N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
|
|
- Bedřich Mareš
- před 5 lety
- Počet zobrazení:
Transkript
1 Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid Juhásová Šenitková, CSc. Katedra stavebnictví
2 TEPELNÁ OCHRANA BUDOV Dotazy či připomínky: ZÁKLADNÍ ZPŮSOBY ŠÍŘENÍ TEPLA, TEPELNĚ-TECHNICKÉ VLASTNOSTI LÁTEK 2
3 Základní způsoby šíření tepla Teplo se může šířit v jakémkoli prostředí, když na různých místech tohoto prostředí mají různé teploty Druhý termodynamický zákon říká: Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. Podmínkou šíření tepla tedy je existence rozdílu teplot Proces sdílení tepla může probíhat: Vedením (kondukcí) Prouděním (konvencí) Sáláním (radiací) 3
4 Základní způsoby šíření tepla Základní veličiny šíření tepla Teplota - míra kinetické energie částic látky (atomů, molekul, ). Jednotka kelvin [K] nebo stupeň Celsia [ C] θ C = T K 273,15 Teplo - popisuje změnu termodynamického stavu systému. Při tepelné výměně dochází k předávání kinetické energie částic. Šíří se vždy z prostředí o vyšší teplotě do prostředí o nižší teplotě. Značení Q, jednotka J = (W/s) 4
5 Základní způsoby šíření tepla Základní veličiny šíření tepla Tepelný tok - teplo přenesené plochou za jednotku času Q ሶ = Q t = teplo čas J s = W Hustota tepelného toku - teplo přenesené jednotkou plochy za jednotku času q = Q A. t J m 2. s = W/m2 5
6 Základní způsoby šíření tepla Kondukce (vedení) tepla Ke sdílení tepla vedením (kondukcí) dochází tehdy, jestliže v tělese vzniká rozdíl teplot, nebo jestliže se dotýkají dvě různá tělesa různé teploty Teplejší, rychle kmitající molekuly předávají svou kinetickou energii sousedním, pomaleji kmitajícím molekulám Základní hodnou při vedení tepla je součinitel tepelné vodivosti [W/(m.K)] 6
7 Základní způsoby šíření tepla Kondukce (vedení) tepla Hustota tepelného toku je měrná teplotnímu gradientu q cd = λ dt dx W/m 2 λ je součinitel tepelné vodivosti W/(m. K) T je teplota K x jesouřadnice m Ve skutečnosti jeho hodnota závisí na teplotě a vlhkosti materiálu Hodnota může být různá ve směru souřadnicových os Například dřevo ve směru rovnoběžně s vlákny vykazuje přibližně dvakrát až třikrát vyšší součinitel tepelné vodivosti, než ve směru kolmo na vlákna 7
8 Základní způsoby šíření tepla Konvence (proudění) tepla Přenos tepla prouděním (konvekcí) je vyvolán tokem tekutiny Proudící tekutina s sebou unáší v ní uloženou energii (teplo) a přemisťuje ji například v potrubí nebo ve stavebním prvku Proudění vyvolané čerpadlem nebo ventilátorem se nazývá vynucené Proudění vyvolané rozdílem hustot kapaliny (rozdílem teplot) se nazývá přirozené 8
9 Základní způsoby šíření tepla Konvence (proudění) tepla Při sdílení tepla prouděním (konvencí) přechází teplo z plynů, par a tekutin na pevnou látku nebo naopak Podstata spočívá v tom, že k povrchu pevného tělesa přichází stále nové částice plynů, par nebo tekutin, tj. stále noví nositelé tepla Přenos tepla prouděním nastává, pokud tekutina proudí podél povrchu a existuje rozdíl mezi teplotou tekutiny a teplotou povrchu 9
10 Základní způsoby šíření tepla Radiace (sálání) tepla Přenos tepla sáláním je přenos energie mezi dvěma tělesy o různé teplotě šířením elektromagnetických vln Přenos tepla vedením a prouděním vyžaduje rozdíl teplot v určité formě hmoty (pevná látka nebo kapalina) Přenos tepla sáláním naproti tomu hmotu ke své existenci nepotřebuje Důkazem je naše každodenní osobní zkušenost s teplem od Slunce, které k nám dorazí i přesto, že vzdálenost mezi Sluncem a Zemí je 150 milionů kilometrů 10
11 Prostup tepla konstrukcí Průchod tepla stěnou se skládá ze tří částí: Přestup tepla na vnitřní straně q 1 =h i.( ai - si ) Vedení tepla stěnou q 2 = /d.( si - se ) Přestup tepla na vnější straně q 3 =h e.( se - e ) Hustota tepelného toku q [W/m 2 ] je podíl tepelného toku a příslušné plochy, kterou tepelný tok prostupuje. 11
