Parozábrany v plochých střechách
|
|
- Otto Kadlec
- před 9 lety
- Počet zobrazení:
Transkript
1 Parozábrany v plochých střechách Ing. Petr Slanina 1. Úvod Při navrhování jednoplášťových plochých střech s klasickým pořadím vrstev nad prostory s tepelnými požadavky je nezbytné navrhnou ve střešním plášti i vrstvu parotěsnící, která zabraňuje nadměrnému šíření vlhkosti z interiéru do dalších vrstev střešního pláště, kde by v důsledku poklesu teploty došlo ke kondenzaci vodní páry. Nadměrné množství zkondenzované vlhkosti uvnitř jednotlivých vrstev střešního pláště může ohrozit funkčnost a zkrátit tak životnost celého střešního souvrství. Vzhledem k zanedbání některých vlivů při výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO nebo ČSN může dojít k nesprávnému vyhodnocení výsledků a posléze k chybnému návrhu celého střešního pláště. 2. Veličiny popisující difúzní vlastnosti parozábran Nejdůležitější vlastností každého výrobku používaného pro parotěsnící vrstvu je jeho propustnost pro vodní páru, která může být vyjádřena několika veličinami: 1) Součinitel difúze vodní páry materiálu δ p [kg.pa -1.s -1.m -1 ], vyjadřuje schopnost materiálu propouštět vodní páru difúzí. 2) Faktor difúzního odporu µ [-], vyjadřuje relativní schopnost materiálu propouštět vodní páry difúzí. Je poměrem difúzního odporu materiálu a difúzního odporu vrstvy vzduchu o téže tloušťce při definovaných podmínkách. 3) Ekvivalentní difúzní tloušťka s d [m], vyjadřuje ekvivalentní difúzní tloušťku vrstvy vzduchu, která by kladla stejný difúzní odpor jako tloušťka vrstvy konstrukce. Vzájemné vztahy veličin jsou následující: δo d sd = µ d = d = [ m ] δp N δp kde d [m] je tloušťka materiálu. δ o [kg/(pa.s.m)] je součinitel difúze vodní páry ve vzduchu. Hodnota součinitele závisí na teplotě a barometrickém tlaku, ale tyto vlivy jsou v normě ČSN EN ISO zanedbány a je uvažováno s hodnotou δ o = 2 x [kg/(pa.s.m)]. N [s-1] je teplotní difúzní funkce, která závisí na teplotě a barometrickém tlaku a její hodnoty jsou tabelizovány. 3. Navržení parotěsnicí vrstvy Hlavní funkcí parotěsnicí vrstvy je zabránit nadměrnému šíření vlhkosti z interiéru do dalších vrstev střešního pláště, kde by v důsledku poklesu teploty došlo ke kondenzaci vodní páry. Parotěsnicí vrstva se proto umisťuje co nejblíže k vnitřnímu prostředí. Nesmí se umisťovat pod vrstvy se zabudovanou vlhkostí (například monolitické spádové vrstvy), neboť vypařování vlhkosti by bylo problematické a v některých případech i nemožné. Pro spolehlivou funkci musí být tato vrstva parotěsně napojena na všechny prostupující obvodové konstrukce a prvky. Použitím parotěsnicí vrstvy se snižuje průvzdušnost konstrukce, což se kladně projeví hlavně u lehkých střešních konstrukcí. Parotěsnicí vrstva může taktéž plnit funkci dočasné hydroizolace například v průběhu výstavby objektu, ale pouze pokud materiály na ní použité odolají povětrnostním vlivům. Parotěsnicí vrstva by se měla navrhovat nad prostorem s tepelnými požadavky tak, aby byly splněny požadavky normy ČSN :2002, vyhlášek MMR č. 137/1998 Sb., MPO č. 291/2001 Sb. a zákona č. 406/2000 Sb. na množství zkondenzované vlhkosti uvnitř konstrukce. 1
2 Zkondenzované množství vodní páry se prokazuje výpočtem po měsících podle normy ČSN EN ISO Pokud nejsou dostatečně známy návrhové klimatické hodnoty může se výpočet provést podle normy ČSN Výpočet podle ČSN EN ISO lépe simuluje chování vlhkosti v průběhu roku, než výpočet podle původní české normy ČSN Přesto je počítáno s jednoduchým výpočetním modelem a dosažené výsledky často neodpovídají reálnému stavu. Je to dáno zanedbáním několika vlivů, které norma opomíjí: a) Skutečné okrajové podmínky nejsou během měsíce konstantní. b) Jsou zanedbávána působení solárního a dlouhovlnného záření. c) Déšť nebo tající sníh mohou také ovlivnit vlhkostní podmínky v konstrukci. d) Použití konstantních vlastností materiálů je přibližné. e) Je uvažováno s jednorozměrným šířením vlhkosti. f) Součinitel tepelné vodivosti závisí na obsahu vlhkosti a teplo je uvolňováno/ akumulováno při kondenzaci/vypařování. To mění rozložení teplot v konstrukci, což má vliv na zkondenzované/vypařené množství. g) Pohyb vzduchu trhlinami nebo ve vzduchových dutinách může způsobovat rozložení vlhkosti podle