Obnovitelné zdroje energie
|
|
- Drahomíra Pavlíková
- před 8 lety
- Počet zobrazení:
Transkript
1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Tepelné čerpadlo Tepelné čerpadlo je stroj, který čerpá teplo z jednoho místa na jiné vynaložením vnější práce. Obvykle je to z chladnějšího místa na teplejší. Použití: Chladící stroje Zdroje tepla Tepelný stroj, umožňující využití nízkopotenciálníhotepla okolí pro energetické systémy budov. 2. termodynamický zákon Určuje směr, kterým probíhají přirozené procesy Žádný tepelný stroj pracující mezi dvěma teplotami nemůže mít vyšší účinnost než Carnotůvstroj pracující mezi stejnými teplotami. Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. 2 1
2 Typy tepelných čerpadel Tepelné čerpadlo Absorpční tepelná čerpadla pracují bez kompresoru, méně nehlučná, nutný zdroj tepla (spalování paliva, solární energie) Sorpční oběh (absorpce = pohlcování uvnitř dané látky např. plynů v kapalině, adsorpce = pohlcování na povrchu látky) Kompresorová tepelná čerpadla Parní oběh nejběžnější systém pohon zajišťuje kompresor Elektrická elektrický motor oddělený -kompaktní Plynová plynový motor -turbína 3 Kompresorové tepelné čerpadlo Základní části tepelného čerpadla výparník kompresor kondenzátor expanzní ventil teploty a tlaky primárního okruhu Vlastnosti: Kompresor Výparník Kondenzátor Expanzní ventil (elektronický, termostatický) 4 2
3 Tepelné čerpadlo Pracovní diagramy tepelného čerpadla P-V diagram (tlak-objem) T-S diagram (teplota-entropie) Kompresorové tepelné čerpadlo TČ s pístovými kompresory -levnější, hlučnější, nižší topný faktor. Životnost 15 let. TČ se spirálovými kompresory Scroll -dražší, nejlepší topný faktor, nejpoužívanější typ. Životnost kompresoru Scroll min. 20 let. TČ se šroubovými kompresory
4 Absorpční tepelné čerpadlo V absorpčním oběhu koluje chladivo a absorpční látka Páry chladiva odcházející z výparníku jsou absorbovány v absorbéru do kapalné absorpční látky za současného uvolnění absorpčního tepla. Vzniklá kapalná směs je čerpadlem dopravena do části oběhu s vyšším pracovním tlakem. Po zvýšení teploty směsi jsou páry chladiva v desorbéru vypuzeny z absorpční kapaliny. 7 Chladiva HFC -(fluorované uhlovodíky) nazývané také jako F-plyny byly vyvinuty jako náhrada za chladiva poškozující ozonovou vrstvu. CFC -(tvrdé freony) -R12, R502, HCFC (hydrochlorofluorouhlovodíky)-tzv. měkké freony zákaz používání pro údržbu a servis zákaz používání zařízení) 8 4
5 Carnotův cyklus a účinnost Chladící faktor pro chladící zařízení Topný faktor pro tepelná čerpadla 9 Carnotův cyklus Teoretický nereálný cyklus Nezohledňuje řadu důležitých vlastností pracovní látku, teplosměnné plochy, tepelné ztráty Skutečný topný faktor je nižší řádově o 50-60% Reálný provoz tepelného čerpadla Podchlazení chladiva - Výhodné pro správnou funkci expanzního ventilu - Zvyšuje se topný faktor
6 R407c T-h diagram 11 Tepelné výměníky Kapalinový výměník Předávání tepla Deskový výměník - složený z tenkých kovových destiček Trubkový žebrovaný výměník zásobníky Vzduchový výměník Trubkový výměník
7 Topný faktor Tepelné čerpadlo Vyjadřuje poměr dodaného tepla k množství spotřebované energie (2-5). Q E množství tepla, které TČ vyrobí (kwh) množství energie spotřebované na provoz TČ (kwh) 13 Trocha teorie.. COSP-CoefficientofSystemPerformance SEER-SystemEnergyEfficiencyRatio Charakteristika celého vytápěcího/chladícího systému SPF SeasonalParformanceFactor Provozní topný faktor (reálný, vhodný pro výpočet ekonomiky provozu) Dle podmínek na primární i sekundární straně TČ. Čím vyšší je teplota prostředí, ze kterého je teplo odebíráno a čím nižší je teplota soustavy, do které je teplo odevzdáváno, tím vyšší má TČ topný faktor. Díky vyššímu topnému faktoru u TČ země-voda než vzduch-voda má toto řešení cca o 20% nižší spotřebu elektrické energie. SPF pro RD (Německo): Země voda SPF=3,9 Vzduch voda SPF=2,8 14 7
8 Regulace výkonu Inverter frekvenční měnič otáček Regulace výkonu kompresoru (40-100%) Pozvolný rozběh kompresoru Pulsní regulace regulace komprese Regulace výkonu % Speciální solenoidový ventil umožňuje měnit tlak v horní části kompresoru (Scroll) přepínání-pulsy digital scroll Regulace obtokem kompresoru Regulace množstvím nasátého chladiva 15 Pracovní teploty Max. teplota získaná z TČ 55 C Pro vyšší teploty nutné zvolit jiné řešení Více okruhový systém (např.2 kompresory) Vstřikování páry do kompresoru (EVI)
9 Tepelné čerpadlo Základní požadavky kladené na zdroj energie pro TČ: dostupnost kapacita vyšší teplota Zdroj tepla Vzduch Země Spodní voda (studny) Teploty +25 až -18 C 2-10 C 8-12 C Povrchová voda (vodoteč) +18 až 0 C 17 Tepelné čerpadlo vzduch-voda Nižší cena Provozně horší COP Nutnost řešení hlučnosti ventilátoru na výparníku Provedení Samostatná venkovní a vnitřní jednotka Kompaktní provedení vnitřní Kompaktní provedení venkovní Zdroj tepla Okolní vzduch Levnější varianta, výměník vně nebo uvnitř objektu, nutné velké množství vzduchu vyšší hlučnostnároky na umístění, funkce do cca -12 C, nebezpečí namrzání výměníku. Odpadní vzduch Výhodný zdroj tepla pokud je v dostatečném množství. 18 9