12 Tepelně-technické vlastnosti látek Objemová hmotnost Objemová hmotnost znamená střední hustotu nespojitě v prostoru rozložené látky, např. pórovité, zpěněné nebo volně sypané. Objemová hmotnost stavebních materiálů závisí na pórovitosti a u sypkých látek i na jejich stlačitelnosti. Pro suchý nebo vlhký materiál lze vyjádřit vztahy: ρ d = m d V ρ v = m v V ρ d je objemová hmotnost suchého materiálu [kg/m 3 ] ρ v je objemová hmotnost vlhkého materiálu [kg/m 3 ] m d je hmotnost suchého materiálu [kg] m v je hmotnost vlhkého materiálu [kg] V je objem dané látky včetně pórů a mezer [m 3 ] 12
13 Tepelně-technické vlastnosti látek Vlhkost Stavební materiály se v praxi téměř nikdy nevyskytují v suchém stavu. Vlhkost je důležitých faktorem, který ovlivňuje tepelnětechnické vlastnosti stavebních materiálů. Vlhkost látky charakterizujeme hmotností a objemovou vlhkostí Hmotnostní vlhkost se určuje ze vztahu: u m = m v m s m s. 100 u m je hmotnostní vlhkost [%] m v je hmotnost vlhkého materiálu [kg] m s je hmotnost suchého materiálu [kg] Objemová vlhkost se určuje ze vztahu: u v = V v V s. 100 u m je objemová vlhkost [%] m v je objem vlhkosti v materiálu [m 3 ] m s je objem suchého materiálu [m 3 ] 13
14 Tepelně-technické vlastnosti látek Součinitel tepelné vodivosti Tepelná vodivost je nejvýznamnějším ukazatelem vlastností látek z hlediska stavební tepelné techniky Vyjadřuje schopnost homogenního materiálu přenášet teplo vedením a charakterizuje ji součinitel tepelné vodivosti [W/(m.K)] Hodnota součinitele tepelné vodivosti představuje tepelný tok ve wattech, který proudí 1 m 2 stěny o tloušťce 1 m při teplotním rozdílu protilehlých ploch 1 K Součinitel tepelné vodivosti závisí na různých vlivech, z nichž nejdůležitější jsou objemová hmotnost, vlhkost, směr tepelného toku, chemické složení a teplota. 14
15 Tepelně-technické vlastnosti látek Vliv objemové hmotnosti na hodnotu součinitele tepelné propustnosti Stavební materiály jsou složené ze základního materiálu a vzduchu, který je obsažen v pórech Součinitel tepelné vodivosti vzduchu má menší hodnoty než vlastní materiál. Význam také hraje tvar a velikost pórů V malých pórech se teplo šíří pouze vedením, ve větších pórech nabývá na významu také proudění a sálání Čím větší je pórovitost materiálu, tím menší je jeho objemová hmotnost a tím menší je také součinitel tepelné vodivosti Součinitel tepelné vodivosti vzduchu v závislosti na průměru pórů Průměr pórů d [mm] 0,1 0,5 1,0 2,0 5,0 [W/(m.K)] 0,024 0,026 0,028 0,031 0,044 15
16 Tepelně-technické vlastnosti látek Vliv vlhkosti na hodnotu součinitele tepelné propustnosti Součinitel tepelné vodivosti je výrazně ovlivňován vlhkostí materiálu Zvyšující se vlhkost materiálu zvyšuje tepelnou vodivost materiálu Čím vyšší součinitel tepelné vodivosti, tím nižší je tepelně izolační schopnost materiálu 16
17 Tepelně-technické vlastnosti látek Měrná tepelná kapacita Měrná tepelná kapacita, dříve nazývané měrné teplo, vyjadřuje množství tepla, které je potřeba k ohřátí 1 kg materiálu při stálém tlaku a definované vlhkosti o 1 K. 17
18 Tepelně-technické vlastnosti látek Součinitel difuzní vodivosti materiálu Součinitel difuzní vodivosti materiálu (součinitel difúze vodní páry) vyjadřuje schopnost materiálu propouštět vodní páru difúzí. Faktor difuzního odporu materiálu Faktor difuzního odporu materiálu je poměrem difúzního odporu materiálu a difúzního odporu vrstvy vzduchu o téže tloušťce. 18
19 Použitá literatura a zdroje ČURPOVÁ, Danuše. Tepelná technika budov: Modul 01: Teoretická základy stavební tepelné techniky. Brno: VUT Brno. KOPECKY, Pavel. Materiál a konstrukce: Šíření tepla, vzduchu a vlhkosti v budovách a stavebních prvcích. Praha: ČVUT. 19
20 Dotazy či připomínky: TEPELNÁ OCHRANA BUDOV TEPELNĚ TECHNICKÉ POSOUZE K-CE 20
21 Tepelně technické posouzení Typ konstrukce Střecha jednoplášťová Střecha dvouplášťová Podlaha z hlediska poklesu dotykové teploty 21