proudění vzduchu. Vlivy a) až c) jsou zpravidla na straně bezpečnosti. Ostatní vlivy vedou ke zvýšení vlhkosti, která se dostane do střešního pláště, kde pak dochází k vyšší kondenzaci než předpokládá jednoduchý výpočtový model podle normy. Nejvýraznější přírůstek vlhkosti, která se dostane do střešního souvrství oproti výpočetnímu modelu, je díky nehomogenním vlastnostem parotěsnící vrstvy. K této nehomogenitě může dojít z několika příčin: - technologickou nekázní při výstavbě, - nedokonalým spojením jednotlivých materiálů a napojením na prostupy, - mechanickým kotvením střešního pláště, - stárnutím spojů. Vlivem nehomogenních vlastností parotěsnící vrstvy, dojde k výraznému zvýšení vlhkosti, které se dostane do střešního souvrství. Toto zvýšené množství se neprojeví v jednoduchém výpočtovém modelu podle normy, neboť bude docházet k vícerozměrnému šíření vlhkosti, které norma neuvažuje. Vznikají tak vlhkostní mosty, které jsou analogické k tepelným mostů. Na následujících obrázcích je znázorněna skladba jednoplášťové střešní konstrukce s klasickým pořadím vrstev. V jednom případě je parozábrana homogenní a dochází tak k jednorozměrnému šíření vlhkosti. Ve druhém případě je v parozábraně otvor a tudíž dochází k vícerozměrnému šíření vlhkosti ve střešním plášti a v místě proděravění vzniká vlhkostní most. Obr.3 Jednorozměrné šíření vlhkostí parozábrana je neporušena Obr4. Dvojrozměrné šíření vlhkostí parozábrana je perforována a vzniká tak vlhkostní most 4. Vlastnosti proděravěných parozábran Problematické je stanovení difúzních vlastností nehomogenních vrstev obzvláště u tenkých vrstev s velkým difúzním odporem. V normách a odporné literatuře můžeme najít některá doporučení. 2
3 V normě ČSN EN ISO je uvedeno, že u materiálu s velmi vysokou ekvivalentní difúzní tloušťkou je rozhodující způsob napojení desek, fólií apod. mezi sebou a dále vliv četných proděravění v důsledku konstrukčního uspořádání. Může tak dojít k poklesu výsledné návrhové hodnoty ekvivalentní difúzní tloušťky až o několik řádů. V odborné literatuře [1] se doporučuje odborným odhadem snížit podle procenta poškození faktor difúzního odporu až na 10% jeho původní hodnoty. V literatuře [2] se dokonce doporučuje zohlednit nedokonale utěsněné spáry v parotěsnící vrstvě, průrazy vzniklé při ukládání a mechanickém připevnění. Difúzní (i vzduchová) těsnost vrstvy (a tím i hodnota faktoru difúzního odporu popř. ekvivalentní difúzní tloušťky s d ) je často 10 x až 100 x nižší než deklarovaná vlastnost materiálu. V [3] jsou vyjádřeny difúzní vlastnosti nehomogenní parotěsnící vrstvy pomocí součinitele podmínek působení, který má hodnotu z < 1. Jeho hodnota byla stanovena na základě experimentálního měření prováděné ve VUPS Zlín profesorem F. Mrlíkem. Návrhová hodnota faktoru difúzního odporu pro nehomogenní parotěsnící vrstvu se vypočte z následujícího vztahu, kde µ p = z. µ n µ p [-] je návrhová hodnota faktoru difúzního odporu nehomogenního materiálu µ n [-] je normová hodnota faktoru difúzního odporu homogenního materiálu z [-] je součinitel podmínek působení Součinitel podmínek působení je uveden pouze pro PE fólie tloušťky d = 0,085 mm. Jeho hodnoty jsou uvedeny v tabulkách 1-3 v závislosti na způsobu proděravění a na procentu podílu proděravěné plochy. Počet spon na 1 m 2 Souč. pod. působení z spony 0 1, , ,18 Tab.1 Součinitel podmínek působení z spony zahrnující vliv porušení PE fólie sponkami prošitými skrz Podíl plochy otvorů Souč. pod. působení z hreb1 k celkové ploše v % 0,0 1,00 0,1 0,30 0,2 0,08 0,3 0,06 0,4 0,03 0,6 0,02 1,0 0,01 Tab.2 Součinitel podmínek působení z hreb,1 zahrnující vliv probití PE fólie hřebíky sevřené mezi deskové Podíl plochy otvorů Souč. pod. působení z hreb2 k celkové ploše v % 0,0 1,00 0,1 0,70 0,2 0,60 0,3 0,45 0,4 0,30 0,6 0,20 3