10 Tepelné čerpadlo vzduch-voda Samostatná venkovní jednotka Venkovní jednotka sventilátorem je propojena svnitřní částí izolovaným potrubím, délka bývá do 10 m. Jednotka umístění střecha venkovní stěna země Umístění venkovní jednotky musí být zvoleno tak, aby hluk kompresoru a ventilátoru byl co nejmenší. Nejvhodnější umístění u objektu jižní strana Průtok vzduchu dle výkonu (např. 2000m3/h pro 6kW, 5000 pro 12kW) 19 Tepelné čerpadlo vzduch-voda Kompaktní provedení vnitřní Celé tepelné čerpadlo je umístěno ve vnitřním prostoru. Sání i výfuk vzduchu musejí být v dostatečné vzdálenosti od sebe, aby nedocházelo kmíchání vzduchu. Umístění v technickém prostoru uvnitř budovy je výhodné i s ohledem na hluk v exteriéru, umístěni však musí odpovídat dispozici budovy a umístění pobytových místností
11 Tepelné čerpadlo vzduch-voda 21 Tepelné čerpadlo vzduch-voda 22 11
12 Tepelné čerpadlo vzduch-voda Kompaktní provedení venkovní Řešení, kdy je celé tepelné čerpadlo je umístěno ve venkovním prostoru. Výhodou je, že toto zařízení nezabírá žádný vnitřní prostor a lze tu využít i hořlavá chladiva např. propan Zdroj tepla Tepelné čerpadlo země-voda soustava vrtů (hlubinný, povrchový, koaxiální) plošný zemní výměník energetické piloty 24 12
13 Tepelné čerpadlo země-voda Vrty Nutná schopnost uvrtat danou hloubku vrtu V CZ cca 20 profifirem Vývrt zeminy cca 1m3 Vrty běžně do hloubky 100m(zvládnutelné m) duplexy rozteč vrtů cca 10m, volíme zpravidla stejnou hloubku vrtů např. 2x70m Cena vrtu cca 1000Kč/m Zkouška vrtu tlaková, průtoková 25 Hlubinné vrty v průběhu životnosti vrtu dochází k úbytku potenciálu závislé na vzdálenosti vrtů, typu zeminy a odebíraném výkonu 26 13
14 Hlubinné vrty výkon vrtu závisí na typu horniny a typu sondy průměrně lze počítat s chladícím výkonem 50 W.m -1 délky vrtu při ročním době provozu 2400h vrty běžně do hloubky 130 m, rozteč vrtů cca 10m, volíme zpravidla stejnou hloubku vrtů např. 2x70m nižší tlakové ztráty důležitý vliv má voda teploty primárního okruhu -4 až 4 C (střed 0 C) Hlubinný vrt Suché podloží (sedimenty s vodivostí do 1,5 W/m.K) Měrný tepelný tok (W/m) 20 Normální podloží Pevné skalní podloží Vodou nasycené sedimenty Pevné skalní podloží (skála s vodivostí nad 3 W/m.K) 50 (max. bezpečná hodnota ) Hornina s výskytem podzemní vody až Hlubinné vrty výstroj vrtu tvarové uspořádání výměníku Jednoduché Duplexní (o cca 12% lepší) řešení spodní části výměníku kvalitní plasty (PE)-RC materiál zhlavívrtu 28 14
15 Povrchové vrty-energetické koše Vrty hloubky 5m vzdáleny 3-4 m, odstup od budovy 2m Délka sondy 3m (délka 40m, průměr 40cm) Vhodné pro malé pozemky kde není možné provést hloubkové vrty. Paralelní zapojení nebo až 3 sondy sériově. Výkon W/m (1,4kW chladícího výkonu pro 2400h) Pomalejší reakce na solární energii 29 Technologie trubka v trubce Pro vytápění i chlazení Doplňkový systém Délky: 20, 30, 40 a 50 m Koaxiální sondy 30 15
16 Tepelné čerpadlo země-voda Plošné výměníky Půda se ochlazuje tepelným výměníkem z plastového potrubí plněného nemrznoucí směsí Ochlazování půdy Výkopové práce a plocha pozemku 31 Plošné výměníky orientační chladící výkon 20W.m -2 plochy kolektoru při běžné hloubce uložení zemního výměníku 1,5m, výskyt spodní vody až 40W.m -2, velmi suchá zem 8W.m -2 nutné udělat sondu smyčky potrubí ukládané v rozteči 0,5-2m, délka m (při větší dimenzi 40 až 350m) Dimenze potrubí 25,32(Ger,Aus.), 32,40(Cz) Odstup 0,5m (dům, strom), hloubka min. 1m pokud více než 5 smyček-vhodné použít rozdělovač a sběrač cz.complexenergy.cz 32 16
17 Výkonové charakteristiky plošného výměníku Standardní plošný zemní kolektor výkony pro odběr tepla (W/m2) Suchá písčitá půda 8-15 Vlhká písčitá půda Suchá jílovitá půda Vlhká jílovitá půda Půda s protékající spodní vodou Dimenzování velikosti výměníku provádět podle doby provozu ne podle maximálního výkonu TČ. 33 Výkopové provedení plošného výměníku Plošný výměník hloubka 1,2-1,5m Velký zábor plochy, omezení z pohledu zeleně Nutné spádování pro odvzdušňování v šachtě Materiály odolné vůči poškození kvalitní PE Písek na obsyp do vlhka -suchý písek izoluje Frakce kameniva vhodné pro zásyp nelze jednoduše určit na stavbě nutné speciální potrubí
18 Tepelné čerpadlo voda-voda Povrchová voda -Vodav toku nebo rybníku, výměník ve vodě, na břehu. Pozor na teploty v zimním období. Teplota 0-18 C. Podzemní voda -Voda se odebírá ze sací studny (10-15m) a po ochlazení se vypouští do vsakovací studny (20 m) nebo vodoteče (platba stočného). Zdroj podzemní vody musí být dostatečně vydatný (přibližně l/min pro TČ s výkonem 10 kw) zkoušeno i déle než 20 dnů. Teplota 8-10 C. Ochlazení vody 4 C. Hlubinná voda, geotermální voda teploty >40 C (Teplice) Odpadní voda čistírny odpadních vod teplota C Je vodní dílo. 35 Dimenzování TČ Bod bivalence představuje bod, kdy je nutné připojit ktepelnému čerpadlu, sohledem na potřebu tepla, další zdroj (běžně 0 až -7 C) Monovalentní zdroj Vícevalentnízdroj Bivalentní Alternativně bivalentní TČ zcela vypne pod určitou teplotou 36 18