22 Hodnocení tepelné stability Okrajové podmínky výpočtu Nápověda F1 (výběr z možností) Střecha jednoplášťová Rsi = 0,10 m2/w Rse = 0,04 m2/w Střecha dvouplášťová Rsi = 0,10 m2/w Rse = 0,10 m2/w Stěna jednoplášťová Rsi = 0,13 m2/w Rse = 0,04 m2/w Stěna dvouplášťová Rsi = 0,13 m2/w Rse = 0,13 m2/w Podlaha na terénu Rsi = 0,17 m2/w Rse = 0,00 m2/w Stěna suterénní Rsi = 0,13 m2/w Rse = 0,00 m2/w 22
23 Tepelně technické posouzení Okrajové podmínky výpočtu V případě konstrukce ve styku se zeminou 23
24 Tepelně technické posouzení Posouzení podlahy na terénu Standardně posouzení pouze po vrstvu hydroizolace (včetně) Nezadává se V případě TI po vrstvou hydroizolace, je možné započítat vliv TI pokud je tepelná izolace nenasákavá 24
25 Tepelně technické posouzení Kontrola vstupních dat 25
26 Tepelně technické posouzení Korekční součinitel prostupu tepla ΔU F1 (případně F2 pro započtení vlivu obrácené střechy) 26
27 Tepelně technické posouzení Korekční součinitel prostupu tepla ΔU F1 (případně F2 pro započtení vlivu obrácené střechy) 27
28 Tepelně technické posouzení Korekční součinitel prostupu tepla ΔU R=d/ 28
29 Tepelně technické posouzení Započítání vlivu systematických tepelných mostů (ekv. lambda) F2 F2 29
30 Tepelně technické posouzení Výpočet součinitele tepelné vodivosti nehomogenní vrstvy 30
31 Tepelně technické posouzení Započítání vlivu perforace parozábrany F2 31
32 Tepelně technické posouzení Výpočet faktoru mechanicky upevněné parozábrany 32
33 Tepelně technické posouzení Výpočet Protokol - Vyhodnocení ČSN
34 VYHODNOCENÍ ZKOPÍROVAT JAKO PŘÍLOHU 34
35 Dotazy či připomínky: N_FSB Děkuji za pozornost Ing. Michal Kraus, Ph.D. 35
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
VíceNPS. Nízkoenergetické a pasivní stavby. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích NPS Nízkoenergetické a pasivní stavby Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví
VíceZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
VícePTV. Progresivní technologie budov. Seminář č. 5 a 6. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích PTV Progresivní technologie budov Seminář č. 5 a 6 Seminář: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus, Ph.D. Katedra stavebnictví Vývoj
VíceMěření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
VíceProtokol pomocných výpočtů
Protokol pomocných výpočtů STN-1: příčka - strojovna Pomocný výpočet korekce součinitele prostupu tepla ΔU Korekce pro vzduchové vrstvy dle ČSN EN ISO 6946 Korekční úroveň: Vzduchové spáry propojující
VíceTEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam
VíceTEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: BD Ulice: Družstevní 279 PSČ: 26101 Město: Příbram Stručný popis budovy
VíceEnergetická náročnost budov
Energetická náročnost budov Energetická náročnost budov - právní rámec směrnice 2002/91/EC, o energetické náročnosti budov Prováděcí dokument představuje vyhláška 148/2007 Sb., o energetické náročnosti
VíceENS. Nízkoenergetické a pasivní stavby. Cvičení č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Cvičení č. 4 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal Kraus,
VíceŠíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
VíceTepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Bytový dům čp. 357359 Ulice: V Lázních 358 PSČ: 252 42 Město: Jesenice Stručný
Více133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla
VíceBH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura, podmínky zápočtu Zadání, protokoly Součinitel prostupu tepla U, teplotní
VíceTepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem
TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Základní škola Slatina nad Zdobnicí Ulice: Slatina nad zdobnicí 45 PSČ:
VíceTERMOMECHANIKA 15. Základy přenosu tepla
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný
VíceTERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
VíceTechnologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Více102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
VíceVysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 2. Ing. Michal Kraus, Ph.D. Katedra stavebnictví
Vysoká škola technická a ekonomická V Českých Budějovicích Energetický audit budov Seminář č. 2 Ing. Michal Kraus, Ph.D. Katedra stavebnictví Tepelná ochrana budov Přehled základních požadavků na stavební
VíceOBSAH ŠKOLENÍ. Internet DEK netdekwifi
OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa
VíceVlhkost. Voda - skupenství led voda vodní pára. ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára
Vlhkost Voda - skupenství led voda vodní pára ve stavebních konstrukcích - vše ve vzduchu (uvnitř budov) - vodní pára Vlhkost ve stavebních konstrukcích nežádoucí účinky... zdroje: srážková v. zemní v.
VíceTabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost
Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.
VícePŘEDSTAVENÍ PROGRAMŮ PRO HODNOCENÍ ENERGETICKÉ NÁROČNOSTI BUDOV
Přednáška na SPŠ Stavební v Havlíčkově PŘEDSTAVENÍ PROGRAMŮ PRO HODNOCENÍ ENERGETICKÉ NÁROČNOSTI BUDOV Ing. Petr Kapička 1 Aplikační programy tepelné techniky Všechny programy obsahují pomůcky: Katalog
VíceWiFi: název: InternetDEK heslo: netdekwifi. Školení DEKSOFT Tepelná technika
WiFi: název: InternetDEK heslo: netdekwifi Školení DEKSOFT Tepelná technika Program školení 1. Blok Legislativa Normy a požadavky Představení aplikací pro tepelnou techniku Představení dostupných studijních
VíceVLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
VíceVysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov Konzultace č.1 Literatura: Studijní opory: BH10 Tepelná technika budov Normy: ČSN 73 0540 Tepelná
VícePosouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
VíceKATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
VíceMOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
VíceRočník: 1. Mgr. Jan Zmátlík Zpracováno dne:
Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_08 Název materiálu: Sdílení tepla Anotace: Prezentace uvádí příklady a popisuje způsoby sdílení tepla Tematická oblast: Vytápění 1. ročník Instalatér Očekávaný
VíceU218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
VíceMolekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
VíceŠkolení DEKSOFT Tepelná technika 1D
Školení DEKSOFT Tepelná technika 1D Program školení 1. Blok Požadavky na stavební konstrukce Okrajové podmínky Nové funkce Úvodní obrazovka Zásobník materiálů Uživatelské skupiny Vlastní katalogy Zásady
VíceKATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
VíceMIKROPORÉZNÍ TECHNOLOGIE
MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno
VíceT E C H N I C K Á Z P R Á V A
CENTRUM STAVEBNÍHO INŽENÝRSTVÍ a.s. Autorizovaná osoba č. 212 Akreditovaná zkušební laboratoř č. 1007.4 Zkušebna tepelných vlastností materiálů, konstrukcí a budov T E C H N I C K Á Z P R Á V A Zakázka
VíceKOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2015 obvodová stěna - Porotherm Název úlohy : Zpracovatel
VíceTermomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceStavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4
VícePOROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE
POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE Řešitel: Doc. Ing. Miloš Kalousek, Ph.D. soudní znalec v oboru stavebnictví, M-451/2004 Pod nemocnicí 3, 625 00 Brno Brno ČERVENEC 2009
VíceStanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
VíceTéma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3
Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1203_základní_pojmy_3_pwp Název školy: Číslo a název projektu: Číslo a název šablony
VíceTeplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
VíceTOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3.