4 1,0 0,10 Tab.3 Součinitel podmínek působení z hreb,2 zahrnující vliv probití PE fólie hřebíky s hlavičkou na straně fólie. Způsob stanovení difúzních vlastností proděravěných parozábran použitím součinitele podmínek působení je velmi zjednodušený a vypočtené návrhové hodnoty pro parotěsdnící vrstvu jsou pouze orientační. Tento způsob neumožňuje zjištění difúzních vlastností parozábran při procentu proděravěné plochy pod 0,1% a problémem je i zjištění difúzních vlastností pro jiné proděravěné parozábrany, hlavně pro ty které budou mít výrazně vyšší hodnotou ekvivalentní difúzní tloušťky než PE fólie. Problematické stanovení hodnoty ekvivalentní difúzní tloušťky nehomogenní vrstvy hlavně při malém procentu proděravění je znázorněno na následujícím grafu. Z grafu je patrné, že poměrně malý interval podílů otvorů na celkové ploše vzorku způsobuje několikanásobně větší interval hodnot ekvivalentní difúzní tloušťky. Tento jev bude zřetelnější především u tenkých vrstev z materiálů s velkým difúzním odporem. Obr.5 Graf závislosti hodnoty ekvivalentní difúzní tloušťky materiálu na jeho procentuálním proděravění otvory[4] Vysvětlivky: A interval procentuálního podílu otvorů na celkové ploše B interval hodnot ekvivalentní dif. tloušťky vzhledem k A s d ekvivalentní difúzní tloušťka materiálu 5. Výsledky měření difúzních vlastností proděravěných parozábran Stanovení hodnoty ekvivalentní difúzní tloušťky nehomogenní vrstvy se nedá stanovit analytickým výpočtem a je zapotřebí použít numerických metod nebo laboratorní měření difúze. Z výsledků měření, které byly provedené prof. Dr. W. Bauera (Stavební Akademie NDR)[5] tab.4 plyne, že hodnota ekvivalentní difúzní tloušťky klesá v závislosti na velikosti proděravěné plochy procentuálně rychleji u materiálů s vyšším difúzním odporem. Podíl plochy otvorů k celkové ploše Hliníkový plech d = 1 mm PVC fólie d = 0,16 mm Laminátové desky d = 4,1 mm [%] Ekvivalentní difúzní tloušťka s d [m] (%) 0 54,00 (100 %) 14,24 (100 %) 0,45 (100 %) 4
5 0,03 5,00 (9,26 %) 3,00 (21,07%) 0,44 (97,78 %) 0,3 0,60 (1,11 %) 0,40 (2,81 %) 0,34 (75,56 %) 0,5 0,47 (0,87 %) 0,33 (2,81 %) 0,31 (68,89 %) - Dále se již uvádí s d pro materiály společně 1 0,27 1,5 0,24 2 0,22 3 0,19 5 0, ,08 Tab.4 Hodnoty ekvivalentní difúzní tloušťky proděravěných materiálů[5]. Bohužel z tab.4 nelze stanovit hodnotu ekvivalentní tloušťky proděravěných parozábran v případě, že procento otvorů je menší než 0,03%. Přitom procento proděravěné plochy u kotveného střešního souvrství se pohybuje cca 0,001% - 0,02% v závislosti na způsobu kotvení. Dále je problematické stanovení hodnoty ekvivalentní difúzní tloušťky proděravěných parozábran, které mají hodnotu ekvivalentní difúzní tloušťky několikrát vyšší než zde uvedený hliníkový plech. V laboratořích FSv v rámci [4] bylo provedeno měření hodnoty ekvivalentní difúzní tloušťky proděravěných parozábran. V následujícím tab.5 jsou uvedeny výsledky měření pomocí metody Wet-Cup parozábran, jejichž proděravěná plocha byla 0,125% z celkové plochy vzorku. Název výrobku Výrobce Druh vzorku Naměřená ekvivalentní dif. tloušťka s d [m] % bez otvorů s otvory Menitex Sarnafil fólie proděr. 52,41 2,86 5,3 PE-LD Sarnafil fólie proděr. 52,41 2,45 4,7 Tab. 5 Naměřené hodnoty ekvivalentní dif. tloušťky proděravěných parotěsnících fólií. Dále byly měřeny parozábany proděravěné nasimulovaným kotevním prvkem. Výsledky jsou uvedeny v tabulce 2. Název výrobku Výrobce Druh vzorku Ekvivalentní dif. tloušťka s d [m] % dle výrobce naměřené Parafor Solo S/4 Siplast A. pás SBS + kotva 200 min 91,9 46,0 Sklobit Icopal A. pás ox + kotva ,0 32,9 Sarnavap 2000 Sarnafil fólie + kotva ,31 0,8 Menitex Sarnafil fólie + kotva ,17 0,8 PE-LD Sarnafil fólie + kotva 108 2,31 2,1 Tab.6 Naměřené hodnoty ekvivalentní dif. tloušťky proděravěných asfaltových pásů kotevním prvkem. Z výsledků plyne výrazný pokles hodnoty ekvivalentní difúzní tloušťky proděravěných parozábran. Větší pokles hodnoty ekvivalentní difúzní tloušťky u parotěsnících fólií než u asfaltových pásů může být způsoben lepším zatažením asfaltového pásu kolem dříku kotvy a nebo vznikem většího otvoru při provrtání příklepovou vrtačkou u parotěsních fólií. Měření probíhalo na vzorcích o velikosti plochy 0,002 m 2 respektive 0,008m 2. Při této malé ploše zkušebních vzorků se vícerozměrné šíření vlhkosti zcela neprojeví. Výše uvedené výsledky měření mohou být zatíženy chybou, neboť měření hodnoty ekvivalentní difúzní tloušťky probíhalo pouze jednou pro každý výrobek. V dalším výzkumu 5