19 Dimenzování velikosti tepelného čerpadla Souvisí s typem čerpadla, dobou provozu, ekonomikou provozu Energetické parametry TČ A2W35 vzduch-voda (pro nízkoteplotní OS, pro vysokoteplotní pro -5 až -7 C) B0W35 země-voda Pozn. ČSN EN výstupní voda 35 C, vstupní voda 30 C 37 Doba provozu TČ Optimálně h/rok (má vliv na živostnost zařízení) Životnost 30tis.h (50) Výpočet: Potřeba tepla 15000kWh/rok Výkon TČ 15000/2400=6,25kW V podkladech výrobce pro A2W35 TČ o výkonu 8kW 15000/8=1875h OK 38 19
20 Běžný objem 15-30l/kW akumulátor tepla Min. doba provozu 10 min, zvýšení teploty v zásobníku o 10 C 39 Schéma provozu Reverzní tepelné čerpadlo Využití dvou expanzních ventilů a 4 cestné armatury 40 20
21 Energetické piloty Objem betonu a zeminy pod slouží jako akumulátor chladu nebo tepla. Využití stavebních pilot. Piloty o průměru 0,12-1,2m a hloubce 3-30 m. Možné použití systému přímého chlazení (bez TČ). Min. teplota-2 C (nebezpečí promrzání zeminy) 41 Geotermální energie 42 21
22 Geotermální energie Historie starověcí přírodovědci a filozofové psali o podzemním ohni Využití teplé vody pro termální lázně (starověký Řím, území Itálie, Německa, Turecka, Číny, Indonésie,..) V příbramském dole Vojtěch se poprvé na světě v roce 1873 prorubali hlouběji než 1000 m pod povrch dosahovaly teploty 50 C 1904-první využití pro výrobu elektrické energie v Itálii Teplota 38 stupňů Celsia, vydatnost pramene 800 l/s. 43 Geotermální energie Zdrojtepla: vznikplanety+rozpadradioaktivníchlátek Využití: zásobováníteplem výrobaelektřiny(ohřev >150 C) zásobníkytepla,chladu
23 Geotermální energie energie z hydrotermálních zdrojů vysoké teploty (>200 C) pro výrobu elektrické energie vulkanicky aktivní oblasti energie tepla hornin ( suché zemské teplo ) vysoké teploty (>130 C) pro výrobu elektrické energie (HDR hot dry rock) vhánění a čerpání vody energie z hydrotermálních zdrojů vyšší teploty (<150 C) pro výrobu tepla (vulkanicky aktivní i sedimentární oblasti) nejběžnější zdroje geotermální energie pro nízkoteplotní systémy (tepelná čerpadla) 45 Geotermální energie Postup využití geotermální energie Vytvoření fyzikálního/matematického modelu využívané oblasti Vytvořit předpověď využití na základě modelů a měření Stanovit správné řešení vrtů a provést jeho realizaci Čerpání energie řídit podle její dodávky (nevyčerpat geotermální reservoár) 46 23
24 Geotermální energie Hlavní sledované fyzikální veličiny tepelný tok Průměrný tepelný tok (množství tepla, které projde jednotkovou plochou na zemském povrchu) na Zemi je 60 +/- 10 mwm -2. tepelná vodivost hornin hydrogeologické parametry lokality 47 Přímé využití geotermální energie 1. Vrt 2. Hlava vrtu 3. Přívodní potrubí geotermální energie 4. Průtočný bazén 5. Vypuštění bazénu 6. Přepad 48 24
25 Nepřímé využití geotermální energie 1. Vrt 2. Hlava vrtu 3. Výměník tepla 4. Ochlazená geotermální voda pro další použití 5. Odpadní geotermální voda 6. Recipient 7. až 10 Vytápěcí systém 49 Nepřímé uzavřené využití geotermální energie 1. a 11. Vrt 2. a 10. Hlava vrtu 3. Výměník tepla 4. a 7. Odběrná místa 5. a 9. Čerpadlo 6. Výměník tepla 7. až 10 Vytápěcí systém 50 25
26 Přímé využití horké páry 1. Geotermální vrt 2. Hlavní uzávěr vrtu 3. Parní turbína 4. Generátor 51 Přímé využití horké páry s kondenzátorem 1. Geotermální vrt 2. Hlavní uzávěr vrtu 3. Parní turbína 4. Generátor 5. Kondenzátor 6. a 8. čerpadla chladícího okruhu 7. Chladící věž 9. Reinjektážní čerpadlo 52 26
27 Geotermální elektrárna Principem je využití energie páry pro výrobu elektrické energie v generátoru Geotermální energie v ČR Ústí nad Labem -využité energie pro vytápění plaveckého bazénu a zoologické zahrady (2006) Děčín výtopna pro vytápění části města (2002) Dokončeno v roce 2002 geotermální energii z vody o teplotě cca 30 C zpodzemního jezera, které se nachází pod Děčínem. Geotermální voda vyvěrá přirozeným tlakem zvrtu ohloubce 545 m a vtechnologii tepelných čerpadel se tepelný potenciál této geotermální vody využívá pro ohřátí otopné vody až na 72 C. Při maximálním výkonu je vydatnost vrtu 54 l/s. Celkové náklady 531mil. Kč vybudování centrálního kogeneračního zdroje, teplovodní sítě apředávacích stanic upřipojených odběratelů tepla -tepelná čerpadla 2x 3,28 MW t -kogenerační plynový motor 0,8 MW e /1,01 MW t -kogenerační plynový motor 1,94 MW e /2,09 MW t -plynové kotle 2x 16,5 MW t 54 27