TOB v... POTECH spol. s r.o. 00 - Pavel Nosek - Kaplice Datum tisku:..0 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: Místo: Zpracovatel: odinný dům Kaplice Zadavatel: Zakázka: Projektant:
VíceTepelnětechnický výpočet kondenzace vodní páry v konstrukci
Zakázka číslo: 2015-1201-TT Tepelnětechnický výpočet kondenzace vodní páry v konstrukci Bytový dům Kozlovská 49, 51 750 02 Přerov Objednatel: Společenství vlastníků jednotek domu č.p. 2828 a 2829 v Přerově
VíceVýpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
VícePROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceTOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =
Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -
VíceENS. Nízkoenergetické a pasivní stavby. Přednáška č. 5. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 5 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal
VíceTEPELNĚIZOLAČNÍ VLASTNOSTI V TEORII I V PRAXI
TEPELNĚIZOLAČNÍ VLASTNOSTI V TEORII I V PRAXI Pórobeton tepelněizolační zdící materiál Ideální tepelná izolace, velké množství vzduchu zachycené v oddělených buňkách, tak aby vzduch nemohl proudit V pórobetonu
VícePřehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
VíceDIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze
Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO
VíceDřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa. jan.kurc@knaufinsula;on.com
Dřevostavby - Rozdělení konstrukcí - Vybraná kri;cká místa jan.kurc@knaufinsula;on.com Zateplená dřevostavba Prvky které zásadně ovlivňují tepelně technické vlastnos; stěn - Elementy nosných rámových konstrukcí
VíceKOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY
KOMPLEXNÍ POSOUZENÍ SKLADBY STAVEBNÍ KONSTRUKCE Z HLEDISKA ŠÍŘENÍ TEPLA A VODNÍ PÁRY podle EN ISO 13788, EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2014 EDU stěna obvodová Název úlohy : Zpracovatel : Jan
Více1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
Víceměření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy
měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů
VíceZákladní vlastnosti stavebních materiálů
Základní vlastnosti stavebních materiálů Měrná hmotnost (hustota) hmotnost objemové jednotky látky bez dutin a pórů m V h g / cm 3 kg/m 3 V h objem tuhé fáze Objemová hmotnost hmotnost objemové jednotky
VícePROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceAKADEMIE ZATEPLOVÁNÍ. Není izolace jako izolace, rozdělení minerálních izolací dle účelu použití. Marcela Jonášová Asociace výrobců minerální izolace
Není izolace jako izolace, rozdělení minerálních izolací dle účelu použití Marcela Jonášová Asociace výrobců minerální izolace Kritéria výběru izolace Fyzikální vlastnosti Součinitel tepelné vodivosti,
VíceVÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
VíceODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT
ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ČLOVĚK ODĚV - PROSTŘEDÍ FYZIOLOGICKÉ REAKCE ČLOVĚKA NA OKOLNÍ PROSTŘEDÍ Lidské tělo - nepřetržitý zdroj tepla Bazální metabolismus, teplo je produkováno na základě
VíceZákladní vlastnosti stavebních materiálů
Základní vlastnosti stavebních materiálů Základní vlastnosti stavebních materiálů chemické závisejí na chemickém složení materiálu zjišťuje se působení na jiné hmoty zkoumá se vliv na životní prostředí
VíceM T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22
M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)
VíceJČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)
JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz
VíceTepelně vlhkostní mikroklima. Vlhkost v budovách