6 difúzních vlastností parozábran, které upřesní dosavadní měření, se bude i nadále pokračovat. 6. Závěr 1) Doporučuji se zaměřit na zjištění difúzních vlastností parotěsnící vrstvy při malém podílu proděravění, které by odpovídalo procentu proděravění u kotveného střešního souvrství a změřit na difúzní vlastnosti proděravěných parozábran, které budou mít hodnotu ekvivalentní difúzní tloušťky výrazně vyšší než s d = 100 m. 2) Při proděravění výrobků s vysokým difúzním odporem (např. parozábran) bude ve střešní konstrukci docházet k vícerozměrnému šíření vlhkosti. Budou tak vznikat vlhkostní mosty a hmotnostní tok vlhkosti směřující do stavební konstrukce se zvýší nad rámec výpočtového modelu uvedeném v normě ČSN EN ISO nebo ČSN ) Vzhledem ke zvýšení vlhkosti, která se dostane do střešního souvrství díky nehomogennitě materiálu, je důležité zajistit vysokou technologickou kázeň při pokládání a spojování jednotlivých pásů parozábran a jejich důkladnému napojení na prostupující prvky. 4) Při navrhování plochých jednoplášťových střech s klasickým pořadím vrstev používat ke stabilizaci střešního pláště přednostně přitěžovací vrstvy nebo jednotlivé střešní vrstvy lepit mezi sebou a vyhnout se tak kotvení střešního souvrství, které by perforovalo parozábranu. 5) Upřednostnit návrh střechy s obráceným pořadím vrstev, která při vhodně zvolené tloušťce tepelné izolace obvykle zcela vylučuje kondenzaci vodních par ve střešním plášti (toto řešení není vždy konstrukčně možné). Text byl zpracován za podpory MSM Literatura [1] HANZALOVÁ, L.,ŠILAROVÁ, Š. a kolektiv. Ploché střechy - navrhování a sanace. Praha: Public History, s. ISBN [2] CHALOUPKA, K., ŠÁLA, J. Ploché střechy a pěnový polystyren, Izolační praxe 3. Praha: Sdružení EPS, 2002 [3] KEIM, L., ŠÁLA, J. Teplo? Teplo! Tepelná ochrana budov. Praha: Stav-Inform, s. ISBN [4] SLANINA, P. Definování parotěsné vrstvy u plochých jednoplášťových střech. Praha: ČVUT FSv, s. [5] MRLÍK, F. Vlhkostné problémy stavebných materiálov a konštrukcií. Bratislava: Alfa, s. [6] CHALOUPKA, K. Jak parotěsná je parozábrana v ploché střeše? [online]. 2004, poslední revize Dostupné z:< [7] SLANINA, P., ŠILAROVÁ, S. Vliv kotvení parotěsné vrstvy na její vlastnosti. In Tepelná ochrana budov Mezinárodní konference, Praha, s [8] ČSN : 2002 Tepelná ochrana budov Část 1 až Část 4 [9] ČSN : Navrhování střech Základní ustanovení. 6
7 [10] ČSN EN ISO : 2002 Tepelně vlhkostní chování stavebních dílců a stavebních prvků Vnitřní povrchová teplota pro vyloučení kritické povrchové vlhkosti a kondenzace uvnitř konstrukce Výpočtové metody. [11] ČSN EN ISO : 2002 Tepelně vlhkostní chování stavebních materiálů a výrobků. Stanovení prostupu vodní páry. Recenzoval prof. Ing. Jozef Oláh, PhD. Popisy k jednotlivým obrázkům Obr.1 Halový objekt s lehkou jednoplášťovou střešní konstrukcí na trapézovém plechu při pokládání parotěsnící a tepelně izolační vrstvy. Obr.2 Halový objekt s lehkou jednoplášťovou střešní konstrukcí na trapézovém plechu při závěrečném pokládání hydroizolační vrstvy. Obr.6 Vzorky parozábran připravené k měření pomocí metody Wet-Cup. V hrdle hliníkové misky je osazen vzorek parozábran. Uvnitř misky je roztok dihydrogenfosforečnanu amonného (NH 4 )H 2 PO 4, který udržuje relativní vlhkost vzduchu uvnitř misky 93%. Misky se posléze vloží do exsikátoru, v kterém bude udržována relativní vlhkost vzduchu 50%. Obr.7 Měření difúzních vlastností parozábran pomocí metody Wet-Cup. Uvnitř exsikátorů jsou uložené hliníkové misky se vzorky. Relativní vlhkost vzduchu uvnitř exsikátoru je50% díky nasycenému roztoku Na 2 Cr 2 O 7. Při stejné teplotě bude vlhkost difundovat z prostředí misky tedy z prostředí s vyšší relativní vlhkostí do prostředí exsikátoru. Z měření úbytku hmotnosti misky se vypočtou difúzní vlastnosti vzorků parozábran. 7
VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI
Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze VLIV KOTVENÍ PAROTĚSNÍCÍ VRSTVY NAJEJÍ VLASTNOSTI ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř
DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze
Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO
DIFÚZNÍ MOSTY. Šárka Šilarová, Petr Slanina
DIFÚZNÍ MOSTY Šárka Šilarová, Petr Slanina Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti
VLASTNOSTI PRODĚRAVĚNÝCH PAROZÁBRAN
Ing. Petr Slanina Fakulta stavební,čvut v Praze, Česká republika VLASTNOSTI PRODĚRAVĚNÝCH PAROZÁBRAN ABSTRAKT Příspěvek se zaměřuje na případy plochých střech, ve kterých je parotěsnící vrstva porušena