28 Využití geotermální energie Teplejší oblasti výroba elektřiny Chladnější oblasti výroba tepla + (elektřiny) Island vytápění domů, skleníků (např. pěstování jižního ovoce), veřejných budov, bazénů, pro vyhřívání chodníků Další země, které geotermální energii ve větším využívají, jsou USA, Velká Británie, Francie, Švýcarsko, Německo a Nový Zéland. 55 Kogenerace 56 28
29 Kogenerace Kombinovanávýrobaelektrickéenergieatepla(KVET,CHP) Jedná se zpravidla opřeměnu primární energie na energii elektrickoutak,abybylomožnévyužítodpadníteplo. Podmínkou využití kogenerace je celoroční zajištění odběru tepla v blízkosti zdroje (např. příprava TV, technologie, vytápění). Umístěnízdrojů: teplárnyvblízkostiměst elektrárnyvblízkostizdrojepaliva Trigenerace-výrobatepla,chladuael.energie 57 Porovnáníspotřebenergie Kogenerace 58 29
30 Kogenerace Technologiezdrojů KVET: Parní protitlaková turbína Parní odběrová turbína Plynová turbína s rekuperací tepla Paroplynové zařízení s dodávkou tepla Spalovací pístový motor Další technologie mikroturbína, Stirlingův motor, palivový článek, parní stroj, organický Rankinův cyklus a kombinace uvedených technologií a zařízení 59 Kogenerace Parní odběrová turbína Mezi první a druhým stupněm turbíny se část páry využívá pro teplárenskéúčely.neodebranápárakondenzuje. Plynová turbína s rekuperací tepla V podstatě proudový motor s využíváním energie spalin. Lopatkový kompresor stlačuje vzduch, dochází k ohřevu spalinamiakexpanzivprostoruturbíny
31 Kogenerace Spalovacípístovémotory Motor spalující levné palivo spřeměnou mechanické práce na elektrickou energii vgenerátoru asvyužitím vznikajícího tepla. Nejběžněji využito v malých a středních kog. jednotkáchnemocnice, sportovní haly, bazény, obchodní a administrativní centra, ČOV, bioplynové stanice, okrskové kotelny. Provedení od malých 2válcových kompaktních motorů až po oddělené 18 válcové umístěné z důvodu hluku v samostatnýchprostorách. 61 Organický Rankinův cyklus -nižší otáčky turbíny umožňují přímý pohon generátoru bez převodovky minimální eroze lopatek turbíny vlivem absence kapiček pracovní látky -možnost využití energie ze zdrojů s relativně nízkou teplotou -nižší tlak a teplota v celém oběhu -vyšší životnost -nenáročnost na obsluhu -odpadá nutnost doplňování a úpravy vody (úniky a doplňování organické pracovní látky v sekundárním okruhu jsou minimální) -celkem vysoká účinnost při nižších teplotních spádech -nižší provozní náklady
32 Kogenerace Mikrokogenerace současná výroba tepla a elektřiny při vysoké účinnosti Mikrokogenerace výroba elektřiny a tepla pro oblast malých výkonů (rodinné domy,..) při nízkých emisích Technologie Stirlingůvmotor Motor s vnitřním spalováním Palivový článek
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 1 Typy tepelných
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Tepelná čerpadla 2
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. 1 Tepelná čerpadla 2 1 Tepelné čerpadlo
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Říjen 2009 Pracovní materiály pro seminář Tepelná čerpadla Vývoj Principy Moderní technická řešení Vazba na energetické systémy budov Navrhování
Požadavky tepelných čerpadel
Požadavky tepelných čerpadel na přípravu, pravu, návrh, projekt a stavební dokumentaci seminář ASPIRE v Rožnově pod Radhoštěm Ing. Tomáš Straka, Ph.D. 0 2000 4000 6000 8000 10000 12000 14000 1973 1979
TEPELNÁ ČERPADLA. Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
TEPELNÁ ČERPADLA Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Základy tepelných čerpadel 1 Venkovní (primární) okruh 2 Výstup z výparníku 3 Vstup do kondenzátoru 4 Vnitřní (sekundární
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva
Tepelnáčerpadla, pracovní látky, principy, zdroje, zapojení, příklady využití 1. Pracovní látky - chladiva Pracovní látkou tepelného čerpadla je látka, která v oběhu tepelného čerpadla přijímá teplo při
28.10.2013. Kogenerace s parním strojem. Limity parního motoru
Parní motor PM VS je objemový parní stroj sestávající z bloku motoru, válců, pístů šoupátkového rozvodu. Parní stroj je spojen s generátorem elektrické energie. Parní stroj i generátor je umístěn na společném
Obnovitelné zdroje energie
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
1. Úvod 2. Teorie tepelného čerpadla
NÁVRH TEPELNÉHO ČERPADLA PRO NÍZKOENERGETICKÝ DŮM Robin Fišer Střední průmyslová škola stavební Máchova 628, Valašské Meziříčí 1. Úvod 2. Teorie tepelného čerpadla 2.1. Proč Tepelné čerpadlo 2.2. Princip
Investice do Vaší budoucnosti. Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO TEPELNÁ ČERPADLA ekonomika provozu a dimenzování Jiří Čaloun, DiS Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím
Alternativní zdroje v bytových domech
WARMWASSER ERNEUERBARE ENERGIEN KLIMA RAUMHEIZUNG Alternativní zdroje v bytových domech Ing. Václav Helebrant Základní okruhy - Podmínky provozu pro tepelné čerpadlo - Dimenzování potrubí - Dimenzování
Energie z hlubin. Teplo z nitra země je přenášeno na povrch vodou nebo párou.