Tepelně vlhkostní mikroklima Vlhkost v budovách Zdroje vodní páry stavební vlhkost - vodní pára vázaná v materiálech v důsledku mokrých technologických procesů (chemicky nebo fyzikálně vázaná) zemní vlhkost
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY
PRŮKAZ ERGETICKÉ NÁROČNOSTI BUDOVY PODLE VYHLÁŠKY č. 78/2013 Sb. Rodinný dům č.p. 252, 35708 Krajková Energetický specialista: Ing. Jan Kvasnička ČKAIT 0300688, AT pozemní stavby MPO č. oprávnění: 0855
VíceSF2 Podklady pro cvičení
SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se
VíceVÝPOČET TEPELNÝCH ZTRÁT
VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota
VíceTZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
VíceTermomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VícePRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. Pořadové číslo: 010/2016 Název akce: Pravice 93 Pravice
Ing. Václav Lazárek - PENB Pazderky 3779/8, 669 02 Znojmo GSM: 777 / 65 32 29, email: vaclav.lazarek@email.cz www.radonznojmo.cz PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Pořadové číslo: 010/2016 Název akce:
VíceTermodynamika nevratných procesů
1 Nevratný proces Přenosové jevy.1 Sdílení tepla.1.1 Tepelný tok Hustota tepleného toku Celkový tepelný tok. Sdílení tepla vedením 3 Tepelná vodivost 3.1 Wiedemannův-Franzův zákon 4 Tepelný odpor 5 Sdílení
VíceDetail nadpraží okna
Detail nadpraží okna Zpracovatel: Energy Consulting, o.s. Alešova 21, 370 01 České Budějovice 386 351 778; 777 196 154 roman@e-c.cz Autor: datum: leden 2007 Ing. Roman Šubrt a kolektiv Lineární činitelé
VíceLineární činitel prostupu tepla
Lineární činitel prostupu tepla Zbyněk Svoboda, FSv ČVUT Původní text ze skript Stavební fyzika 31 z roku 2004. Částečně aktualizováno v roce 2018 především s ohledem na změny v normách. Lineární činitel
VíceDIFÚZNÍ MOSTY. Šárka Šilarová, Petr Slanina
DIFÚZNÍ MOSTY Šárka Šilarová, Petr Slanina Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti
VíceIntegrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.
VíceZvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.24 Zateplování budov minerálními deskami
VíceVÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ
VÝPOČTOVÉ MODELOVÁNÍ KONSTRUKCÍ PODKROVÍ Zbyněk Svoboda FSv ČVUT v Praze, Thákurova 7, Praha 6, e-mail: svobodaz@fsv.cvut.cz The following paper contains overview of recommended calculation methods for
VíceVytápění BT01 TZB II - cvičení
Vytápění BT01 TZB II - cvičení BT01 TZB II HARMONOGRAM CVIČENÍ AR 2012/2012 Týden Téma cvičení Úloha (dílní úlohy) Poznámka Stanovení součinitelů prostupu tepla stavebních Zadání 1, slepé matrice konstrukcí
VíceSDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM
VíceKATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až
VíceTEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
VíceTZB Městské stavitelsví
Katedra prostředí staveb a TZB TZB Městské stavitelsví Zpracovala: Ing. Irena Svatošová, Ph.D. Nové výukové moduly vznikly za podpory projektu EU a státního rozpočtu ČR: Inovace a modernizace studijního
VíceVÝPOČET TEPELNĚ-TECHNICKÝCH A AKUSTICKÝCH VLASTNOSTÍ ZDIVA Z TVAROVEK SYSTÉMU STAVSI
ZKUŠEBNÍ LABORATOŘ STAVEBNÍCH KONSTRUKCÍ A HMOT MCT spol. s r.o., Pražská 16, 102 21 Praha 10 - Hostivař, ČR, tel./fax +420-271750448 VÝPOČET TEPELNĚ-TECHNICKÝCH A AKUSTICKÝCH VLASTNOSTÍ ZDIVA Z TVAROVEK
VíceAKUstika + AKUmulace = AKU na druhou. Ing. Robert Blecha, Product Manager společnosti Wienerberger ,
AKUstika + AKUmulace = AKU na druhou Ing. Robert Blecha, Product Manager společnosti Wienerberger 724 030 468, robert.blecha@wienerberger.com AKUSTIKA 2 AKUSTIKA Obsah AKU Profi jaký byl první impuls?