VLKOSTNÍ REŽIM V PLOCHÝCH STŘECHÁCH. Petr Slanina
VLKOSTNÍ REŽIM V PLOCHÝCH STŘECHÁCH Petr Slanina Ing. Petr Slanina Fakulta stavební, ČVUT v Praze, Česká Republika VLKOSTNÍ REŽIM V PLOCHÝCH STŘECHÁCH ABSTRAKT Při hodnocení střech podle českých a evropských
Stavební tepelná technika 1
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební tepelná technika 1 Část B Prof.Ing.Jan Tywoniak,CSc. Praha 2011 04/11/2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Školení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
Aparát pro laboratorní měření faktoru difuzního odporu stavebních materiálů metodou misek
Funkční vzorek K124FVZ002 2012 Aparát pro laboratorní měření faktoru difuzního odporu stavebních materiálů metodou misek Ing. Kamil Staněk, Ph.D. Fakulta stavební ČVUT v Praze Katedra konstrukcí pozemních
WiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika
WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních
Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com
Zateplené šikmé střechy - funkční vrstvy a výsledné vlastnos= jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Řádně odvodněná pojistná hydroizolace
Principy návrhu střech s opačným pořadím izolačních vrstev
Seminář portálu TZB-info na veletrhu For Arch 2011 Principy návrhu střech s opačným pořadím izolačních vrstev Ing. Vladimír Vymětalík MONTAKO s.r.o., vedoucí střediska technické podpory Předpisy a normy
Seminář dne 29. 11. 2011 Lektoři: doc. Ing. Jaroslav Solař, Ph.D. doc. Ing. Miloslav Řezáč, Ph.D. SŠSaD Ostrava, U Studia 33, Ostrava-Zábřeh
Seminář dne 29. 11. 2011 Lektoři: doc. Ing. Jaroslav Solař, Ph.D. doc. Ing. Miloslav Řezáč, Ph.D. SŠSaD Ostrava, U Studia 33, Ostrava-Zábřeh Popularizace a zvýšení kvality výuky dřevozpracujících a stavebních
Parotěsná vrstva terminologie, rozdělení, navrhování
Parotěsná vrstva terminologie, rozdělení, navrhování recenzoval: Ing. Jiří Šála Ing. Petr Slanina 1. Úvod Při navrhování střešních konstrukcí je třeba zabránit nadměrnému šíření vlhkosti do skladby střešního
Návrh skladby a tepelnětechnické posouzení střešní konstrukce
Návrh skladby a tepelnětechnické posouzení střešní konstrukce Objednatel: FYKONY spol. s r.o. Beskydská 552 741 01 Nový Jičín - Žilina Kontaktní osoba: Petr Konečný, mob.: +420 736 774 855 Objekt: Bytový
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ Zbyněk Svoboda FSv ČVUT v Praze, Thákurova 7, Praha 6, e-mail: svobodaz@fsv.cvut.cz The following paper contains overview of recommended calculation methods for
Vlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára
Vlhkost Voda - skupenství led voda vodní pára ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost ve stavebních konstrukcích nežádoucí účinky... zdroje: srážková v. zemní v.
Zateplené šikmé střechy Funkční vrstvy. jan.kurc@knaufinsula=on.com
Zateplené šikmé střechy Funkční vrstvy jan.kurc@knaufinsula=on.com Funkční vrstvy Nadpis druhé úrovně Ochrana před vnějšími vlivy Střešní kry=na Pojistná hydroizolace + odvětrání střešního pláště Ochrana
Nejnižší vnitřní povrchová teplota a teplotní faktor
Nejnižší vnitřní povrchová teplota a teplotní faktor Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA
VLHKOST VE STŘEŠE JAKO ČASOVANÁ BOMBA Petr Slanina Pro citování: Slanina, P. (2014). Vlhkost ve střeše jako časovaná bomba. In Zborník z bratislavského sympózia Strechy 2014 (pp. 42-48), Bratislava: STU
Tepelnětechnický výpočet kondenzace vodní páry v konstrukci
Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově
Výzkum a vývoj dřevostaveb na FAST VUT Brno
Výzkum a vývoj dřevostaveb na FAST VUT Brno Autoři: J. Pospíšil, J. Král, R. Kučera 25. 5. 2018 Současné výzkumy Ing. Jaroslav Pospíšil (pospisil.j@fce.vutbr.cz) Experimentální ověření a simulace vzduchotěsnosti
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,
BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura, podmínky zápočtu Zadání, protokoly Součinitel prostupu tepla U, teplotní
Návrh skladby a koncepce sanace teras
Návrh skladby a koncepce sanace teras Bytový dům Kamýcká 247/4d 160 00 Praha - Sedlec Zpracováno v období: Březen 2016 Návrh skladby a koncepce sanace střešního pláště Strana 1/8 OBSAH 1. VŠEOBECNĚ...