Geotermální energie Energie z hlubin Teplo z nitra země je přenášeno na povrch vodou nebo párou. Zemské teplo jako zdroj vytápění lze využít v místech geotermální anomálie, kde prostupuje k povrchu s mnohem
ALTERNATIVNÍ ZDROJE ENERGIE
ALTERNATIVNÍ ZDROJE ENERGIE Využití energie slunce Na zemský povrch dopadá průměrně 0,2 kw/m 2 V ČR dopadne na 1 m 2 přibližně 1000 kwh energie ročně Je několik možností, jak přeměnit energii slunečního
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce?
Tepelná čerpadla + solární soustavy = konkurence nebo spolupráce? Tomáš Matuška, Bořivoj Šourek Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Zdroje tepla pro tepelná čerpadla energie pocházející
NIBE TRAINING. NIBE ENERGY SYSTEMS Zásady instalace tepelných čerpadel NIBE
NIBE ENERGY SYSTEMS Zásady instalace tepelných čerpadel NIBE PPT GB 0809 NTR SERVICE F1330 NIBE TRAINING PPT GB 0809 NTR SERVICE F1330 NIBE TRAINING Tepelná čerpadla NIBE využívající tepelnou energii z
Ekonomické a ekologické efekty kogenerace
Ekonomické a ekologické efekty kogenerace Kogenerace (KVET) společná výroba elektřiny a dodávka tepla -zvyšuje využití paliva. Velká KVET teplárenství. Malá KVET - parní, plynová, paroplynová, palivové
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním
Chlazení kapalin. řada WDE. www.jdk.cz. CT120_CZ WDE (Rev.04-11)
Chlazení kapalin řada WDE www.jdk.cz CT120_CZ WDE (Rev.04-11) Technický popis WDE-S1K je řada kompaktních chladičů kapalin (chillerů) s nerezovým deskovým výparníkem a se zabudovanou akumulační nádobou
Hybridní tepelné čerpadlo co se nezalekne žádného provozu - První tepelné čerpadlo, které umí využívat tepla z okolního vzduchu i z
Tepelné čerpadlo ecogeo BASIC 3-12 kw ecogeo BASIC 5-22 kw ecogeo COMPACT 3-12 kw ecogeo COMPACT 5-22 kw Hybridní tepelné čerpadlo co se nezalekne žádného provozu - První tepelné čerpadlo, které umí využívat
Technické systémy pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Technické systémy pro pasivní domy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze PASIVNÍ DŮM - VYTÁPĚNÍ snížení potřeby tepla na vytápění na minimum
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická)
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TZ1 Vytápění Elektrická energie - výroba Situace v ČR 55% uhelné 42% jádro 3% vodní 0,1 % ostatní (vítr, fotovoltaická) Zdroje tepla - elektrické
Logafix WPL pro venkovní instalaci
Tepelná čerpadla Logafix WPL vzduch/voda pro venkovní instalaci a funkce Teplota na výstupu do soustavy max. 55 Čidlo venkovní teploty a čidlo zpátečky v rozsahu dodávky Opláštění optimálně řešené z hlediska
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM
DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM 184 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla
teplou vodou. Typ BWC pojistnou skupinou Typ WW & tepelné čerpadlo voda/voda & 8,0 až 21,6 kw
.1 Popis výrobku Tepelná čerpadla s elektrickým pohonem pro vytápění a bivalentní ohřev pitné vody v monovalentních, monoenergetických nebo v bivalentních způsobech provozu. Tepelná čerpadla země/voda
Buderus Tepelná čerpadla vzduch/voda splitové provedení. Logatherm WPLS.2. Všestranné využití obnovitelné energie. Teplo je náš živel
Buderus Tepelná čerpadla vzduch/voda ogatherm WPS.2 Všestranné využití obnovitelné energie Teplo je náš živel Nová řada čerpadel ogatherm WPS.2 Kompaktní a flexibilní ogatherm WPS.2 Tepelná čerpadla vzduch/voda
Tepelná čerpadla. levné teplo z přírody. Tepelná čerpadla
Tepelná čerpadla levné teplo z přírody Tepelná čerpadla 1 Tepelná čerpadla Levné, čisté a bezstarostné teplo pro rodinné domy i průmyslové objekty. Přinášíme vám kompletní řešení vytápění. Tepelné čerpadlo
Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna
Obsah: Princip fungování absorpčního stroje 2 Solární chlazení 4 Jednostupňový absorpční chladicí stroj BROAD v provozu OKK Koksovny (Koksovna Svoboda) 5 Newsletter of the Regional Energy Agency of Moravian-Silesian
Technický list. Elektrické parametry. Bivalentní zdroj. Max. výkon bivalentního zdroje při velikosti jističe *
- 1/5 - Základní charakteristika Použití Popis Pracovní látka Objednací kód vytápění a příprava teplé vody tepelné čerpadlo je vybaveno směšovacím ventilem s pohonem pro zajištění dodávky otopné vody o
TECHNICKÉ PARAMETRY TERRA NEO
Ceny HP3BW 07 07 P 12 12 P 18 18 P Objednací číslo W20373 W20376 W20374 W20377 W20375 W20378 SVT SVT 23109 SVT 23112 SVT 23110 SVT 23113 SVT 23111 SVT 23114 Cena [CZK] 215 000 225 000 225 000 235 000 245
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda) Nabídka č. 25032037 Zadavatel: VODAPLYNTOPENÍ HOLICE s.r.o. Jiří Kamenický Email: votopholice@seznam.cz
Technické údaje LA 60TUR+
Technické údaje LA TUR+ Informace o zařízení LA TUR+ Provedení - Zdroj tepla Venkovní vzduch - Provedení Univerzální konstrukce reverzibilní - Regulace - Výpočet teplotního množství integrovaný - Místo
TECHNICKÉ PARAMETRY SPLIT
Ceny HP3AW 22 SB 22 SBR 30 SB 30 SBR 36 SB 36 SBR Objednací číslo W20235 W20238 W20236 W20239 W20237 W20240 SVT SVT 3676 SVT 3676 SVT 3678 SVT 3678 SVT 3680 SVT 3680 Cena [CZK] 439 000 484 000 459 000
Split-systémy vzduch-voda HPAW
tepelná čerpadla Split-systémy vzduch-voda HPAW 01. 2011 verze 1.20 PZP KOMPLET a.s, Semechnice 132, 518 01 Dobruška Tel.: +420 494 664 203, Fax: +420 494 629 720 IČ : 25932161 Společnost zapsaná v obchodním
Obnovitelné zdroje energie Budovy a energie
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 26 Geotermální
Vitocal: využijte naši špičkovou technologii tepelných čerpadel pro vaše úspory.
