek spojení dvou poločlánků (nejprve
Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.
ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje. Praktické cvičení z lékařské biochemie Všeobecné lékařství Martin Vejražka 2018/19
Laboratoř vodíkových a membránových technologií. Laboratorní práce. Experimentální stanovení charakteristik palivového článku
Laboratorní práce Experimentální stanovení charakteristik palivového článku Úvod Palivový článek je jedním z elektrochemických membránových reaktorů, ve kterých dochází k přímé přeměně chemické energie
Rychlost chemické reakce A B. time. rychlost = - [A] t. [B] t. rychlost = Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C;
Rychlost chemické reakce A B time rychlost = - [A] t rychlost = [B] t Reakční rychlost a stechiometrie A + B C; R C = R A = R B A + 2B 3C; 1 1 R A = RB = R 2 3 C Př.: Určete rychlost rozkladu HI v následující
T03 Voda v anorganické chemii e-learning pro žáky
T03 Voda v anorganické chemii e-learning pro žáky Elektrochemie Protože redoxní reakce jsou děje spojené s přenosem elektronů z redukčního činidla, které elektrony odevzdává, na oxidační činidlo, které