- zásady návrhu - základní skladby - stabilizace střešních plášťů
JEDNOPLÁŠŤOVÉPLOCHÉSTŘECHY - zásady návrhu - základní skladby - stabilizace střešních plášťů Ing. Tomáš PETŘÍČEK e-mail: petricek.t@fce.vutbr.cz 02/2012, Brno snímek: 1 ZÁKLADNÍ INFORMACE Plochá střecha
Seminář pro gestory a členy pracovních skupin pro TN
Seminář pro gestory a členy pracovních skupin pro TN Výzkumný ústav pozemních staveb Certifikační Společnost AO 227 NO 1516 Technické požadavky na vybrané stavební výrobky z hlediska základního požadavku
TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =
Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -
www.decoen.cz VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE
VLIV PERFOTACE KONTAKTNÍHO ZATEPLOVACÍHO SYSTÉMU NA VLHKOSTNÍ CHOVÁNÍ KONSTRUKCE Influence Perforations thermal Insulation Composite System onto Humidity behavior of Structures Ing. Petr Jaroš, Ph.D.,
SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV. Úvod
SEMINÁŘE DEKSOFT SEKCE TEPELNÁ OCHRANA BUDOV Úvod Normy Klíčovou normou pro tepelnou ochranu budov v ČR je norma ČSN 73 0540-1 až 4 ČSN 73 0540-1 (2005) Část 1: Terminologie ČSN 73 0540-2 (2011) Část 2:
Střešní pláště - přehled
ČVUT v Praze Fakulta stavební PS01 - POZEMNÍ STAVBY 1 Střešní pláště - přehled doc. Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb K124 2015/16 Základní rozdělení střech pozemních staveb
Katalog konstrukčních detailů oken SONG
Katalog konstrukčních detailů oken SONG Květen 2018 Ing. Vítězslav Calta Ing. Michal Bureš, Ph.D. Stránka 1 z 4 Úvod Tento katalog je vznikl za podpory programu TAČR TH01021120 ve spolupráci ČVUT UCEEB
Lineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
8. JEDNOPLÁŠŤOVÉ A DVOUPLÁŠŤOVÉ PLOCHÉ STŘEŠNÍ KONSTRUKCE FUNKCE, POŽADAVKY, PRINCIPY NÁVRHU Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice
Správné návrhy tepelné izolace plochých střech a chyby při realizaci Pavel Přech projektový specialista
Správné návrhy tepelné izolace plochých střech a chyby při realizaci Pavel Přech projektový specialista Návrhy skladeb plochých střech Úvod Návrhy skladeb,řešení Nepochůzná střecha Občasně pochůzná střecha
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura: Studijní opory: BH10 Tepelná technika budov Normy: ČSN 73 0540 Tepelná
BH02 Pozemní stavitelství
BH02 Pozemní stavitelství Zastřešení budov B) Ploché střechy Střecha = nosná střešní konstrukce + střešní plášť (nenosná konstrukce - 1 a více) Dle sklonu střechu dělíme na -plochá (sklon 1 až 5 )- ČSN
SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům
Klasický rodinný dům pro tři až čtyři obyvatele se sedlovou střechou a obytným podkrovím. Obvodové stěny vystavěny ze škvárobetonových tvárnic tl. 300 mm, šikmá střecha zateplena mezi krokvemi. V rámci
BH059 Tepelná technika budov
BH059 Tepelná technika budov Přednáška č. 4 Přídavný difúzní odpor Výpočet roční bilance kondenzace a vypařování vodní páry v konstrukci -ručně Výpočet roční bilance kondenzace a vypařování vodní páry
TECHNICKÝ POPIS PRO OPRAVU STŘEŠNÍHO PLÁŠTĚ KARLY MACHOVÉ Č.P.1506, 1507, 1508, BEROUN. Pohled na dům. Stav střešního pláště bytového domu:
TECHNICKÝ POPIS PRO OPRAVU STŘEŠNÍHO PLÁŠTĚ KARLY MACHOVÉ Č.P.1506, 1507, 1508, BEROUN Pohled na dům Stav střešního pláště bytového domu: střešní vpustě Výlezy na střechu Část štítu, která se bude dozateplovat,
Stanovisko energetického auditora ke změně v realizaci projektu Základní škola Bezno - zateplení
Stanovisko energetického auditora ke změně v realizaci projektu Základní škola Bezno - zateplení Vydal: ENERGY BENEFIT CENTRE a.s. 05/2013 Efektivní financování úspor energie Úvod Toto stanovisko ke změně
ETICS technické specifikace požadavky obecná charakteristika systém nebo výrobek všeobecné podmínky pro výběrové řízení
ETICS technické specifikace požadavky obecná charakteristika systém nebo výrobek všeobecné podmínky pro výběrové řízení Veškeré y a výrobky uvedené v této dokumentaci jsou specifikovány s ohledem na požadované
Protokol pomocných výpočtů
Protokol pomocných výpočtů STN-1: příčka - strojovna Pomocný výpočet korekce součinitele prostupu tepla ΔU Korekce pro vzduchové vrstvy dle ČSN EN ISO 6946 Korekční úroveň: Vzduchové spáry propojující
Posudek k určení vzniku kondenzátu na izolačním zasklení oken
Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz
Obsah 1 Předmět normy 4
ČESKÁ NORMA MDT 699.86.001.4 Květen 1994 TEPELNÁ OCHRANA BUDOV ČSN 73 0540-3 Část 3: Výpočtové hodnoty veličin pro navrhování a ověřování Thermal Protection of Buildings La Protection Thermique en Bâtiments
ICS Listopad 2005
ČESKÁ TECHNICKÁ NORMA ICS 91. 120. 10 Listopad 2005 Tepelná ochrana budov - Část 3: Návrhové hodnoty veličin ČSN 73 0540-3 Thermal protection of buildings - Part 3: Design value quantities La protection
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2015 obvodová stěna - Porotherm Název úlohy : Zpracovatel
BH059 Tepelná technika budov
BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z keramických tvarovek CDm tl. 375 mm, střecha je sedlová s obytným podkrovím. Střecha je sedlová a zateplena