Zvýhodněné sestavy tepelných čerpadel Topné systémy skládající se z tepelného čerpadla v kombinaci se zásobníkovým ohřívačem teplé vody a dalším instalačním příslušenstvím. Vitocal: využijte naši špičkovou
Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda
Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, technická podpora. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm
VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA
VÍCE-VÝMĚNÍKOVÁ TEPELNÁ ČERPADLA ForArch 2015 Ing. Jan Sedlář, Univerzitní Centrum Energeticky Efektivních Budov České Vysoké Učení Technické v Praze OBSAH Motivace k vývoji tepelných čerpadel pokročilejších
Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami
Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Tepelné zdroje soustav CZT tepelná část kombinovaného oběhu neovlivňuje silovou (mechanickou) část oběhu teplo se odvádí ze silové části
Tepelná čerpadla HERZ. commotherm 5-15
I Tepelná čerpadla HERZ commotherm 5-15 Budoucnost vytápění - tepelná čerpadla HERZ Firma HERZ Armaturen Ges.m.b.H., založena v roce 1896 disponuje víc jak 110 letou historií působení na trhu. HERZ Armaturen
Tepelná čerpadla ecogeo. pro topení a chlazení
Tepelná čerpadla ecogeo pro topení a chlazení Představení výrobce ECOFOREST Španělská technologická společnost Specialista na obnovitelné zdroje energie pro vytápění a chlazení Držitel řady ocenění za
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá
TEPELNÁ ČERPADLA REGULUS PROJEKČNÍ PODKLADY PRO MODELY TC08, TC13, TC16, TC18
TEPELNÁ ČERPADLA REGULUS PROJEKČNÍ PODKLADY PRO MODELY TC08, TC13, TC16, TC18 1. OBSAH 1. OBSAH 2 2. TYPY TEPELNÝCH ČERPADEL 2 3. TECHNICKÉ PARAMETRY 3 4. PRINCIP A FUNKCE TEPELNÉHO ČERPADLA 4 5. POPIS
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda) Nabídka č. 00201518039 Montážní partner : E-mail: Tel.: Zadavatel: Jaroslav Škeřík Rabštejnská
Efektivní využití OZE v budovách. Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze
Efektivní využití OZE v budovách Tomáš Matuška RP2 Energetické systémy budov Univerzitní centrum energeticky efektivních budov ČVUT v Praze OBNOVITELNÉ ZDROJE TEPLA sluneční energie základ v podstatě veškerého
Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze
Nezávislost na dodavatelích tepla možnosti, příklady Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Volně dostupné zdroje tepla sluneční energie základ v podstatě veškerého přírodního
Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt.
Tepelná čerpadla IVT s.r.o.,průmyslová 5, 108 21 PRAHA 10 Tel: 272 088 155, Fax: 272 088 166, E-mail: ivt@veskom.cz www.cerpadla-ivt.cz Obsah: Tepelná čerpadla pro rodinné domy a menší objekty Vzduch /
tepelného čerpadla Vaillant geotherm VWL (provedení vzduch/voda)
tepelného čerpadla Vaillant geotherm VWL (provedení vzduch/voda) Nabídka č. 0014000264 Montážní partner: E-mail: Tel.: Investor: Jiří Seifert Ranná E-mail: seifert24@seznam.cz tel.: 603263820 Vytvořil:
Energetické systémy pro nízkoenergetické stavby
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Ústav elektroenergetiky Energetické systémy pro nízkoenergetické stavby Systémy pro vytápění a přípravu TUV doc. Ing. Petr
NIBE SPLIT ideální řešení pro rodinné domy
NIBE SPLIT ideální řešení pro rodinné domy Co je NIBE SPLIT? Je to systém, sestávající z 1 venkovní a 1 vnitřní jednotky Tepelný výměník je součástí vnitřní jednotky Vnitřní a venkovní jednotka je propojena
TEPELNÁ ČERPADLA. vytápění ohřev vody řízené větrání
Š V É D S K Á TEPELNÁ ČERPADLA vytápění ohřev vody řízené větrání TEPELNÁ ČERPADLA vzduch/voda Pro vytápění a ohřev teplé užitkové vody Vzduch je všude kolem nás a je nejsnáze dostupným zdrojem energie.
Hlavní zásady pro používání tepelných čerpadel
Co je třeba vědět o tepelném čerpadle ALTERNATIVNÍ ENERGIE 2/2002 Co je vlastně tepelné čerpadlo a jaký komfort můžeme očekávat Tepelné čerpadlo se využívá jako zdroj tepla pro vytápění, ohřev teplé užitkové
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda) Nabídka č. 02032 Investor: Gubytska Nataliya, Hubytskyy Petro RD Nová Ves pod Pleší, parc.č.