VíceSOFTWARE PRO STAVEBNÍ FYZIKU
PROTOKOL Z VÝSLEDKŮ TESTOVÁNÍ PROGRAMU ENERGETIKA NA POTŘEBU ENERGIE NA VYTÁPĚNÍ A CHLAZENÍ DLE ČSN EN 15 265. SOFTWARE PRO STAVEBNÍ FYZIKU Testována byla zkušební verze programu ENERGETIKA 3.0.0 z 2Q
VíceTEPELNÁ STABILITA MÍSTNOSTI V LETNÍM OBDOBÍ (odezva místnosti na tepelnou zátěž)
TEPELNÁ STABILITA MÍSTNOSTI V LETNÍM OBDOBÍ (odezva místnosti na tepelnou zátěž) podle EN ISO 13792 Simulace 2017 Roubenka Název úlohy : Zpracovatel : Michael Pokorný Zakázka : Datum : 29.5.2018 ZADANÉ
Více1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA
. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA. Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota = ϑ - ϑ... teplotní rozdíl Θ = Θ - Θ... teplotní rozdíl C... stupeň Celsia
VíceEFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO
EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍČECHY ECHY DOLNÍ BAVORSKO Vytápěnía využitíobnovitelných zdrojůenergie se zaměřením na nízkoenergetickou a pasivní výstavbu Parametry pasivní výstavby Investice do Vaší
VíceTeplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
VíceSeminář pro gestory a členy pracovních skupin pro TN
Seminář pro gestory a členy pracovních skupin pro TN Výzkumný ústav pozemních staveb Certifikační Společnost AO 227 NO 1516 Technické požadavky na vybrané stavební výrobky z hlediska základního požadavku
VíceU218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
VíceDřevostavby aktuality Mnoho tváří Heraklithu Větrané fasády dvě strany stejné mince
Dřevostavby aktuality Mnoho tváří Heraklithu Větrané fasády dvě strany stejné mince Dřevostavby - aktuality Skladby difuzně otevřené/uzavřené Novinky v oblase PO AkusEka Dřevostavby - aktuality Co to je
VíceZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE
ZÁKLADNÍ KOMPLEXNÍ TEPELNĚ TECHNICKÉ POSOUZENÍ STAVEBNÍ KONSTRUKCE podle ČSN EN ISO 13788, ČSN EN ISO 6946, ČSN 730540 a STN 730540 Teplo 2009 SO1 Název úlohy : Zpracovatel : Josef Fatura Zakázka : VVuB
VíceProtokol č. V- 213/09
Protokol č. V- 213/09 Stanovení součinitele prostupu tepla U, lineárního činitele Ψ a teplotního činitele vnitřního povrchu f R,si podle ČSN EN ISO 10077-1, 2 ; ČSN EN ISO 10211-1, -2, a ČSN 73 0540 Předmět
VíceVliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce
Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,
VíceTepelně vlhkostní posouzení
Tepelně vlhkostní posouzení komínů výpočtové metody Přednáška č. 9 Základní výpočtové teploty Teplota v okolí komína 1 Teplota okolí komína 2 Teplota okolí komína 3 Teplota okolí komína 4 Teplota okolí
VíceBH059 Tepelná technika budov
BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce
VíceOblast podpory A Snižování energetické náročnosti stávajících rodinných domů
Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram Nová zelená úsporám - RODINNÉ DOMY v rámci 3. Výzvy k podávání žádostí Oblast podpory A Snižování energetické náročnosti
Více