*Volba typu konstrukce zastřešení a jeho tvaru podstatným způsobem ovlivňuje celkový architektonický výraz exteriéru i interiéru budovy
* * *Střecha chrání budovu před klimatickými vlivy, především deštěm, sněhem a větrem *Zpravidla plní i tepelně izolační funkci *Na správné funkci střechy závisí i do značné míry životnost celé budovy
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2014 EDU stěna obvodová Název úlohy : Zpracovatel : Jan
Statický návrh a posouzení kotvení hydroizolace střechy
Statický návrh a posouzení kotvení hydroizolace střechy podle ČSN EN 1991-1-4 Stavba: Stavba Obsah: Statické schéma střechy...1 Statický výpočet...3 Střecha +10,000...3 Schéma kotvení střechy...9 Specifikace
Termodiagnostika v praxi, aneb jaké měření potřebujete
Termodiagnostika v praxi, aneb jaké měření potřebujete 2012 Ing. Viktor Zwiener, Ph.D. Tepelné ztráty v domech jsou způsobeny prostupem tepla konstrukcemi s nedostatečným tepelným odporem nebo prouděním
Přednáška 10 Ploché střechy
BH 02 Nauka o pozemních stavbách Přednáška 10 Přednášející: Ing. Radim Kolář, Ph.D. 1. 12. 2014 ÚVOD Ústav pozemního stavitelství 1 ÚVOD ÚVOD Střecha střešní konstrukce odděluje vnitřní (chráněné) prostředí
SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům s obytným podkrovím. Obvodové stěny jsou vystavěny z pórobetonových tvárnic tl. 250mm. Střecha je sedlová se m nad krokvemi. Je provedeno fasády kontaktním zateplovacím
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ
ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LIV 5 Číslo 2, 2006 Nové poznatky pro navrhování DODATEČNÉHO ZATEPLENÍ
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný
STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH:
STATICKÝ VÝPOČET a TECHNICKÁ ZPRÁVA OBSAH: 1 ZADÁNÍ A ŘEŠENÁ PROBLEMATIKA, GEOMETRIE... 2 2 POLOHA NA MAPĚ A STANOVENÍ KLIMATICKÝCH ZATÍŽENÍ... 2 2.1 SKLADBY STŘECH... 3 2.1.1 R1 Skladba střechy na objektu
Posudek bytového domu Údolní 72, Brno v souladu s vyhláškou č. 78/2013 Sb
Posudek bytového domu Údolní 72, Brno v souladu s vyhláškou č. 78/2013 Sb Dokument vznikl za podpory SGS14/160/OHK1/2T/15 Ing.arch.et Ing. Jiří Adámek: Energetická efektivnost obnovy vybraných historických
SVISLÉ NOSNÉ KONSTRUKCE TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN
2.2.2.1 TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN Základní vlastností stavební konstrukce z hlediska šíření tepla je její tepelný odpor R, na základě něhož se výpočtem stanoví součinitel prostupu tepla U. Čím nižší
Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Základní škola Slatina nad Zdobnicí Ulice: Slatina nad zdobnicí 45 PSČ:
Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví
Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební
Difúze vodní páry a její kondenzace uvnitř konstrukcí
Difúze vodní páry a její kondenzace uvnitř konstrukcí Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2014 především s ohledem na změny v normách.
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy
Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com
Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí
Návrhy zateplení střechy
Návrhy zateplení střechy Vstupní údaje pro výpočet: Návrhová venkovní teplota Tae: -15 C Návrhová relativní vlhkost vnějšího vzduchu Fie: 84% 21 C Návrhová relativní vlhkost vnitřního vzduchu Fii: 50%
POUŽITÍ OSB SUPERFINISH VE STAVEBNICTVÍ
POUŽITÍ OSB SUPERFINISH VE STAVEBNICTVÍ 6 6 A1/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ A2/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ 6 6 B1/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ B2/ KONSTRUKCE STŘEŠNÍHO PLÁŠTĚ 6 6 C/ KONSTRUKCE OBVODOVÉ
Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav
Obsah: Úvod... 1 Identifikační údaje... 1 Seznam podkladů... 2 Tepelné technické posouzení... 3 Energetické vlastnosti objektu... 10 Závěr... 11 Příloha č.1: Tepelně technické posouzení konstrukcí obálky
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
13. ZATEPLENÍ OBVODOVÝCH STĚN Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
NPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví
VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO
VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO VZHLEDEM K POLOZE ČESKÉ REPUBLIKY PATŘÍ TEPELNĚ-VLHKOSTNÍ VLASTNOSTI KONSTRUKCÍ A STAVBY MEZI ZÁKLADNÍ POŽADAVKY SLEDOVANÉ ZÁVAZNOU LEGISLATIVOU. NAŠÍM CÍLEM JE
Obr. 3: Pohled na rodinný dům
Samostatně stojící dvoupodlažní rodinný dům. Obvodové stěny jsou vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis. Střecha je pultová bez. Je provedeno
NOBASIL SPK SPK. www.knaufinsulation.cz. Deska z minerální vlny
Deska z minerální vlny NOBASIL SPK MW-EN 13162-T5-DS(TH)-WS-WL(P)-AF25 MW-EN 13162-T5-DS(TH)-CS(10)30-TR7,5-WS-WL(P)-AF25 EC certifikáty shody Reg.-Nr.: K1-0751-CPD-146.0-01-01/07 SPK Popis Deska NOBASIL
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až
SF2 Podklady pro cvičení
SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se
SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z pórobetonových tvárnic tl. 250 mm, konstrukce stropů provedena z železobetonových dutinových