Technický list pro tepelné čerpadlo země-voda HP3BW-model B
Technický list pro tepelné čerpadlo země-voda HP3BW-model B Technický popis TČ Tepelné čerpadlo země-voda, voda-voda s označením HPBW B je kompaktní zařízení pro instalaci do vnitřního prostředí, které
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda) Nabídka č. 4042044 Investor: pan Zdeněk Weber RD Malá Hraštice email: WeberZ@pvs..cz GSM:
Tepelná čerpadla. Proč Vaillant? Tradice, kvalita, inovace, zákaznický servis. arotherm VWL vzduch/voda
Tepelná čerpadla Proč Vaillant? Tradice, kvalita, inovace, zákaznický servis. arotherm VWL vzduch/voda Tepelná čerpadla arotherm VWL vzduch/voda Vzduch jako zdroj tepla Tepelná čerpadla Vaillant arotherm
Obnovitelné zdroje energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov Obnovitelné zdroje energie doc. Ing. Michal Kabrhel, Ph.D. Verze 2.17 Koncentrační solární systémy Historie AugustinMouchot(1825-1912)vytvořil
1/58 Solární soustavy
1/58 Solární soustavy hydraulická zapojení zásobníky tepla tepelné výměníky 2/58 Přehled solárních soustav příprava teplé vody kombinované soustavy ohřev bazénové vody hydraulická zapojení typické zisky
EU peníze středním školám digitální učební materiál
EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky
TECHNICKÉ PARAMETRY TERRA NEO
TERRA NEO Ceny HP3BW TERRA NEO 07 07 P 12 12 P 18 18 P Objednací číslo W20373 W20376 W20374 W20377 W20375 W20378 SVT Na dotaz Na dotaz Na dotaz Cena [CZK] 209 000 219 000 219 000 229 000 239 000 249 000
Obnovitelné zdroje energie ve vztahu k výstavbě budov. Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Obnovitelné zdroje energie ve vztahu k výstavbě budov Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Alternativní a obnovitelné zdroje energie Druhy: úspory sluneční energie energie
Švédská tepelná. čerpadla. pro vytápění, ohřev teplé užitkové vody, větrání a klimatizaci. www.cerpadla-ivt.cz. Přehled sortimentu a ceník 2005
www.cerpadla-ivt.cz Švédská tepelná čerpadla pro vytápění, ohřev teplé užitkové vody, větrání a klimatizaci 5 5 let garance 5 let záruka na tepelné čerpadlo, včetně nákladů na záruční opravu. Tato záruka
TEPELNÁ ČERPADLA VZUCH - VODA
TEPELNÁ ČERPADLA VZUCH - VODA www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Omezení emisí CO 2 Spotřeba energie Životní prostředí Principem každého
Ohřev teplé vody pomocí technologie SANDEN AquaEco
Ohřev teplé vody pomocí technologie SANDEN AquaEco Technologie ECO CUTE ECO CUTE Nová japonská technologie pro tepelná čerpadla vzduch/voda Využívá přírodního neškodného chladiva CO 2 Hlavní výhody Výstupní
Unikátní technická řešení IVT v České republice
Unikátní technická řešení IVT v České republice Obsah 30000 m vrtů a 1400 kw výkonu Areál Vysoké školy báňské Ostrava 1000 kw zjednoho vrtu ZOO Ústí nad Labem 280 kw tepla z trávníku Golf resort Kunětická
Předběžná nabídka systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda)
Předběžná nabídka systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda) Nabídka č. 2220222 Investor: Lukáš Chlebec RD Krušovice, ul.nová 66 Email: lukaschlebec@seznam.cz
Deskové výměníky. nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody. Úsporné řešení pro vaše topení TECHNICKÝ KATALOG
TECHNICKÝ KATALOG Deskové výměníky nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody REGULUS spol. s r.o. Do Koutů 1897/3, 143 00 Praha 4 Tel.: 241 764 506, Fax: 241 763 976
Vaillant arotherm VWL (provedení vzduch/voda)
akce: Marek Běla Brandýs nad Labem E-mail: marek.bela@seznam.cz Tel.: 603145319 vypracoval: Jiří Havrlant Vaillant Croup Czech s.r.o. 603 233 753 jiri.havrlant@vaillant.cz 1. Vstupní informace Informace
METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA ZEMĚ VODA
METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA ZEMĚ VODA Získávání tepla ze země Pro jímání tepla ze zemního masivu se s největším úspěchem používá speciální plastové potrubí, ve kterém koluje ekologicky odbouratelná
Kompaktní kompresorové chladiče
Kompaktní kompresorové chladiče Vzduchem chlazený kondenzátor Vodou chlazený kondenzátor Kompresorový chladič se vzduchem chlazeným kondenzátorem Ohřátý chladící vzduch z kondenzátoru Desuperheater 100%
Splitová tepelná čerpadla vzduch/voda
Technická dokumentace Splitová tepelná čerpadla vzduch/voda BWL-1 S(B)-07/10/14 NOVINKA 2 BWL-1S BWL-1SB COP DO 3,8* BWL-1S(B) BWL-1S(B)-07 BWL-1S(B)-10/14 2 Sestava vnitřní jednotky odvzdušňovací ventil
TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA
TOSHIBA ESTIA TEPELNÁ ČERPADLA VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady na topení, na ohřev
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda) Nabídka č. 0042030 Investor: Robert Mikeš RD České Budějovice Email: robert.mikes@weberterranova.cz
1/62 Zdroje tepla pro CZT
1/62 Zdroje tepla pro CZT kombinovaná výroba elektřiny a tepla výtopny, elektrárny a teplárny teplárenské ukazatele úspory energie teplárenským provozem Zdroje tepla 2/62 výtopna pouze produkce tepla kotle
TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA
TOSHIBA ESTIA UNIKÁTNÍ KVALITA TEPELNÝCH ČERPADEL VZDUCH-VODA Systém Estia představuje tepelná čerpadla vzduch-voda s extrémně vysokou účinností, která přinášejí do vaší domácnosti velmi nízké náklady
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant arotherm VWL (provedení vzduch/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant arotherm VWL (provedení vzduch/voda) Nabídka č. 2904201411 Investor: paní Klára Černá RD Veltrusy email: klara.cerna@rebo-n.cz
TEPELNÉ VLASTNOSTI HORNIN A JEJICH VLIV NA VYUŽITÍ ZEMNÍHO TEPLA
Konference Alternativní zdroje energie 2016 21. a 22. června 2016 Kroměříž TEPELNÉ VLASTNOSTI HORNIN A JEJICH VLIV NA VYUŽITÍ ZEMNÍHO TEPLA Mgr. Michal Havlík, Ing. arch. Pavel Cihelka, Stavební geologie
SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU
SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU Martin Kny student Ph.D., ČVUT v Praze, fakulta stavební, katedra technických zařízení budov martin.kny@fsv.cvut.cz Konference
Využití geotermální energie [1]
Využití geotermální energie [1] Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh
Obnovitelné zdroje energie Otázky k samotestům
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO TEPELNÁ ČERPADLA Investice do Vaší budoucnosti Projekt je spolufinancován Evropskou Unií prostřednictvím Evropského fondu pro regionální rozvoj Představení
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Soustava zásobování tepelnou energií (SZTE) soubor zařízení
Švédská tepelná čerpadla
Přehled sortimentu a ceník 2009 / 3 www.cerpadla-ivt.cz 10 let záruka 5 let celé tepelné čerpadlo 10 let kompresor Švédská tepelná čerpadla C země / voda C je nejprodávanějším kompaktním tepelným čerpadlem
Zdroje tepla pro pasivní domy. Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze
Zdroje tepla pro pasivní domy Tomáš Matuška Energetické systémy budov, UCEEB Ústav techniky prostředí, Fakulta strojní ČVUT v Praze PASIVNÍ DOMY termín nemá oporu v legislativě dobrovolný systém různá
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. 125ESB Energetické systémy budov. prof. Ing. Karel Kabele, CSc. ESB1 - Harmonogram
ČVUT v Praze Fakulta stavební Katedra technických zařízení budov 125ESB Energetické systémy budov prof. Ing. Karel Kabele, CSc. prof.karel Kabele 1 ESB1 - Harmonogram 1 Vytápění budov. Navrhování teplovodních
Zdroje energie a tepla
ZDROJE ENERGIE A TEPLA - II 173 Zdroje energie a tepla Energonositel Zdroj tepla Distribuce tepla Sdílení tepla do prostoru Paliva Uhlí Zemní plyn Bioplyn Biomasa Energie prostředí Solární energie Geotermální
Milan Trs, GEROtop TEPELNÁ ČERPADLA SYSTÉM ZEMĚ VODA TOPENÍ A CHLAZENÍ V JEDNÉ TECHNOLOGII
Milan Trs, GEROtop TEPELNÁ ČERPADLA SYSTÉM ZEMĚ VODA TOPENÍ A CHLAZENÍ V JEDNÉ TECHNOLOGII ZEMNÍ PLOŠNÉ KOLEKTORY OKRAJOVÉ PODMÍNKY PRO MOŽNOST VYUŽÍT ZEMNÍ PLOŠNÉ KOLEKTORY Hloubka uložení potrubí 1,2
!"#!$%&'()*+%,-"(.&'%/-)#)0'("1 2'/'#(+% '-/"3#"%4)56 "$%4%7 "(#0.%8)6#9:
!"#!$%&'()*+%,-"(.&'%/-)#)0'("1 2'/'#(+%'-/"3#"%4)56"$%4%7"(#0.%8)6#9: Vedoucí výrobce tepelných čerpadel v České republice HOTJET uvedl na trh novou řadu tepelných čerpadel vzduch-voda HOTJET ONE. Řada
Technické údaje SI 130TUR+
Technické údaje SI 13TUR+ Informace o zařízení SI 13TUR+ Provedení - Zdroj tepla Solanky - Provedení Univerzální konstrukce reverzibilní - Regulace WPM EconR integrovaný - Výpočet teplotního množství integrovaný
TEPELNÁ ČERPADLA VZUCH - VODA
TEPELNÁ ČERPDL VZUCH - VOD www.hokkaido.cz Budoucnost patří ekologickému a ekonomickému vytápění Tepelné čerpadlo vzduch - voda Principem každého tepelného čerpadla vzduch - voda je přenos tepla z venkovního
Deskové výměníky. nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody. Úsporné řešení pro vaše topení
TECHNICKÝ KATALOG Deskové výměníky nerezové deskové výměníky izolované čerpadlové skupiny pro přípravu teplé vody www.regulus.cz VÝMĚNÍKY TEPLA Nerezové deskové výměníky DV193 Deskové výměníky určené k
TECHNICKÁ ZAŘÍZENÍ BUDOV
Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 7 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly
Atlantic ALFEA. Tepelná čerpadla vzduch / voda. www.alfea.cz
Atlantic ALFEA Tepelná čerpadla vzduch / voda www.alfea.cz Tepelná čerpadla Atlantic Vytápění místností Ohřev teplé vody Chlazení místností Tepelná čerpadla Atlantic Alféa jsou společným projektem firem
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda)
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS (provedení země/voda) Nabídka č. 010420143 Investor: fa: Marek Poljak RD Bratřínov Email: M.Poljak@seznam.cz Tel.:
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda) Nabídka
Předběžný návrh řešení systému vytápění pomocí: tepelného čerpadla Vaillant geotherm VWS ( provedení země/voda) Nabídka 002136247893 Investor : Hrstka Rd Podsedice Tel: Email: Montážní firma: Tomáš Mach
Tepelná čerpadla. princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy
Tepelná čerpadla princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy Tepelná čerpadla zařízen zení k získz skávání využiteln itelné tepelné energie
Nová kompaktní jednotka vzduch-voda NIBE F2030
Nová kompaktní jednotka vzduch-voda NIBE F2030 NIBE F2030 rozměry a dodané díly Rozměry a hmotnost šířka mm 1260 hloubka mm 570 výška (vč. nožiček) mm 1134 hmotnost kg 160 165! Vychýlené těžiště! Pozor
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Centralizované zásobování teplem (CZT) výroba, rozvod a