Sales & MKT meeting Bohumín,
Sales & MKT meeting Bohumín, 20.12.2012 Josef Mik Marketing Manager CZ/SK 2 3 AXTER výrobce a dodavatel asfaltových hydroizolací Kvalifikovaný výrobce a dodavatel asfaltových pásů a doplňků Široký sortiment,
w w w. ch y t r a p e n a. c z
CHYTRÁ PĚNA - střešní systém EKO H ROOF Jedním z mnoha využití nástřikové izolace Chytrá pěna EKO H ROOF jsou ploché střechy. Náš střešní systém je složen ze dvou komponentů, které jsou aplikovány přímo
Vápenná jímka opláštění budovy a střecha
Vápenná jímka opláštění budovy a střecha Jirkov, Jindřiššká - Šerchov POPIS Projekt Rekonstrukce úpravny vody Jirkov řeší novostavbu budovy vápenného hospodářství a objekt vápenné jímky. Společnost HIPOS
Rigips. Ploché střechy s EPS. Podklady pro projektování z hlediska požární bezpečnosti
Rigips Ploché střechy s EPS Podklady pro projektování z hlediska požární bezpečnosti 2 Ploché střechy s pěnovým polystyrenem Rigips požární bezpečnost Pěnový (expandovaný) polystyren EPS patří ve stavebnictví
OBSAH ŠKOLENÍ. Internet DEK netdekwifi
OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa
OPRAVA HYDROIZOLACE STŘECHY NAD BAZÉNEM
OPRAVA HYDROIZOLACE STŘECHY NAD BAZÉNEM TECHNIK ATELIERU DEK, PŮSOBÍCI NA POBOČCE V BRNĚ, SE VYDAL ZA REALIZAČNÍ FIRMOU, ABY JÍ POSKYTL TECHNICKOU PODPORU PŘI ŘEŠENÍ OBNOVY HYDROIZOLACE STŘECHY BAZÉNOVÉ
Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
Revitalizace střešního pláště výrobního objektu
Revitalizace střešního pláště výrobního objektu Ústí nad Labem Black&Decker POPIS Výrobní a skladovací hala pro elektrické nářadí se nachází v průmyslové zóně Trmice Ústí nad Labem v nedaleké blízkosti
SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík
SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík Tvorba vzdělávacího programu Dřevěné konstrukce a dřevostavby CZ.1.07/3.2.07/04.0082 OBSAH 1. ÚVOD 2. SOFTWAROVÁ PODPORA V POZEMNÍM STAVITELSTVÍ
Termografická diagnostika pláště objektu
Termografická diagnostika pláště objektu Firma AFCITYPLAN s.r.o. Jindřišská 17 Praha 1 Zkušební technik: Ing. Daniel Bubenko Telefon: EMail: +420 739 057 826 daniel.bubenko@afconsult. com Přístroj TESTO
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
Téma: Roční bilance zkondenzované a vypařitelné vodní páry v konstrukci
Téma: Roční bilance zkondenzované a vypařitelné vodní páry v konstrukci Poznámky k zadání: Roční množství zkondenzované a vypařitelné vodní páry v konstrukci se ve cvičení určí pro zadanou konstrukci početně-grafickou
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO KONKRÉTNÍ ROZBOR TEPELNĚ TECHNICKÝCH POŽADAVKŮ PRO VYBRANĚ POROVNÁVACÍ UKAZATELE Z HLEDISKA STAVEBNÍ FYZIKY příklady z praxe Ing. Milan Vrtílek,
Recenze: Střešní okna pro pasivní domy
Petr Slanina Tato recenze je reakcí na článek Střešní okna pro pasivní domy [1], jenž vyšel v květnu 2018 a jehož autorem je prof. Ing. Jan Tywoniak, CSc. z ČVUT v Praze a recenzentem doc. Ing. Miloš Kalousek,
ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU
ENERGETICKÁ OPTIMALIZACE PAVILONU ŠKOLNÍ JÍDELNY - ŽDÍREC NAD DOUBRAVOU Technická zpráva 1.Identifikační údaje Název stavby: Energetická optimalizace školní jídelny Ždírec nad Doubravou Místo stavby: Kraj:
Základní zásady při navrhování odvodnění plochých střech
Základní zásady při navrhování odvodnění plochých střech Platné technické normy řešící problematiku návrhu a odvodnění plochých střech ČSN 73 1901 Navrhování střech (novelizovaná v únoru 2011) ČSN EN 12
Budova Českého statistického úřadu Krajské správy v Ústí nad Labem
Ing. Pavel Štětka - projektování staveb, inženýrská činnost.. ičo: 62755366 TECHNICKÁ ZPRÁVA Budova Českého statistického úřadu Krajské správy v Ústí nad Labem OPRAVA ČÁSTI STŘEŠNÍ KRYTINY Objednatel:
Obr. 3: Řez rodinným domem
Dvoupodlažní rodinný dům pro pětičlennou rodinu se sedlovou střechou a neobytnou půdou. Obvodové stěny vystavěny z keramických zdících prvků tl. 365 mm, stropy provedeny z keramických tvarovek typu Hurdis.
Detaily z pohledu spolehlivosti, návrh, výpočet a realizace odvodnění plochých střech. pondělí, 25. února 13
Detaily z pohledu spolehlivosti, návrh, výpočet a realizace odvodnění plochých střech Platné technické normy řešící problematiku návrhu a odvodnění plochých střech ČSN 73 1901-2011 Navrhování střech (novelizovaná
PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ
PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
9. JEDNOPLÁŠŤOVÉ A DVOUPLÁŠŤOVÉ PLOCHÉ STŘEŠNÍ KONSTRUKCE MATERIÁLY A TECHNOLOGIE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento
NÁVRH STANDARTU REVITALIZACE A ZATEPLENÍ OBJEKTU
ČVUT V PRAZE, FAKULTA ARCHITEKTURY ÚSTAV STAVITELSTVÍ II. SGS14/160/OHK1/2T/15 ENERGETICKÁ EFEKTIVNOST OBNOVY VYBRANÝCH HISTORICKÝCH BUDOV 20. STOLETÍ. SGS14/160/OHK1/2T/15 ENERGETICAL EFFICIENCY OF RENEWAL
Centrum stavebního inženýrství a.s. Zkušebna fyzikálních vlastností materiálů, konstrukcí a budov - Zlín K Cihelně 304, Zlín Louky
Pracoviště zkušební laboratoře: 1. Laboratoř stavební tepelné techniky K Cihelně 304, Zlín - Louky Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř poskytuje odborná